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Abstract

It is shown that if [n] = X; UX3s U ...U X; is a partition of
[n] and if S; is a family of t-valued functions intersecting on
at least one element of k (circularly) consecutive blocks, then
|Se] < t*F. Ifgivena; < ap < ... < @ < I, S} is a fam-
ily of t-valued functions intersecting on at least one element
of Xa,4myXaz+m, sy Xa,+m for some m with 1 —a; < m <
n — ag, then |S]| < t*~*. Both these results were conjectured
by Faudree, Schelp and Sés [FSS]. The main idea of our proofs
is that of anticlusters introduced by Griggs and Walker[GW]
which we discuss in some detail. We also discuss several re-
lated intersection theorems about sets, 2-valued functions and
t-valued functions.

1. Introduction and Preliminaries

Let [n] denote the set {1,2,3,...,n} and let 27! denote the col-
lection of all subsets of [r]. The collection of all subsets of [n] of
cardinality k is denoted by ([:]). The study of intersecting families
of subsets of [n] is by now a very well established area of combina-
torics which was started in 1961 by Erdés, Ko and Rado when they
proved the following theorem which is stated below in its simplest
form .

Theorem 1 . If F C (i) is an intersecting family and n > 2k,
then |F| < (2] -

If there is no restriction on the size of the members of F then
one can show the following.
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Theorem 2 . If FC 2! is an intersecting family then
|F] < 21,

Proof. For any A C [n], A and [n] — A both cannot be in F and
the theorem follows. m}

Since the original paper of Erdés, Ko, and Rado [EKR] various
intersection theorems have been obtained where one asks for the
largest size of the family under certain conditions , e.g. family sat-
isfies certain closure relations, solutions of various relations such as
F; C F, are excluded, any two sets in the family can have intersec-
tion only of certain cardinalities (or only of certain type) etc.

One such question was raised by Paul Erdés, who asked whether
F C 27 which has the property that the intersection of any two
members of the family contains two consecutive integers, has size at
most 2"~ 2? The following elegant argument due to Graham answered
this question in the affirmative.

Theorem 3 . If F C 2[" and given Fy, F; € F, F,NF, contains
two consecutive integers, then

|F] < 2%,

Proof. Let E and O denote the set of evens and odds in [n] and
consider

Fg = {EnNF|FeF}, Fo = {OnF|FeF}.

If F satisfies the given condition then both Fz and Fo are intersect-
ing families and hence

|F| < |Fg||Fo| < 2BF1.200-1 = o2 ¢

The above theorem is clearly the best possible since all sets con-
taining, say {1,2}, have the desired property and there are 2"~2 of
them.

Also there is an extensive literature on intersection theorems on
sets where the possible sizes of intersections are restricted [DEF][DF]
[FW][RW].
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Given B C 2[7, a family F C 2[" is said to be an intersecting
family over B if for every F;,F; € F there exists some B € B
such that B C F; N F;. Griggs and Walker [GW] and Chung et.
al. [CGFS] proposed the following most general question : Given
B, what is the largest size of an intersecting family over B ? Let us
denote this number by v(B). Throughout this paper we will restrict
ourselves to the case of all members of B having the same size. If
B consists of a single set B C [n] then clearly v(B) = 2"~|Bl. On
the other hand, suppose that B= ([2]), then an intersecting family
F over B has the property that for any 1, F» € F, |[FiNFo| > k.
The largest possible cardinality of such a family was determined by
Katona [K1] in 1964.

Theorem 4.

( [n] ) = Y= (5) if n+k = 2p
We) T %M + (7)) ifntk=2p1.

A family consisting of all possible supersets of a set is called a
kernel system. In this paper we restrict ourselves to families B for
which v(B) equals the size of the kernel system containing a set of
the smallest size. Theorem 2 and Theorem 3 provide examples of
such families over singletons and the family of all sets {i,i+1} (1 <
i < n — 1), respectively.

2. Results

Since it is easy to determine v in extreme cases, the first question
of interest is to consider some intermediate families B C (:]) con-
taining more than one set but not all. Suppose that X € (I!) with
X = {21 < 23 < ... < z;}. Let B,(X) denote the collection of all
cyclic translates of X € [n], that is, the sets X + ¢ where addition is
carried out modulo n. The set of ordinary translates of X, that is,
the sets X + i for 1 — 2; < i < n — a, is denoted by B(X). Then
we have immediately that

2" < w(Bi(X)) < u(Ba(X)) .
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R. Graham has conjectured that equality holds in the above equa-
tion and for a proof of this he offers USD 100.

Conjecture 1. Forall X € ([z]) , v(Ba(X)) =27k,

Instead of families of sets one can ask the same question for
families of 2-valued functions and, more generally, for families of
t-valued functions where ¢ is some fixed integer. Two functions f
and g intersect if f(i) = g(i) for some ¢ with 1 < 4 < n, and a
family of functions is said to be intersecting if any two functions in
it intersect.

Let [n] = X7 U X U ... U X be a partition of [n] into disjoint I
blocks and let k(< !) be a fixed integer. In [FSS], Faudree, Schelp
and S6s proved the following :

Theorem 5. Given [n] = X; UXpU...UXjand 0 < k < [, let
S2 be an intersecting family of 2-valued functions such that given
f,9 € 83, there are k consecutive sets X;, X;41,...., Xj4k—1 (where
the indices are taken modulo /) and elements z; € X; such that
f(zi)=g(zi)forj<i<j+ k-1, then

|Ss] < 2nF .

"In this paper we give a simple proof of this theorem using an-
ticlusters and prove the ¢-valued analogue of Theorem 5 which was
conjectured by Faudree, Schelp and S6s at the end of [FSS].

Theorem 6. If in the statement of Theorem 5, the given family
is of t-valued functions denoted by S;, then
IS:] < k.

In an attempt to generalize Theorem 5, Faudree, Schelp and Sés
conjectured the following.

Conjecture 2. Given [n] = X;UX2U...UX; and positive integers
a1 < ag < ... < a; < 1, let S’ be an intersecting family of 2-valued
functions such that given f,g € S’ there exists a nonnegative integer
m and elements z; € Xg,+m (the indices a; +m taken modulo ) such
that f(z;) = g(=;) for each i (1 < i < k), then
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|SI| < 2n—k .

Note that Theorem 5 is a special case of this conjecture when
a; = ¢ for all i. We prove the ordinary translate version of this
conjecture not only for 2-valued functions, but more generally for
intersecting families of ¢-valued functions.

Theorem 7. Given [n] = X;UX,U..UX; and positive
integers a1 < a2 < ... < ax < I, let S/ be an intersecting family of
t-valued functions such that given f,g € S} there exists an integer
m,1-a1 < m < n- a, and elements z; € X,,4m such that
f(z:) = g(z;) for each i (1 < i < k), then

IS < k.

We also prove :

Theorem 8 . Given [n]= X; UX,U...UX;and 15 < k < 1, let
Z be an intersecting family of ¢-valued functions with k > ¢+ 1, such
that given f,g € Z there are k sets X, X;,, ... , X j. and elements
z; € Xj; such that f(z;) = g(z;) for each 4,1 < i <k, then

12| < "k,

3. Anticlusters

One possible approach to Conjecture 1 led Griggs and Walker
to introduce the notion of anticlusters. If we look at the proof of
Theorem 2 once again, we notice that 2/ has been partitioned into
271 pairs such that any intersecting family can have at most one
set from each pair since sets of a given pair do not intersect. Proof of
Theorem 3 also does nothing but partition 2 into 2"~2 blocks each
of size 4 such that no two sets in a block have consecutive integers
in common. Thus, any family interescting in consecutive integers
can have at most 2”2 members — one from each block. In fact the
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same argument proves that if S is a family of 2-valued functions on
[n] such that any two functions of S coincide on two consecutive
integers, then |§| < 2% .

Definition. A collection A C 2[* is said to be an anticluster
for B C 27 if for every A;, A; € A such that A; # A,, the set
A; N Aj includes no set B in B.

Then for any intersecting family F over B and any anticluster A
for B, |[FnA| < 1. It follows that for any B, v(B) is at most the
minimum number of anticlusters needed to partition 2[™. A partition
ol — A;UALU...UA,, is called an anticluster decomposition over B
if each A;, 1 < i < m, is an anticluster for B. A decomposition with
the smallest possible m is called a minimal anticluster decomposition.
In [GW], Griggs and Walker conjectured the following.

Conjecture 3 . For all X € (7)) there exists a partition of 2
into 2"~* anticlusters over B,(X).

It is clear that Conjecture 3 implies Conjecture 1. That the
above conjecture is not true for general B was shown by Griggs and
Walker. They showed that for n = 6 and B = (1) it is necessary
and sufficient to take 24 anticlusters, but v(B) is only 22. In proving
all the results mentioned in the previous section, however, we will
in fact be able to provide an suitable anticluster decomposition. For
this we will need a reformulation of Conjecture 3 in terms of matrices
which is very convenient to use. For completeness, next we discuss
this reformulation closely following Griggs and Walker [GW].

A subset B C [n] can be identified with its characteristic vector
(a1, a2, ...,an) where a; = 1 if i € B and a; = 0 otherwise , viewed as
an element of Z}. Of course, AC Z7 forms an anticluster over | if
for no two elements of A , both have 1’s in every component indexed
by some B € B. Thus one can seek to partition Z§ into 2"~ affine
“subspaces” of size 2¥, each parallel to a particular k-dimensional
subspace, such that each corresponds to an anticluster for B(X).
Thus, we want a k-dimensional subspace T' such that the projection
of T into the k-dimensional subspace generated by the standard basis
vectors indexed by elements of B is one to one and onto. In other
words, we seek a k X n matrix M such that every k x k submatrix

22



of M consisting of columns indexed by B is nonsingular. We call
this matrix M an anticluster matriz over B. Thus Conjecture 3 is
implied by the following conjecture.

Conjecture 4. For all k¥ and n, 0 < k < n, and all k-subsets
X C [n], there exists a k by n matrix M such that for all i, the
k columns of M indexed by the cyclic translate X + i (mod n) are
linearly independent over GF(2).

We have been viewing Z7' as containing the subsets of [n] and
the group operation corresponds to the symmetric difference of sets.
Given Fi, Fy C [n] define the operation 7 by

Ry F, = Fleg = (FlﬂFz) U (Enrz)

where A = [n] — A. For a given family B of subsets of [r], F is
called a sy7-farily over B if for every Fy, F; € F, F, v F; contains
some B € B. Let 7(B) denote the cardinality of the largest 7-family
F over B. A collection A is said to be an vy — anticluster for B if
for every A1, A2 € A such that A; # Ay, the set A; 7 Az includes
noset BEB.

One can see that if the matrix M of Conjecture 4 exists then it
would in fact give a \/-anticluster decomposition. Also the existence
of such a matrix over Z; would imply an t/-anticluster decompo-
sition over Z; or, in other words, an anticluster decomposition for
intersecting ¢-valued functions. Note that it is not necessary that
all characteristic vectors form a vector space. In fact for the above
argument it suffices that they form a module over Z;.

4. Anticluster Matrix and Proofs of Theorem 6 and
Theorem 8

The statement of Theorem 6 was conjectured by Faudree, Schelp
and Sés at the end of [FSS]. Somewhat surprisingly their proof for
the case ¢ = 2 can be straightforwardly extended for any ¢. Though
we will shortly see a simple proof using anticlusters, first we discuss
this extension. We need an analogue of Lemma 6 of [FSS] and for
completeness we outline its proof here.
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Lemma 1 . For | = n < 2k, if £ is a family of ¢-valued functions
from [n] to {1,2,...,t} such that any two members of L intersect on
k circularly consecutive integers, then

L] < %,

Proof. Let Y C [n] be the set on which all functions of L agree.
If |Y| > k then the lemma is obvious. So assume |Y| < k. Suppose
there are integers ¢ and j, n—k < |i—j| < k such that both are not in
Y. Then there exist two functions say f and g such that f(5) # g(5)
and we may assume f(¢) = 0. Since f and g agree on k consecutive
integers and there are less than k integers between ¢ and j, we must
also have g(i) = 0. Because ¢ ¢ Y, there is an h € L such that, say,
h(i) = 1. Since f and g have distinct values on j, h must disagree
with one of them, say f, and we obtain that & and f do not agree on
k consecutive integers. It follows that if ¢ isnot in Y, then 2k—n+1
consecutive integers, namely i +n—k,i+n—k+1,...,i + k, must be
in Y. Therefore a single element in [n] — Y gives rise to 2k —n + 1
elements in Y and each additional element in [n] — Y will give rise
to at least one more element in Y. Hence

Y| > 2k-n+|n]-Y| > 2k-n+n—-k > &k,

which is a contradiction and the lemma follows. 0.

Proof of Theorem 6. Forl = pk +r, 0 < r < k, partition the
index set {1,2, ... [} into k + r subsets Y3,Ys, ... ,Yxy, by letting
Y;={i,k+1i, ... ,(p—1)k+ i} for 1 <i <k and Y, = {pk + i}
for 1 < i < r. Note that any two distinct integers in the same
block differ by at least k, so any k (circularly) consecutive integers
will be in k consecutive terms of this partition modulo k¥ + r. Let
W1, Wa, ..., Wiy, be the partition of [n] defined by W; = Ujey; X; for
1 < i < k+r. Given any two functions f,g € S; there exist elements
Wy, Wjt1, -, Witk—1 (indices taken modulo k + r) with w; € W; such
that f(w;) =g(w;) for j<i<j+k-1.

For a given ordered partition of W; = A} U A2 U ... U Af we will
only consider the functions which take value j € [t] on every element
of A}, j + 1 on every element of A? and in general j + m — 1 (
modulo ¢) on A™. Such a function will be called a cyclic function on
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W; with respect to A}, A%, ..., Af. Given an ordered partition there
are ¢ cyclic functions since they are completely determined by their
valuf on A'. Now we consider the set of functions on [n] which
are cyclic on each W; with respect to the given ordered partitions.
More precisely, let S((A}, 42, .., A¢), (41, ..., A3), ...(AL e AL )
(in short, S) denote the set of those functions which are cyclic on
each|W; with respect to A},..., A% There are *+" such functions
and the set of all ¢- valued functions can be partitioned into ¢"—*-*
such |sets.

Now, any function f on S can be identified with a ¢-valued func-
tion f’ on {1,2,...,k + r} where f’ is defined by f/(s) = f(A}) for
each i. This identification also identifies any map in S; N S to a ¢-
valued function on {1,2, ...,k + r} such that any two such functions
intersect in k consecutive integers (modulo k + r). Therefore, by
Lemma 1, we have |S; N S| < " . This inequality is valid for each of
the ¢7%-7 classes and hence we obtain

Istl S tn—k—r . tr — tn—k . O

PEOf of Theorem 5 . Note that Theorem 5 is equivalent to the
existence of a k X n matrix M of zeros and ones such that given
a partition of the column indices [r] = X; U X2 U ... U X all the
k x k|submatrices consisting of one column each from k (circularly)
consecutive blocks have determinant 1 ( mod 2). Simply take a k x [
matrix M’ constructed using Pascal’s Triangle (mod 2) as follows :
without loss of generality assume first k columns of M’ to form an
identity matrix and let last n — k columns be given by miit1 = 1,
for all ¢, mp; =1,forall j > k+1, mij; = Mip1,; + m;j—; (mod
2),for1<i<k-1,k+2<j<n. It can be checked that any
k consecutive columns of M’ form a matrix with determinant = 1 (
mod 2). For details regarding construction of this matrix and why
it works, see [GW](pp.94-96). ’

Now M can be constructed by repeating column 1 of M’ |X;|
times, column 2 |X,| times and in general column j |X;| times for
1 < j < I. This matrix has the desired property and the theorem
follows. o

Notice that the proof of Theorem 6 partitions the set of all func-
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tions in S; into ¢"~*-7 classes such that from each class we can have
at most 7 functions. Lemma 1 can be used to further decompose
each of those subclasses into " anticlusters. An explicit anticluster
decomposition can also be given using the matrix approach.

Proof 2 of Theorem 6. Proceed exactly as in the proof of Theorem
5 to construct a matrix M with entries in Z; using Pascal’s triangle
(mod t) such that given a partition of the column indices [n] =
X1UXaU...U Xy, all k x k submatrices consisting of one column
each from k (circularly) consecutive blocks are nonsingular. O

Proof of Theorem 8. As in the proof of Theorem 6 let S((A1, A2, ..
 AL), (4}, ..., 48),.... (4},...,A})) (in short S) denote the set of all
functions which are cyclic on each X; with respect to the ordered
partition A}, A?,..., A% There are ¢ such functions and the set of
all ¢-valued functions can be partitioned into ™~ sets of this type.
Any function of SN Z can be naturally identified with a collection of
t-valued functions on [I] such that any two functions agree on at least
k points. Under the hypothesis, a theorem of Frankl and Furedi[FF]
stated below (Theorem 9) gives that |S N Z| < ¢—*. Hence we
obtain

|Z| < tn_l.tl_k = tn—k . o

Theorem 9 [FF]. The maximum number of integers sequences
(a1,a2,...,a,) such that 1 < a; < ¢t for 1 < i < n, and any two
sequences agree in at least k(> 15) positions is t"~* if and only if
t>k+1.

The above theorem for ¢ < k is not true in general. The special
case t = 2 is of particular interest since for this the problem reduces
to the following : What is the maximum number of subsets of [n]
such that the symmetric difference of any two has cardinality at most
n— k ? This problem was posed by Erdds and solved by Kleitman
[K2].

Theorem 10 [K2]. Let Z be a family of 2-valued functions such
that any two intersect on at least k elements then
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12| < iz (}) for n+k=2r
Tl T () + (%1 for nk=2r+1.

5. Families Over Ordinary Translates and the Proof of
Theorem 7

Though it is not yet known whether one can prove Conjecture
1 using anticlusters, Griggs and Walker have used this to show that
a kernel system is optimal over ordinary translates of a set. Their
approach is to select the columns of M (the matrix in Conjecture
3) one at a time. In this greedy approach one selects any column
vector for column j that is, for every i such that j € (X + i) (mod
n), independent of the subspace generated by the column indexed
by the set (X + 4)(mod n) N [j — 1]. This means that we choose any
k-vector as column j, given columns 1,2,...,j — 1, that gives rise to
a suitable k X j matrix thus far (see [GW] pp. 96-97). Griggs and
Walker thus obtained

Theorem 11 [GW]. For all k and n with 0 < k < n, and any
k-subset X of [n], v(B:(X)) = 2™k.

We use this to prove the following conjecture of Faudree, Schelp
and S6s.

Theorem 12. Given [n] = X; UX3U...UX; and positive integers
a1 < az < ... < a < llet &' be an intersecting family of 2-valued
functions such that given f, g € &’ there exists an integer m, 1—a, <
m < n - ag, and elements z; € X,,4m such that f(z;) = g(z;) for
each i (1 < i< k), then

I Sll < on—k .
Proof of Theorem 12. First construct a k x ! matrix M’ with
X = {a1,as,...,a;} using the greedy approach of Theorem 11. It

has the property that the matrix consisting of columns indexed by
any translate of X is nonsingular. Now we construct a k X n matrix
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M by first putting | X;| copies of column 1 of M’, next |X;| copies
of column 2 of M’ and so on until | X;| copies of the last column of
M’ in the end. The new matrix M so constructed has the property
that any k x k submatrix formed by k columns where the indices
are taken one each from X, +m, Xay+m) -y Xay+m, fOr some m with
1 —a; < m < n — a;, is nonsingular. The theorem follows from an
argument used in the previous proof. o

Proof of Theorem 7. We use the same trick of partitioning all ¢-
valued functions into sets of cyclic functions. Let S((A], 42, ..., 4%),
(A43,..., A),...(4}, ..., A})) (in short S) denote the set of all functions
which are cyclic on each X; with respect to the ordered partition
A}, A2, ..., At. There are #! such functions and the set of all ¢-valued
functions can be partitioned into "~ sets of this type. Any function
of SN & can be naturally identified with a collection of t-valued
functions on [I] such that any two functions agree on a (ordinary)
translate of X = {ay,as,...,ar}. The theorem follows from the fol-
lowing Lemma. o

Lemma 2. Given 0 < k<land 0 < a1 < a3 < ... < a <1
let T be a family of ¢{-valued functions on [I] such that for every
f,g9 € T there exists an integer m with 1 —a; < m < [ - g, such
that f(a; + m) = g(a; + m) for each ¢ (1 < < k), then

7] < k.

Proof. We imitate the proof of Theorem 12 over Z;. The only
crucial step is to construct a k x [ anticluster matrix M’ over Z;
using the greedy approach of section 5 of [GW](see pp. 96-97). Note
that if ¢ is a prime power then the lemma can be proved exactly as
Theorem 11. So we assume that ¢ is not a prime power.

Also assume that k > 0 because the lemma is trivial for k& = 0.
Each element j of [I] appears at most once as the rth largest element
of a translate of X = {a1,as,...,ax}, for each r with 1 < r < k.
To select column j given the first j — 1 columns of M’, we must
only be sure that for each such 7, column j is not an element of the
“subspace” generated by the columns indexed by the r — 1 elements
less than j in the translate of X. There are at most "~ — 1 distinct
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nonzero vectors which are linear combinations of these r — 1 vectors.
In addition, column j must not be a vector with order less than ¢ or,
what we may call by abuse of language, a zero divisor. Clearly, no
component of a zero divisor can be relatively prime to ¢ and therefore
the total number of zero divisors cannot be more than (¢ — ¢(t))*,
where ¢ is the Euler-phi function. So the number of columns which
will work as column j is at least

k
th — ((E-e@)* + (" -1)).

r=1

For ¢ > 4 this expression can be seen to be greater than 0 and
the lemma follows. O

Of course, one can directly construct a suitable matrix M for
Theorem 7 from a matrix for Lemma 2.

6. Discussion and Open problems

The essential point of all the results proved in previous sections
is that if a kernel system is optimal over B consisting of translates
(cyclic or ordinary) of some fixed set, then the same bound continues
to hold over B’ which includes all sets obtained by replacing each
element of the underlying set by a set and taking one element from
each block indexed by a member of B.

If the partition in Theorem 8 has all the blocks of equal size then
one obtains a subfamily B of (1) of cardinality T,,"T'_‘-f (=0((®)
which is much larger (for suitable ! and k) than, say the family of
all cyclic translates of a particular set, and still has v(B) equal to
the size of a kernel system. One may ask : What is the size of the
largest family B C ([:]) such that v(B) = 2"~* ? Same question for
families of ¢-valued functions.

The most general question, of course, is to classify all families for
which a kernel system is optimal.
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