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Abstract. In this paper we study the edge clique graph K(G) of many classes of
intersection graphs G—such as graphs of boxicity < k, chordal graphs and line graphs.
We show that in each of these cases, the edge clique graph K (G) belongs to the same
class as G. Also, we show that if G is a Wy -free transitivity orientable graph, then
K(G) is a weakly §-perfect graph.

Section 1: Introduction

In this paper we shall study the edge clique graph of G which is denoted by
K (@), and is derived from @ in the following way: Let V(K (G)) = E(G) and
for every pair of edges e; and e;, let I;; be the set of vertices of G' upon which
these two edges are incident, i.e., I;; contains three or four vertices depending on
whether or not e; and e; share a common vertex. Join e; and e; by an edge in
K(G) iff I;; forms a clique (a complete subgraph) of G.

The edge clique graph was first introduced by Albertson and Collins [1984].
They have given results related to perfection of K (G), as for example what prop-
erties of G will force K(G) to be perfect.

Our interest in edge clique graphs was initiated in the study of the intersection
number i(G) of graph G. G is an intersection graph if we can assign a set S(x)
to each vertex z of G, such that {z,y} € E(G) « S(z) NS(y) # ¢. Itis
easy to see that every graph is an intersection graph. So we define the intersection
number i(G) of a graph to be the minimum cardinality of a set S such that G
is the intersection graph of subsets of S. It can be shown that i((G) = 0.(G) =
0,( K(G)), where 8.(G) and 6,(G) are the minimum number of cliques required
tocover E(G) and V(Q) respectively. Since 8, is a widely studied parameter, we
investigate those classes of graphs for which K(G) belongs to the same class as
G so that 6,( K (G)) could be found by existing algorithms. This has been shown
to be true for chordal graphs in Albertson and Collins [1984] and for chordal and
strongly chordal graphs in Raychaudhuri [1988].

In section 2 we show that K (G) preserves the structure of many intersection
graphs namely chordal graphs and graphs of Boxicity < k. In section 3 we show

1This work is included in the author’s Ph.D. thesis, written under the guidance of Professor ES.
Roberts, Mathematics Department, Rutgers University, New Brunswick, New Jersey. Partial research
support from The College of Staten Island is also acknowledged.
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that K (G) is aline graph if G is one?, and in section 4 we show that if G is a W, -
free transitively orientable graph, the K(G) is a weakly @-perfect graph [a graph
for which 6,(G) = a(G), the maximum cardinality of a mutually nonadjacent
set of vertices].

Section 2: Edge Clique Graph of Some Intersection Graphs

An important property of some intersection graphs is the Helly property which
we describe next. A family {T;};¢; of subsets of a set T is said to satisfy the Helly
property for J,if ] C I, and T; N T; # ¢ forall 4, j € J implies (¢, Tk # .

Suppose G is the intersection graph of sets belonging to a family D, (for ex-
ample, D may be the family of all real intervals). Is S(z) € D represents an
intersection representation for G, the let S({z,y}) = S(z) N S(Y) # ¢ be an
assignment made to every edge {z, y} of G. Then we have the following theorem.

Theorem 1. Suppose G is the intersection graph of sets belonging to a family
D. Suppose there is an intersection assignment S(x) for G which satisfies the
following conditions:

@ S({z,y}) € D forall {z,y} € E(G).
(b) S has the Helly property for all cliques of G, ie.,(\,ex, S(z) # ¢ forall
cliqgues K; of G.

Then K (G) is an intersection graph of sets belonging to family D.

Proof: Lete = {u,v} € E(G). Lete belong to the maximal cliques K, K3, ...,
K. Then by (b) there is an intersection assignment S for which S(K;) =, K
S(z) #¢foralli=1,2,...,s. Note that

S(K) CS({u,v}),i=1,....s O

Associate with each edge {u, v} of G, the set S({u, v}). Note that S({u,v}) € D
by (a), and that
S({u,v}) C S(w)
S({u,v}) C S(v)

We claim that S({u, v}) is an intersection representation for the graph K(G).
To see why, suppose {e;, e;} € E(K(G)). Then e;, e; belong to some maximal
clique K¢ of G. Then S(e;) intersects S(e;) at S(Kg) by (1). Next, suppose
that e; = {u,v} and e;{w, z} and that {e;,e;} ¢ E(K(G)). We claim that
S(e;) N S(e;) = ¢, otherwise if S(e;) N S(e;) contains a common point, say a,
then by (2) a € S(u), S(v), S(w) and S(2) and therefore {u, v, w, 2} must be
aclique of G, since S is an intersection assignment, which is a contradiction. J

@

2We have recently become aware of an independent work [1988] by Chartrand, G., Kapoor, S.E,
McKee, T.A., and Saba, E, in which similar results were obtained using different techniques.
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Let us next recall an important characterization of chordal graph (a graph in
which every cycle of length four or more has a chord) which says that G is a
chordal graph iff G is the intersection graph of a family of subtrees of a tree. Also
it is well known that the family of subtrees T; of a tree T satisfy Helly property.
(See Golumbic [1980]). Corollary 1.1 follows from the two above observations.

Corollary 1.1. If G is a chordal graph, then K (G) is a chordal graph.

Boxicity of a graph G is the minimum k for which G is an intersection graph of
k dimensional boxes in the Euclidean plane. [ |

Corollary 1.2. If k > 0 and G is a graph of boxicity at most k then K(G) has
boxicity at most k.

Proof: If k = 0, then Boxicity (G) = 0 means (by convention) G is a complete
graph. Thus K (G) is also a complete graph. So Boxicity (K(G)) = 0. Next
suppose k > 0. Let S(z) be an intersection assignment of G, where each S(z)
is a box of dimension < k. Every box of dimension & can be represented as the
intersection of k intervals, so S(z) = I, NI, - - -N I,. We shall show that S(z)
satisfies conditions (a) and (b). Suppose {z, y} € E(G). Then S(z) NS(y) # ¢.
Hence {I,, NI, ---N I} N{L, NIy, ---NIL,} #¢. Thus, I, N I, # ¢,1 =
1,...,k. Then, Iy, = I;,N I, is an interval in the ith dimension and S({z, y}) =
Iy N- - NI,y is a k-dimensional box being being the intersection of k nonempty
intervals in k different dimensions. Thus (a) is satisfied. Also (b) is satisfied since
it is clear that if a family of boxes in k-space pairwise intersect then they have a

nonempty intersection. |

By Corollary 1.1, the existing method to find 6,(G) for a chordal graph G can
be modified to find i(G) . Such a modification is given in Raychaudhuri [1988].

Section 3: Edge Clique Graph of Line Graphs

In this section we shall show that if G is a line graph then so is K(G). A line
graph of a graph G has as its vertex set the edge set of G and two edges of G are
joined by an edge in the line graph if they share a common vertex in G. So a line
graph is an intersection graph, where the set S(z) corresponding to any vertex
is a two element set and S(z) # S(y) is z # y. Such an assignment is a 2-r set
intersection assignment , given by Steif [1982].

Next we prove some lemmas concerning line graphs, which are necessary to
prove the main theorem of the section.

Lemma 1. If K is a maximal clique in a line graph G, and |K| > 4, and if
S(z) is any 2 set intersection assignment for G, then (\,cx S(z) # ¢.

Proof: If L is any clique of size 3 in a line graph G, then there are essentially
only two 2-r set intersection assignments for the vertices in L as shown in Figure
1. One has N, S(z) = ¢ (Figure 1 () and the other has (¢, S(z) # ¢
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(Figure 1 (ii)). To see why Lemma 1 is true, consider any clique L of size 3
contained in K. If (.o, S(x) # ¢ = {d}, as in Figure 1 (ii), then obviously
Nze1 S(z) # ¢ = {d}. Butif for all z in L, S(z) is as shown in Figure 1 (i),
then for all z in K — L, S(x) must intersect with each of {a, b}, {b,c} and {c, a}.
Since S(u) # S(v) whenever u # v, this vertex z cannot be given a 2-r set
intersection assignment. Hence we must have (¢4 S(z) # ¢ = {d}. ]

Figure 1. S(z) for a clique of size 3 in the 2-r set intersection assignment
of a line graph G

la,bj “dydy

Aa,c} “{b,c} {c,d} ° {b,d}
(1) , (i)

Lemma 2. Any particular edge of a line graph G cannot be contained in more
than one clique of size > 4.

Proof: By contradiction, suppose that an edge e = {s,t} of G is contained in two
(or more) distinct cliques K and K', each of size > 4. Then if S(z) is a 2-r set
representation of G and S(s) = {a,d} and S(t) = {b,d}, then ", S(z) and
Nzex S(z) # ¢, by Lemma 1, and the only element which may belong to these
intersections is d. But since K # K', this is a contradiction. 1

Lemma 3. Any particular edge of a line graph G cannot be contained in more
than two cliques of size > 3.

Proof (by contradiction): Suppose e = {s,t} € E(G) belong to two distinct
cliques L and L', where |L| and |L'| are > 3. Since L # L/, thereis av € V(L)
and there is a u € V(L) such that u and v are not adjacent in G. Then without
loss of generality, the only possible 2-r set representation of vertices s, t, u, v of G
are as shown in Figure 2. Note that (,,, S(z) # ¢ = {b}. If {s,t} € to a third
maximal clique L”, L” must contain a vertex w, which is not adjacent to some
vertex in L'. So b ¢ S(w). But since w is adjacent to both s and t, for any 2-r
set intersection assignment S of G, S(w) must contain b which is a contradiction.
Thus any edge of G can belong to at most two maximal cliques of size > 3.

From Lemmas 2 and 3 it follows that for any edge e of G, one and only one of
the following cases may occur.
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Figure 2

v {c,a}

{a,b}( s < >t {b,c}

u {b,d}

Case 1. e is maximal clique in G.

Case 2: e is in exactly one maximal clique, which is of size 3.

Case 3: e is in exactly one maximal clique which is of size > 4.

Case 4: e is in exactly two maximal cliques, one of which is of size 3 and the other
one is of size > 4.

Case 5: e is in exactly two maximal cliques, each of size 3.

Theorem 2. The edge clique graph K(G) of a line graph G is a line graph.

Proof: Suppose we are given a 2-r set intersection assignment S(x) for the line
graph G. With each edge e of G we shall associate a 2-r set S’ in all the above
five cases as shown and explained below:

Case 1: S'(e) = {b, e}

{a,b} e {b,c}
Case 2: :

(@) S'(e) = {e, 8} where § is the triangle of G whose vertices are represented

by {a, b}, {b,c},and {c,a} © {c,a}l
/ *\
{a,b}

e " ({byel

®) S'(e) = {d,e} /O\{a.d}

{b,d} ¢—-u-—"-D {c,d}
Case 3: S'(e) = {b,e} where (), S(z) = {b}

r--——-— - -—-=-=-=-- i

| _ -

| [y p &) 1

plaby 7 fbyel

A maximal clique of K size > 4
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Case 4: S'(e) = {b,8} where (| cx S(z) = b, and § is the triangle of G repre-
sented by {a, b}, {b, c} and {c,a}

{c,a}
A maximal clique K of size > 4

Case 5: S'(e) = {d, 8}, where § is the triangle represented by {b, c}, {b,d} and
{C, d}° {a,d}

{c,d} e {b,d}

{b,c}

It is easy to see that S'(e) is a 2-r set intersection assignment for K(G). 1

We have illustrated Theorem 2 with an example as shown in Figure 3. G is
the line graph of H and S(z) is a 2-r set intersection assignment for G shown
in Figure 3 (ii). Then we give a 2-r set intersection assignment for K(G) in
Figure 3 (iii). Thus by Theorem 2, finding i(G) for a line graph G is equivalent
to finding 6,( K(G)), where K(G) = L(H), the line graph of some graph H,
whose construction is described in the Theorem. Unfortunately there is no known
good algorithm to find 8, for a line graph. But it is possible to find a lower bound
for i(G) in polynomial time, since i((G) > a(K(G)) = a(L(H)), which is
the cardinality of a maximum cardinality matching in H, (See Lawler [1976] for
discussion of such an algorithm).

Section 4: Intersection Number of W, -free Transitively Orientable Graphs.

The important question that we ask in this section is: If G is a transitively ori-
entable graph, which class does K(G) belong to? We have been able to answer
this question only partially. In particular we show that if G is a four wheel free
transitively orientable graph, then K (G) is weakly @-perfect. Also we give an
algorithm to find i(G) for such graphs by solving a minimum flow problem in a
network with lower capacities on its arcs.
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Figure 3
(i) (ii)
H G = L(H)

and a 2-r set intersection
assignment for G

a
b {a,b} el {b,c}
656
e e
4 68 e7 2
{a,c
)
d I {d,a} e {c,d}
(iii)

K(G) and 2-r set intersection assigmment for K(G).

&
B8}
e, d o @
5 {a’a'l} {C,G]} 6
{a.e4}
{a,6,}  {c,8,} {c,e,}
e8 'e7

The graph Wi, i.e. the wheel on four vertices, is illustrated in Figure 4. Suppose
G is transitively orientable graph. Let H be the Hasse diagram of some partial
order associated with G. Then H has two obvious orientations, either from down
to up or vice-versa. An oriented Hasse diagram H is a Hasse diagram with one
of its obvious orientations. Then we have the following lemma.

Lemma 4. Suppose G is a transitively orientable graph and G does not contain
W, as an induced subgraph. Then no oriented Hasse diagram H of G can contain
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Figure 4. The wheel on four vertices

a generated subdigraph D isomorphic to the digraph D of Figure 5.

Proof: Suppose some oriented Hasse diagram f of G contains a generated subdi-
graph isomorphic to D of Figure 5. Then the graph generated by verticesa;, a3 , a3,
a4 and b;,any i € {1,2,...,£},is a Ws. 1

Givgn a W, -free transitively orientable graph, G, draw an oriented Hasse dia-
gram H of G. Let X and Y be respectively the maximal and minimal elements of
H.If|X|or Y| > 1, add a source s or a sink ¢ respectively and arcs ( s, z)

L=1,2,... a

forall z in X and arcs (y,t) for all y in Y. Otherwise let the unique elements of
X and Y be the source and the sink respectively. Add a lower capacity of one on
all arcs of . Let the resulting network be called the associated network and let
it be denoted by N. We claim that N does not contain any generated subdigraph
isomorphic to D of Flgure 5. To see why, suppose it did. Then some a; or b; of D
must be s or ¢. Clearly s cannote be any b; or a3 or as. If s = a;, then b; must be
a maximal element of H, and a; is not, which is a contradiction since (a3, b;) is
an arc of N. Similarly s # a3. Similar reasoning will show that ¢ cannot be any
a; or b;. Thus N does not contain a subdigraph isomorphic to D. Then we have
the following theorem.
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Theorem 3. If G is a W, -free transitively orientable graph, then i(G) = f*,
the minimum flow in the associated network.

Proof: Take an edge clique covering of G of cardinality 4(G). Assume without
loss of generality that the cliques in this edge covering are maximal. Since G is
transitively orientable, every maximal clique of G corresponds to an z —y directed
path in H for some z in X and yinY. Thus correspondmg to the given edge
clique covering, there are i(G) paths in A, Py, P, - - , Pi(¢)- Put a flow of one
on each arc of these paths, and such flows on (s, z) and (y,t) which maintain
conservation. Then this is a feasible flow in NV of value z(G) ie,i(@) > f.To
see why, note that every arc of H is in some P,,, m = 1,2,..-,i(Q), since no
arc of H is implied by transitivity by any other arc in .

Next, take a flow in N of value f*. (Note that f* is an integer since all capacities
are integers.) Then f* can be decomposed into f* unit flows along s — ¢ paths.
Thus correspondingly, we have f* maximal cliques K1, K>, - - - , K- which cover
all arcs of H. Suppose there is an edge e = {a,b} of G which is not in any
Kp,m=1,2,... f*. Then {a,b} must be an edge of G which is implied by
transitivity by the arcs of /. Thus without loss of generality there is a directed
path P from a to b in & of length > 2.

Let u be the first vertex following a on P and v be the last vertex preceding b
on P. Then (a,u) and (v, b) does not belong to any common clique from K =
{K1,K3,---, Ky} otherwise {a,b} belongs to a clique in K. Thus if (a,u) is
then K;, then (v, b) is not in K;, where K; € K.

Among all maximal cliques in X which contain (a, 1), let K; be such that the
last vertex ¢ € K; N P is furthest down on P. Then since (v, b) ¢ K;, c strictly
precedes bon P. Thus c is not a minimal element of H. Let g and d be respectively
the first vertices following c on P and K;. Such a g and d always exist since c is
not a minimal element. Also obviously g # d, and {g,d} ¢ E(H) since H does
not contain a triangle. Since K is an edge clique covering, (¢, g) belongs to some
K in K. By our choice of K;, (a,u) ¢ Kg. Let j be the first vertex on P N K.
The j strictly follows a on P. Thus j is not a maximal element of H. Let m
and = be the first vertices preceding j on K and P respectively. Since j is nota
maximal element, such m and nalways exist. Also, m # n,and {m,n} ¢ E(H).
Then {m,n, j, c, g, d}U all vertices on P between j and c generate a subdigraph
isomorphic to D shown in Figure 6. Thus we have a contradiction. So we have
f* maximal cliques covering all edges of G. Thus i(G) < f*. [ |

Figure 6

271



Next we quote a theorem by Dilworth [1950] which concerns the minimum
number of paths in an acyclic directed graph which are sufficient to covers the
arcs of the digraph.

Theorem 4 (Dilworth, 1950). Let G be an acyclic directed graph and let A be
a subset of its arcs. The minimum number of directed paths required to cover
the arcs in A is equal to the maximum number of arcs in A no two of which are
contained in a directed path in G. [ |

Corollary4.1. If G isa W, -free transitively orientable graph then its edge clique
graph K(G) is weakly 0-perfect.

Proof: If G is a Wa-free transitively orientable graph, then i(G) = minimum
number of directed paths required to cover the arcs of the associated network =
maximum number of arcs in the associated network no two of which are contained
in a directed path in G. The first equality follows from Theorem 3 and the second
from Theorem 4. So i(G) = B(G) where S(G) = maximum number of edges
of G no two of which are contained in a common clique of G. So 8,( K(G)) =
(@) = B(B) = a(K(G)). So K(G) is weakly §-perfect. 1
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