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Abstract. In 1967 Alspach [1] proved that every arc of a diregular tournament is
contained in cycles of all possible lengths. In this paper, we extend this result to bi-
partite tournaments by showing that every arc of a diregular bipartite tournament is
contained in cycles of all possible even lengths, unless it is isomorphic to one of the
graphs Fy;. Simultaneously, we also prove that an almost diregular bipartite touma-
ment R is Hamiltonian iff |Vi| = |V2| and R is not isomorphic to one of the graphs
Fyi_2, where (Vy, V3) is a bipartition of R. Moreover, as a consequence of our first
result it follows that every diregular bipartite tournament of order p contains at least p/4
distinct Hamiltonian cycles. The graphs F, = (V, 4), (r > 2) is a family of bipartite
tournaments with V = {v1,v2,... ,o,} and A = {jv5 | j —i=1 (mod 4)}.

An oriented graph is a digraph without loops, multiple arcs, or cycles of length
two. We shall also refer to oriented complete graphs, and oriented complete bi-
partite graphs, as tournaments and bipartite tournaments, respectively.

Let R = (V, A) be an oriented graph with vertex set V and arc set A. Forv € V
and S C V, we define

N;(v) ={u€S|uveA},
N} (v)={u€ S|vue A}

Also, R— S is the subdigraph of R induced by V( R) —S. If R, is a subdigraph of
R, we shall write Ng (v), N, (v) and R — R, instead of Ny g,y (v), Nygy(v)
and R — V(R1), respectively. Also, dz(v) = |[Nz(v)|and dp(v) = [Ng(v)|
denote the indegree and outdegree of v in R, respectively. Foru,v € V,u # v,
we shall call u and v equivalent in R if N7 (u) = Nz(v) and Nj(u) = Ni(v),
which is denoted by u 2 v. If S and T are disjoint subsets of V and uv € A for
alue SandveTwewriteS=>TorT « S.

Furthermore, we shall refer to a directed path, and a-directed cycle as a path,
and a cycle, respectively. R is said to be k-diregular if dj(v) = dp(v) = k for
all v € V; almost k-diregular if R is not k-diregular, |dz(v) — dp(v)| < 1 and
k—1 < max{dz(v),d}(v)} < k forall v € V; and it is strong if there exists
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au — v pathand av — u path in R for any u,v € V. A component of R is a
maximal strong subdigraph of R.

Let C = z1y17292 ... T,Y,T1 be a cycle in a bipartite tournament. N7 (v)
or N} (v) is said to contain consecutive vertices if there exists an i such that T3,
Ti+1 OF g5, Yis1 € N (v) or N7 (v). Moreover, for integer r > 2, F, = (V, A)
will denote a bipartite tournament with V = {v1,v2,... ,v,} and A = {vv; |
J—1=1 (mod 4)}.

The oriented graph R is called pancyclic if it contain cycles of all possible
lengths, and vertex (arc) pancyclic if every vertex (arc) of R is contained in cy-
cles of all possible lengths. For an oriented bipartite graph, pancyclicity means
even-pancyclicity. Moreover, it is easy to see that arc-pancyclicity implies vertex
pancyclicity which implies pancyclicity. Other terms and symbols not explicitly
defined in this paper may be found in [2].

In 1967, Alspach [1] proved that every diregular tournament is arc-pancyclic.
We shall show in this paper an analog statement for bipartite tournaments. To this
end we need the following results.

Theorem 1. /3, Jackson]. Every strong bipartite tournament of minimum inde-
gree h and minimum outdegree k contains a cycle of length at least 2(h + k).

Theorem 2. An almost diregular bipartite tournament R is Hamiltonian if and
only if|X| = |Y'| for a bipartition (X,Y’) of R and R is not isomorphic to one of
the graphs Fa,_5, 7 > 1.

Proof: The necessity is obvious. Let R = (V, A) be an almost k-diregular bipar-
tite tournament which satisfies the hypothesis of the Theorem 2, and let V = XUY
be the bipartition of R. Then |X| = |Y]| = 1%1 = 2k — 1. Moreover, we have

k—1< dg(v), dg(v) < k forall v € V.

We first prove that R is strong. Otherwise, R has at least two components, say
RI)RZ) see )Rn(n‘ 2> 2) with the blpamtlon (le}’l)’ (X21}’2)9 ce ,(X,“Y,.)
respectively. We may assume without loss of generality that X; = Y;andY; =
Xj whenever i < j. If V(R:1) or V(R,), |V(R1)| < 2k — 1, say. Then it easily

follows that
[V(R)?

(k=DIV(E)| < D dp(v) < =7,

vER,
which implies
V(R[> 4(k-1).
Ifk> 1,then [V(R))| >2k—1.1Ifk = 1, then R & F,. This contradicts the

initial assumption that [V (R;)| < 2k — 1 and R ¥ Fy,_,, respectively. Thus, R
is strong.
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Now, by Theorem 1, it follows that R contains a cycle of length 4k — 4 or
4 k—2. Suppose that R is not Hamiltonian, that is, R contains no cycles of length
4k —2 . Let C be acycle of length 4 k — 4 in R, which is longest, say

C=1191%22 ... Tok—2Y2k_2T1.

Again, suppose u, v are two vertices in R — C and, without loss of generality,
uw€ Aandv € X. Henceu €Y. Put

S={yi€C |z €N (v)}
T={z;€C|y€N;(v)}.
Then, since C is a longest cycle of R. We may conclude that

(i N'(v)NS=¢ and
() N7 (s)NT=¢.

Case 1. N_(u) contains consecutive vertices.

Without loss of generality, we may assume z;, z, € N7 (u). Theny;, y2 €
NZ(v) by (i). We first show that N (y1) and T are disjoint. Otherwise, z; €
Nz(n1)NT. Put

io =min{i| y; € NJ(v)}.

Then vy,,, uz;,, yiy—1 v € A, and hence
C=T1UTi Uiy - - TilY1T2 « - Yig—1VY; -« . Y4k_4 T1 .
is a Hamiltonian cycle in R, which contradicts the assumption. So that -
Ni(y)NT = ¢.
Moreover, since z3, v € Nj(y1) \ T, we get
r(y1) > |T|+2,

or, equivalently,
IT| < dg(y1) - 2.

However, dj(y1) < k, by the almost k-diregularity of R. Hence
ITI<k-2.

But it is easy to see that [T'| = dj,(v), which contradicts the almost k-diregularity
of R.
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Case 2. N (u) contains no consecutive vertices.

We may assume, without loss of generality, that z; € N (u). Notice that
dg(u) = [Ng(u)| = |N;(u)| > k—1and [V(C)| = 4k — 4, we conclude in
this case that .

(i) N;7(u) = {z1, z3,... ,T2¢-3} and hence
(iv) N} (u) = {z2,24,... ,T2k2}

By (i) and (iii), we get further

NZ(v) = {y1,93,--- , ¥2k-3}.

Again, by uv € A and the almost k-diregularity of R, it follows that

N} (v) ={y2,va,... , 262}

Consider the cycles C} = z;_1uZ2;y2; ... 721 obtained from C by replacing
the edges T2;-1y2i-1, Y2i-1Z2; With the edges z2;_u, uzy;, fori = 1,2,...,
k — 1, respectively. Since yz;_1 v € 4,50 y2-1 B u,i=1,2,... k- 1.
Similarly for C? = yz;_1vy2; ... Y2i-1, it follows that z,; B v. We have got

~y
{y1,93,.-. ,y2k-3,u} = {z2,74,... ,T2k-2,V}, so far.

Again, by the almost k-diregularity of R, it follows that

{z1,23,... ,%2k-3} = {¥1,¥3, ... , ¥24-3,u} and
{z2,74,... ,T2k-2,v} = {v2,a,... , Y262}

and hence
{v2,94,.- , 262} = {z1,23,... ,T2k-3}.

It follows that R = Fy4,_,. This contradiction completes the proof. 1
We now state and prove our main result.

Theorem 3. Every diregular bipartite tournament is arc-even-pancyclic, unless
it is isomorphic to one of the graphs Fa,,r > 1.

Proof: Let R = (V, A) be a k-diregular bipartite tournament and let vv be an arc
of R. Againlet ' = R—{u, v}. Then R’ is clearly an almost k-diregular bipartite
tournament. Suppose first that B ¥ Fu, which implies obviously R’ ¥ Fyx_>.
Hence, by Theorem 2, R’ contains a Hamiltonian cycle

C=vin ... V4k-2v1, SAy.
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For integer m,2 < m < 2k, put
Bm = {vag-2ms+i+1 € C | v; € N ()},

where addition of the subscript of v is taken modulo 4 k — 2. Then we have
N (v) N By, # ¢, since otherwise, Nz (v) D By, U {u} leads to dp(v) =
[Ng(v)| > k+1by|Bm| = [N (u)|= |Nz(u)|= dg(u) = k, which contradicts
the k-diregularity of R. Thus we may assume that v; € N} (v) N By, that is, v;u,
vy €Aandj —i=4k—-2m+13Gfj >i)orj—i=-2m+1(fj <i).
Hence

C = v;uvvvjsy ... v

is a cycle of length 2m (2 < m < 2 k) containing uv.
On the other hand, it is easy to see that the graph Fj, is a k-diregular bipartite

tournament which contains no cycles of lengths 4r + 2 forr = 1,2,... ,k— 1.
Hence Fy; does not have the property described in the theorem.
The proof is complete. |

As the immediate consequences of Theorem 3 we have

Corollary4. [4,5]. Every diregular bipartite tournament is vertex-even-pancyclic,

hence even-pancyclic, unless it is isomorphic to one of the graphs F4, (r > 1).
Corollary 5. Every diregular bipartite tournament of order p contains at least
gi,,] distinct cycles of length2 k forall2 < k < ¥, unless it is isomorphic to the

graph F,,

Proof: Let R = (V, A) be a diregular bipartite tournament of order p. If R =

F, then the conclusion is obviously untenable for k = 1 (mod 2). So, assume
R ¢ F,. By Theorem 3, it follows that A( R) is covered by cycles of length 2 k

in R. Since |[A(R)| = {’:—, R contains at least [é] distinct cycles of length 2 k,
2<k<?) 1

Corollary 6. Every diregular bipartite tournament of order p contains at least &
distinct Hamiltonian cycles.

Proof: The statement is easily verified for R & F,. If R ¥ F,, the corollary
follows immediately from Corollary 5. |

Corollary 7. Every diregular bipartite tournament of order p contains at least é
distinct cycles of lengthp — 2 , unless it is isomorphic to the graph F,.

Proof: Suppose that the graph R’ obtained from a diregular bipartite tournament R
of order p by deleting an arc together with two ends. Then R’ is an almost diregular
tournament of order p — 2. Since R ¥ F;, implies R' ¥ F,_, by Theorem 2, R/
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contains an Hamiltonian cycle which is also a cycle of length p — 2 in R, Since
R contains %’ arcs, the corollary is obvious. 1

In concluding, we would mention that Jackson [3] has conjectured that every
diregular bipartite tournament is decomposable into Hamiltonian cycles. Clearly,
this conjecture implies that every arc of a diregular bipartite tournament is con-
tained in a Hamiltonian cycle. However, Theorem 3 indicates that the latter is
true. This result supports to a certain extent the above conjecture. Moreover, we
would also pose an interesing question: whether every result of diregular tourna-
ment may be extended to the multiple tournaments which is the oriented complete
n-partite graphs, which give the corresponding version. In particular, we make
the following conjectures.

Conjecture 1. Every arc of a diregular 3-partite tournament R, is contained in
cycles of all lengths3,6,9, ..., |[V(R)|.

Conjecture 2. IfR is a k-diregular bipartite tournament and E is a set of at most
k — 1 arcs of R, then R — E is Hamilfonian.

Finally, we point out that Conjecture 1 is best possible in some sense in view of
the oriented graphs with vertex-set {v1,v2,... ,v3x} (k > 1) and arc set {v;v; |
Jj—1=1 (mod 3)}. Whereas Jackson’s conjecture mentioned above implies
Conjecture 2.
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