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Form > 2,aset A C R? is said tobe m-convex if, forany z,, ... ,zm € A, we
have [z;,z;] C A forsome i # 7, where as usual [z, y] denotes the line segment
{tz+ (1 —t)y: 0 <t < 1}. Thus a set is 2-convex iff it is convex, and for
n > m an m-convex set is n-convex. The notion of m-convexity was introduced
by Valentine [5] in the case m = 3, and by Kay and Guay [2] for general m.

The structure of closed m-convex sets in R? is well-understood. Indeed, Breen
and Kay [1] showed that a closed m-convex set is a finite union of convex sets.
However, not much is known about non-closed m-convex sets. (See Tattersall [3]
for a general background).

Since the interior of a 2-convex set is 2-convex, it is natural to ask what happens
for m-convex sets in general. It is easy to prove directly that the interior of a 3-
convex set is 3-convex: one just mirrors the proof of the fact that the interior of a
convex set is convex. However, there are 4-convex sets in B> whose interiors are
not 4-convex. For example, if A = R?* — {(0,y):y > 0} —{(1,0),(~1,0)}
then A is 4 -convex, being the union of 3 convex sets, but int A is only 5-convex.
Similar examples show that, for any m > 4, there are m-convex sets in R* whose
interiors are (m + 1) -convex but not m-convex.

Tattersall [3, 4] raised the question as to whether there is a function f: N — N
such that the interior of an m-convex set in R? is always f(m)-convex. The aim
of this note is to show that this is not the case. In fact, we show that there is a
6-convex set A C R? such that int A is not m-convex for any m > 2, and is
indeed not even co-convex, in the sense of [2], meaning that there is an infinite
set{z1,z2,...} C int A such that no segment [ z;, z;], ¢ # j lies inside int A.

The proof of this result is probabilistic; to be precise, we use simple arguments
about sets of measure zero to prove the existence of a desired set without explicitly
constructing it.

The lemmas we need concern blocking sets. For disjoint S, T C R?, we say
that S blocks T if [t1,t21NS # @ forall distinct ¢1,t2 € T. Wecall S m-blocking
if it blocks some m-set in R — S. Thus a set A is m-convex iff R2 — A is not
m-blocking.

We are particularly interested in minimal m-blocking sets.
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Lemma 1. Letn > 2m. Then
p{(s1,... ,34) € (B)":{s1,... 80} aminimal m-blocking set} =0,

where i denotes Lebesgue measure.

Proof. If S is a minimal m-blocking set then there is an m-set T such that §
blocks 7" but no proper subset of S blocks T'. In particular, for each s € S there
arez,y € Tand ) € (0,1) suchthat s = Az + (1 — M)y.

Define amap G: (R2)™ x (0,1)™ — (R2)[m™®xI" by setting

G(z, Nije = Mezi+ (1 = M)z, T € (B)™, A€ (0,1,

foreachi,j € [m] = {1,...,m}, i < j and k € [n]. Here as usual [m]®
denotes the set of 2-element subsets of [m]. For a function f:[n] — [m]®,
define Py: (R2)m®x(7 _, (R?)" by

Pg(z) = (Zf1)1,---»Tf(mm), TE (R ®xin

Thus if {s1,...,8,} is a minimal m-blocking set then certainly (s1,...,sq) is
in the image of Py o G for some f. However, each Py o @ is a smooth map from
an open subset of R2™* to R2", and 2m + n < 2n, so the image of each P; o G
has measure 0. As there are only finitely many f, we are done. |

In general, an m-blocking set can be quite small. However, this is not the case
if the set is dispersed.

Lemma 2. Let{s1,...,sn} C R? be an m-blocking set such that no s; is in the
convex hull of {sj: j # i}. Thenn > (3) — '"2—:1

Proof. Choose an m-set {z1,... ,Zm} C R® which is blocked by {s1,...,s.}.
Thus foreachi # j thereisapoints;; € {s1,... ,s.}N[x;, z;]. Wenote first that
we cannot have 8 € [z, zi] if{k, l}n{i,j} = ), as then 8ij € (s;k,sa, Sk, 8}1),
where (...) denotes convex hull.

Now, since {31, ... , 3, } does not contain 3 collinear points, {1, ... , Tm} can-
not contain 4 collinear points. Moreover, we claim that all collinear triples from
{z1,... ,Tm} have the same middle point. Indeed, suppose that we have

z; € [zj, 2], 17,k
and
prE[xq,-Tr], p:I‘Q;T

withi # p. Ifi ¢ {g,7} and p & {j, k} then
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Sip € [Z,‘, :z:p] C (sij: Sik, Spqy spr)l
while if 1 € {g, 7} or p € {J, k}, say without loss of generality 1 = g, then

sip € [zi,3p] C (sijssiknspr)~

Thus there are at most 251 collinear triples in {z1,... , T}, and hence n >
(m) _ m— l

We now show the existence of some infinite sets which are not m-blocking.

Lemma3. LetD,,D,,... be opendiscs inR? such that no D; meets the convex
hull of Uj4;D;. Choose random points Z; € D; independently, with each Z;
having uniform distribution on D;. Then P({Z,,Z,,...} is m-blocking) = 0
form >6.

Proof. If {Z1 , Z,,...} is m-blocking then it contains a minimal m-blocking set:
say {Z;,,... ,Zi,}, n < (3). Since no Z; is in the convex hull of {Z;: j # i},
Lemma 2 glves n> (7) — =L

Suppose that m > 6, so that ("‘) - -"'2‘—1 > 2m. Then it follows from Lemma
1 that if {ji,...,jr} is any subset of N with (3) — =1 < r < (7) then

P({Z;,,...,Z;} aminimal m-blocking set) = 0. As there are only countably
many such subsets of N we obtain P({Z1,Za2,...} is m-blocking) = 0, as re-
quired. |

We are now ready to prove the main result of this note.
Theorem 4. There is a 6-convex set A C R? such that int A is not co-convex.

Proof. Itis easy to construct a sequence ( Zn)a>1 inCsuchthatz, — 1, |z4| > 1
forallm, 0 < arg z, < = forall m, and [z;,z¢] NT # @ for all j # k, where
T = {z €C:|z| = 1}. Let S = TNU;x[ z;, zx]. Note that the set of accumulation
points of S isT'N U;[z;, 1], so that S itself consists of isolated points.

For s € S, say s = €', choose an increasing sequence t; < t; < ... such that
t, — tand {e?:¢; < 6 < t} NS = 0. For each n, choose an open disc D{* in
the segment enclosed by [ et eft~'] and {e%: t, < 0 < tn1}.

Now, each member of the (countable) collection {D{?:n € N, s € S} is
separated by a chord of T from all the others, and thercfore does not meet their
convex hull. Thus by Lemma 3 there exist points {9 € D{*,n € N, s € S such
that the set Z = {z{?:n € N, s € S} is not 6-blocking. However, Z = ZU S,
so that Z blocks {z,: n € N'}. It follows that A = R?> — Z is 6-convex while int
A is not co-convex. |
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As we remarked above, it is easy to show that the interior of a 3-convex set is
3-convex. This leaves the cases m = 4 and m = 5. One can show that if S C R?
is not 4-blocking and S blocks {z1, ... ,z4} then zy,... , 74 are collinear. Based
loosely on this, we conjecture that the interior of a 4-convex set in R? is always
5-convex. In the case m = 5, we do not see any evidence to support a conjecture.
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