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Abstract. Conjectured generalizations of Hadwiger’s Conjecture are
discussed. Among other results, it is proved that if X is a set of 1, 2 or 3
vertices in a graph G that does not have K as a subcontraction, then G
has an induced subgraph that is 2-, 3- or 4-colourable, respectively, and
contains X and at least a quarter, a third or a half, respectively, of the
remaining vertices of G. These fractions are best possible.

1. Introduction

Let ¥, denote the class of graphs that do not have the complete graph K|,
as a subcontraction (minor). Hadwiger [2, 3] conjectured that every s-
chromatic graph has K, as a subcontraction, or equivalently, setting
t = s—1, that every graph in ¥, is properly vertex-t-colourable. For a
discussion of this conjecture see, for example, [4]; the conjecture is
known to be true for ¢t = 1, 2, 3 or 4 (the last of these because of the
four-colour theorem and Wagner’s equivalence theorem), but it is not
known whether it is true for any larger value of ¢.

In [5] I made the following conjecture, in which ‘+’ denotes ‘join’.

Conjecture A. Let H be a connected graph with at least one edge, and let
G be a graph that does not have K,_,+H as a subcontraction. Then G
can be (improperly) vertex-t-coloured in such a way that no subgraph of
G isomorphic to H has all its vertices the same colour.

In [5] I proved this conjecture for ¢ = 2 and ¢ = 3, and it is trivially true
for t = 1 if one allows the existence of the empty graph K, with the
property that Kyo+H = H for every graph H. If H =K, then the
conjecture is equivalent to Hadwiger’s conjecture. So when t = 4 the
conjecture is true for H = K,, but it is not known whether it is true for
any other graph H; and nothing is known about its truth for larger values
of z.

Conjecture A contains Hadwiger’s conjecture as a special case, but its
other cases are apparently harder than Hadwiger’s conjecture. In contrast,
in the present paper I shall consider the following conjecture, which also
contains Hadwiger’s conjecture as a special case but is otherwise
apparently simpler than Hadwiger’s conjecture. From now on, all
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colourings are assumed to be proper vertex-colourings.

Conjecture B(r,s,8) (0 <r<ss<t, t>r). Let G be a graph in ¥, and
let X be a set of r or fewer vertices of G. Then there exists an s-
colourable induced subgraph of G that contains X and at least

j:—: IV(G-X)| )

vertices of G—-X.

The number of vertices in (1) is the largest possible if, for example, the
induced subgraph (X) = K, and G is of the form (X)+kK,_,.

For fixed values of r and ¢, the conjecture is trivial if s = r and
becomes steadily harder as s increases, until the case s =t which is
equivalent to Hadwiger’s conjecture itself. Note that all the conjectures
would follow from Hadwiger’s conjecture that G is t-colourable, and so
they are all true if ¢ < 4.

The purpose of this note is to prove Conjecture B(r,s,f) when
(simultaneously) 0 < r <3 and s =r+1 <t <r+4. This includes (for
t > 4) the cases B(1,2,5), B(2,3,5), B(3,4,5), B(2,3,6), B(3,4,6) and
B(3,4,7), the first three of which are the results stated in the Abstract.
The results B(1,2,5), B(2,3,6) and B(3,4,7) depend on the four-colour
theorem, as do all the results B(r,s,4) with r = 0 or s = 4, and the result
B(1,3,4). The very simple method used in the present paper only works
when ¢t = 2s—r, and so it would be particularly interesting to have a direct
proof, not assuming the four-colour theorem, of B(1,3,4). This states that
if v is a vertex in a graph G that does not have K5 as a subcontraction,
then G has a 3-colourable induced subgraph that contains v and at least
two thirds of the vertices of G—-v. Note that this result implies
Albertson’s theorem [1] that every planar graph contains an independent
set comprising at least Z of its vertices. (Of course, the four-colour
theorem implies that 3 can be replaced here by 1.)

2. Proofs

Lemma 1. For fixed values of r, s and t such that t = 2s—r, let (G,X) be
a counterexample to Conjecture B(r,s,t) such that G has as few vertices
as possible. Let v be a vertex of G—X and let u, w be neighbours of v.
(@) If u and w are both in X, then they are adjacent.

() IfuisinXand w is in G-X, then u,w are adjacent.

Proof. (a) Note that the condition ¢ = 2s—r is equivalent to
s-r _1
— < -, 2
t-r 2 @
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Suppose that u and w are non-adjacent. Form (G’,X’) from (G,X) by
contracting the edges uv and vw to form a new vertex x which belongs to
X’, and transferring an arbitrary vertex y from G-X to X’, so that
|X’] = |X| and |V(G'-X")| = |V(G-X)|-2. By hypothesis, (G’,X")
satisfies Conjecture B(r,s,f), and so G’ has an s-colourable induced
subgraph that contains X’ and at least

w6 -x)|
t—r

vertices of G’ —X’. Remove x from the colour-class containing it and
replace it by u and w to form an s-colourable induced subgraph of G that
contains X and at least

ST w6 -x)| +1 = S5 (VG -X)| +2) = 5 |V(G-X)|

t—r t—-r t—r
vertices of G—X, by (2). This contradicts the hypothesis that (G,X) is a
counterexample to Conjecture B(z, s, f).
(b) This is identical except that contracting the edges uv and vw gives a
set X’ of the right size immediately, and so we do not need to transfer an
additional vertex y to X’. O

Lemma 2. If t > 2s—r, then Conjecture B(r,s,t) is true if and only if, for
each q (0 < q<r), every graph H in $,_, has an (s-q)-colourable
induced subgraph containing at least |V(H)|(s—r)/(t—r) vertices of H.

Proof. If some graph H in ¥,_, does not have such a subgraph, then we
obtain a counterexample G to Conjecture B(r, s, r) by taking (X) = K, and
forming G from (X) UH by adding edges joining all vertices of H to the
same q vertices of X.

Suppose conversely that every graph in ¥, , does have such a
subgraph, for each ¢ (0 < g <r). Let (G,X) be a minimal counter-
example to Conjecture B(r,s,?), and let H be a component of G-X. It
follows from Lemma 1 that each vertex x of X is adjacent to all or none of
the vertices of H, and that two vertices of X that are adjacent to H are
adjacent to each other. Thus, if ¢ is the number of vertices of X that are
adjacent to H, then H € $,_,. By supposition, H has an (s —q)-colourable
induced subgraph containing at least |V(H)|(s—r)/(t—r) of its vertices.
Colour the vertices of X with |X| < r distinct colours, and, for each
component H of G—X, colour the appropriate induced subgraph of H with
s—q colours that are not used on the g vertices of X that are adjacent to
H. The coloured vertices induce an s-colourable subgraph of G that
contradicts the supposition that (G,X) is a counterexample to Conjecture
B(r,s,t). O
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Lemma 3. If t = 2s—r, then Conjecture B(r,s,t) holds if, for each q
(0 < g <), every graph H in $,_, is Lf(q.r.s,8))-colourable, or has a
L3f(q.1,5,t)|-colourable induced subgraph that contains at least half its
vertices, where
s—q)(t-r)
f(q,’,s’l) = '('__q_)_-
s—r

Proof. Each of these conditions implies that H has an (s-—g)-colourable
induced subgraph that contains at least |V(H)|(s—r)/(t—r) vertices of H.
The result follows from Lemma 2. O

Theorem. Conjecture B(r,s,t) holds if 0 < r<3ands=r+1 <t <r+4,
Proof. Since ¢ <r =s5-1<1t-1 we have
fgrs)=(+1-9)(-r) = (r-Q-r-1)+(-q) 2 1-q,

and so B(r,s,f) holds by Lemma 3 if t—¢g < 4, since then every graph in
$,_q is (t—q)-colourable (by the four-colour theorem and Wagner’s
equivalence theorem). Now, ¢ < r+4 implies that t—g < 4 unless g <
t-5 < r-1, in which case we can write ¢ =r—1-p with p=0, 1 or 2.
But then

2+p)t-q-1-p) _ t_q_1+p(t—q—3-p)

2 2

since (t—q)-3-p=25-3-2=0. But I proved in [4] that, for each
integer m = 3, every graph in %, has an (m-1)-colourable induced

subgraph that contains at least half its vertices, and so the result follows
from Lemma 3. O

z2t-qg-1

if(q.r s, 0) =
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