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Abstract. The convex hull of graph G, a notion bom in the theory of random graphs,
is the convex hull of the set in zy-plane obtained by representing each subgraph H of
G by the point whose coordinates are the number of vertices and edges of H.

In the paper the maximum number of comers of the convex hull of an n-vertex graph,
bipartite graph, and K (r)-free graph is found. The same question is posed for strictly
balanced graphs.

1. INTRODUCTION

The following result from the theory of random graphs gave rise to the notion
of the convex hull of a graph. Let K(n,p) be a random graph obtained from a
complete graph K (n) by deleting each edge independently with probability 1 —
p. Further let P(n,p,G) be the probability that K(n,p) contains no subgraph
isomorphic to G. Throughout the paper |G| and e(G) stand for the number of
vertices and edges of G. Setting, p = p(n), n — oo, we call subgraph H of G
leading if e( H) > 0 and forall F C G, e(F) >0,

nlﬁlpe(H) = 0(,,,|Flpe(F)).

The main result in |2| says that if H is a leading subgraph of G then there are

constants ¢;,c2 > 0 such that
—c1 n'”lpe(m < log P(n,p,G) < -cznlmp’(m.

A complete characterization of the subgraphs of G which become leading for
some range of p(n) can be derived by simple geometric means.Let Q¢ = {(|H|,
e(H)) : H C G,|H| > 1} and let C¢ be the convex hull of Qg in the Cartesian
zy-plane. We are only interested in the upper boundary of Cg which is called here
"the roof" and denoted by R. The shape of the roof is determined by the points
T, = (s,e,), where e, = max{e(H) : H C G,|H| = s,s = 2,...,|G|}. Not
every T, lies on the roof and we set I = {s : T, € Rg}. Itis easily verified that
a subgraph H of G is leading for some range of p(n) if and only if it corresponds
to a point of Rg, i.e. e(H) = e, and s = |H| € Ig.

Moreover, the appropriate range of p(7n) can be read out from the slopes to the
left and to the right of T,.
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In this paper we investigate properties of R¢. Clearly, R consists of straight
line segments whose endpoints are T,,s € Ig. Note, first, that |Ig] = 2 for
complete graphs and |Ig| = |G| — 1 for trees (see Figures 1 and 2 below).
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There is no gap between the two extremes as forall 2 < t < n— 1 one can
draw graph G with |G| = nand |I¢| = t (take K(n+ 2 — t) with pendant path of
lengtht — 2),

It is more interesting to ask about the number of corners Rg. For s € Ig, let
a; (ay) be the slope of the segment of R whose right (left) endpoint is T7,( a; =
00, al*aI = 0, for convenience). We set

Je={s€lg:a; >a}}

and search for 4,(F) = max{|Jg| : |G| = n,G € F}, where F is a specified
family of graphs.

In Section 2 this problem is solved for graphs, bipartite graphs and, asymptoti-
cally, for K (r)-free graphs.

Another class of graphs we deal with are strictly balanced graphs. Graph G is
strictly balanced if for all H C G,d(H) < d(G), where d(H) = e(H)/|H]|.
With the exception of disjoint unions of K (2), all graphs satisfying |Jg| = 2
are strictly balanced, but the inverse is not true as Figure 3 shows. What is the
maximum number of corners a strictly balanced graph may have? Unable to anwer
this question, in Section 3 we give crude bounds on 4,(S) where S is the family
of strictly balanced graphs.

Graph G contains isolated vertices iff Qg = 0. Therefore, everywhere in the
paper we restrict ourselves to graphs without isolated vertices. Hence, always
Je 2 {2,IGl}.
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The smallest integer not smaller than x is designated by [z].

n

Figure 3
2. MAXIMUM NUMBER OF CORNERS

In this Section we find the exact value of 4,(F) for F = G-the family of all
graphs and for F = B-the family of all bipartite graph. The latter happens to
coincide with 4,(F3) where F, is the family of K (r)-free graphs. Finally, we
calculate the limit of 4, (F,) /nforr > 3.

THEOREM 1. Forn=5m—1,m>2,i=0,...,4,

1(G) =2m+2 —[i/2].
Consequently, 1,(G) /n — 2 /5 asn — oo.
THEOREM 2. Forn=Tm—1,m>2,i=0,...,6,

Yu(B) = Yu(F3) =2m+2 — [if4]

lim 7, (F)/n= ——,r >3
n T 5 8’ =

We call graph G K (2) -balanced if forall H C G,e(H) > 1,d(H) < d'(@)
holds, where
e(H) -1

|H| -2~

Trees, cycles, complete graphs, and r-partite complete graphs are K (2)- bal-
anced and, obviously, G is K (2)-balanced iff |Jg| = 2.

In the proofs the following contruction will be crucial. (V' (G) is the vertex-set
of G and G[ V] stands for the subgraph of G induced by V,V C V(G)).

d(H) =
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Construction

Let G, be an arbitrary K (2)-balanced graph, d, = d'(G,) and m = [do] — 1.
Notice that |G,| > 2d, — 1 and m > d,. Let

V = {Vm, Yme1, W1, Ym—1, Y2 Wm_2, ..., V1, to, w,} be disjoint from V(G,).
We construct graph G so that

V(G) = V(G,) UV,GIV(G,)] = G,, u; is joined to w; and each of v;, Ug, w;
is joined to an arbitrary set of 1 vertices of G,,i =0, ...,m. For G, = K(4) the
graph G if presented in Figure 4.

i
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Figure 4

LEMMA.
For every graph G constructed as above

Jo={2}U{|Go|+j: j #2(mod3),j = 1,...,m}.

Proof: Consider the function f(H) = d,(|H| — 2) — e(H) + 1. Obviously
d(H) < d,ifff(H) > 0. Let H C G,H # Go,H, = HNG, and 1 =
[H| — |H,|. Then f(H) = f(H,) + d,z — e(H) + e(H,) > 0, since f(H,) >
0,e(H) — e(H,) < zm < zd, and at least one inequality is strict. Thus Jg N
{2,..,1Gol} = {2,|G.|}. Let H, = GLV(G,) UV,], where V, is the set of first
z elements of V. To complete the proof we will show that e( H,) = e, 8= |H,|.
Let H C G,|H| = 8,y = s— |H NG,| > z. Denote by k, the number of edges
joining V; to G, or contained in V. Then

FCH) 2> f(Ho) + doy — ky > doy — ky > doz — ky = f(H,).
Hence e(H;) > e(H). I

Proof of Theorem 1:

The lower bound is immediate by the above construction with G, = K (2 m).
Then |G| = Sm and |Jg| = 2m + 2. Deleting vy, {10, o}, {tto, wo, v1 }, OF
{0, wo, v1, w1}, respectively, we achieve the required size of |J¢| also in the
casesi=1,2,3,4.

To prove the upper bound asume that Jg = {ny,...,n},m = 2,m = |G| = n.
The sequence a;,i = 2,...,t is positive, strictly decreasing and

296



_ - _e,,a—l l
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The proof is based on the simple idea that small difference n; — n;_; accelerate
the decay of slopes, whereas large values of n; — m;_; increase the number of
"non-corner” points T;. In detail, set

re={i:m—m_1=s1i=3,...,t},s=1,2,...
If n; — m_y = 1 then a; is an integer and so
n<a (V)
For a similar reason, r; + 3(r2 — 1) < a, or equivalently
r+r<2a ?3)

Observe that

t=2+) rp=n-—m+2-Y (s—r,. @)

821 822
Therefore, by (1) and (3)

n= nz+zsr,2n+'rz+zsr,23t—6 -7
821 21

and

1
t_<_§(n+ )+ 2. )
On the other hand, by (1), (2), and (4).
t<n—-—m+4—-t<n—-r+4-—1t,
)
|
tgi-(n-rl)+2 ©)
The inequalities (5) and (6) imply that
ts%n+2=:2m+2—-25—1-

and the theorem follows. |
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Proof of Theorem 2 and 3:
Let G be a K(r)-free graph. By Turan’s theorem

(r—2)m —2(r—1)

<
2 -D(m -2
and by similar arguments
2-24
(F3) < 3n+ 23 =2m+2+ !
7 7
and 2r—4
T —
MWm(F) < 5I’__811,‘i-c,c>0,'r24.

For the lower bound we use our construction with G, being the Turan graph
with r — 1 parts of size 2m/(r — 2) each (2m is assumed to be divisible by
r—2). Thend, = m+ €, 4+ <€< 1,and

2r—4
lel/IGl ~ 5—

Moreover, G may be (r — 1) chromatic, so K (r)-free. In the case » = 3
we start with G, = K(2m,2m) - a complete bipartite graph and then d, =
m+ 1/2,|G| = Tm,|Jg| = 2m + 2. Deleting v — 1 we prove our result for
i+ = 1. Switching K(2m,2m) to K(2m,2m — 1), K(2m —1,2m — 1) and
K(2m —1,2m — 2) we still have d, > m — 1 and this time deleting u,,, we
coverthe casesi = 2,3,4. Fori = 5,6 we additionally remove v; and {u,,w,},
respectively. 1

asm — o0o.

3. STRICTLY BALANCED GRAPHS

Let us recall that a graph G is strictly balanced if d(H) < d(G) foran H C G,
where d(H) = e( H) /|H|. Strictly balanced graphs play an important role in the
theory of random graphs, as they are the only graphs for which,

P(n,p,Q) ~ exp{—pa (@)}

holds on the threshold, i.e. when np#® — ¢ > 0, where p(G) is the ex-
pectation of the number X, (G) of subgraphs of K(n,p) isomorphic to G. It
follows from the more general result that, on the threshold, X,,(G) has Poisson
limit distribution iff G is strictly balanced (|1]).

Let S be the family of strictly balanced graphs. In particular, S includes all
k-trees and connected regular graphs. Below we find a lower and upper bound
for 4,(S). Unfortunately they are far apart, and it remains an open problem to
determine the correct order of magnitude of ~,(S).
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THEOREM 4.
For n sufficiently large,

20 +1 < w(S),2n* + 1.
Proof:

Upper bound

Let G be strictly balanced and Jg = {m1,...,w = n}. We abbreviate a;, = a;
and e,, = e;, for convenience. We have

e —1
m—2

ar < ay =

On the other hand, fori=2,...,t,
e(G) —ei_1

as ’
n— -1
which implies
€i—1
a; > ——=dj
(here we use the fact that G is strictly balanced). Last inequality is equivalent
to d; > d; — 1. Thus the lower and upper bound for a; move toward each other.
But we only utilize the fact that a; > dp. Hence
€ — 1 e2

- —=X<1.
m-2 m -

az —a; <

Suppose t > 272/ + 1 and let

z=|{i:m—m_ > nf i= 2,...,t}
If z > n2/3 then

n—2=(m—m)+ -+ (m—m) 2an'f’ >n,
a contradiction. If z < n?/3 then
Hitmi—mo < whBi=2,...,t}=t—-1-z> /3.
By pigeon-hole principle there is s, 1 < s < n!'/3, such that
I{i : % — m_1 = s} > [/?].

Therefore 1
az —ag > ([n'?] - 1); >1,

again a contradiction.
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Lower bound
Let G be aconnected graph obtained from vertex-disjoint cycles C,, . .., G, |Co| =
ICil=(G)+1,|Ci|=() +4,i=1,...,t >3

by connecting them with ¢ disjoint edges €;, ..., €; so that €; joins C;_; to C;.
It can be checked that |G| = L(¢ + 1)t2 + 1 and

Je = {2,1C.|, [Col + IC11, Gl + IC1] + |Ca), -, |G}

Hence |J¢| = t + 2 and the theorem follows. 1
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