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Abstract. We deal with conditions on the number of arcs sufficient for bipartite di-
graphs to have cycles and paths with specified properties.

1. Introduction.

Many sufficient conditions for the existence of paths and cycles of various lengths
in digraphs are known (see, for example, [3], [5]). The object of this work is to
point out some corresponding results for bipartite digraphs with conditions on the
number of arcs. For conditions involving out-degrees and in-degrees, the reader
is encouraged to consult [2].

Throughout this paper, D = (X,Y, E) denotes a bipartite digraph of order

n with bipartition (X,Y), where | X| = a < b = |[Y|and n = a + b. Then,
V(D)(= X UY) denotes the set of vertices and, E(D) denotes the set of arcs
of D. If z and y are vertices of D, then we say that z dominates y if the arc
(z,y) is present. For A,B C V(D), we define E(A — B) = {(z,y) |
z € A,y € B, (z,y) € E(D)} and E(A,B) = E(A — B) UE(B —
A). The out-degree, in-degree and degree of a vertex z are defined as |E(z —
D)|, |E(D — z| and |E(z, D)|, respectively, and are denoted d*(x), d~(x)
and d(z), respectively. The independence number « of D is the cardinality of a
maximum independent set A. A cycle is called dominating, if for every vertex z
of D we have E(z,C) # 0. Let z and y be two vertices of the same bipartition
setof D. The digraph D, , is obtained from D by replacing the vertices x and y
by a new vertex s and by adding all the arcs in such a way that E( Dyys—s) =
E(D — x) and E(s — D,y ,) = E(y — D).

The following results are used in this paper.
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Theorem a [7]. Let D be a digraph of order n and independence number at least
a,n>2a. If |[E(D)| > n(n—1) —(n—a) —a(a—1), then D is hamiltonian.

Theorem b [7). Let D be a digraph of order n and independence number at least
a,n>2a+ 1. If |[E(D)| >nn—1) —(n—a) —a(a—1)+ 1, then D is
Hamilton connected.

Lemma c [6]. Let D be a dipartite which contains a cycle C of length2r,2r <
n. Let x be a vertex not contained in C. If |E(z,C)| > r, then D contains
cycles of every even lengthm, 2 < m < 2r, through z.

2. Cycles and paths in bipartite digraphs with a given number of arcs.

We begin with the following proposition on cycles of prescribed lengths in bipar-
tite digraphs with a given number of arcs.

Proposition 2.1. Let D = (X,Y, E) be a bipartite digraph of ordern and k an
integer,a > k. If |[E(D)| > ab+ (k— 1)b+ 1, then D has cycles of every even
lengthm,2 < m < 2k.

Proof: We use induction on n. For n= 3, 4 the statement is easily verified. For
k = 1 we have |[E(D)| > ab+ 1 and therefore D has a cycle of length 2. Also,
the case a = b = k was proved in [4]. Moreover, assume that D has exactly
ab+ (k — 1)b+ 1 arcs, for otherwise we may consider a spanning subgraph of
D with exactly ab + (k — 1)b+ 1 arcs instead of D. Now if for every vertex y
inY wehave d(y) > a+ k, then |E(D)| = 30, d(y;) = b(a + k) = ab + bk,
which is a contradiction. If, on the other hand, for some vertex y of Y we have
d(y) <a+k—1,then D—yhasa(b—1) + (k— 1)(b— 1) + 1 or more arcs.
Hence, D — y has cycles of every even length m, 2 < m < 2k, by induction, as
required. [ ]

The above conditions are the best possible. Indeed, let B, A and C be inde-
pendent sets of cardinalities b, k — 1 and a — k + 1, respectively. Now consider
the complete bipartite digraph with bipartition (A4, B) and then add all the arcs
from C to B. The resulting bipartite digraph has exactly 2 ab— (a — k+ 1) b arcs,
however it has no cycle of length 2 k.

For strong bipartite digraphs the following may hold.

Conjecture 2.2. LetD = (X,Y, E) beastrong bipartite digraph and k an integer
a>k>2.If |[E(D)| >ab+(k—2)b+a—k+3, then D has acycle of length
at least 2 k.

This conjecture, if true, would be the best possible. To see that, let us take
independent sets B, A and C of cardinalities b, k — 2 and a — k + 2, respectively.
Now consider the complete bipartite digraph with bipartition (A, B) and, then
add all the arcs from C to B and all the arcs from exactly one vertex of B to all
vertices of C. The resulting bipartite digraph has ab+ (k — 2)b+ a — k + 2 arcs;
however, it has no cycle of length 2 k.
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Theorem 2.3. Let D = (X,Y, E) be a bipartite digraph with2ab — a + 1 or
more arcs and let y be any vertex of D. Then

(i) every subset of V(D) of cardinality a is contained in a cycle of length
2a;
(ii) D contains cycles of every even lengthm,2 < m < 2a, throughy;
(iii) ifb > a, then for any two vertices y, andy; of Y, there is a path from y,
toy, ofevery even lengthm, 2 < m < 2a; and
(iv) ifzy and x, are distinct vertices of X, then there is a path from z, (o T3
of every even lengthm, 2 < m < 2a— 2.

Proof of Part (i): Let S be any subset of V(D) of cardinality . Consider a subset
Aof Y suchthatY NS C A and |A| = & = | X|. The bipartite digraph D’ with
bipartition ( X, A) satisfies |[E(D')| > |E(D)| — 2(b—a)a = 20> —a + 1 and
therefore is hamiltonian by Proposition 2.1. It follows that all the vertices of A
(and consequently all the vertices of S) are on a cycle of length 2 a, as required.

Proof of Part (ii): It is by induction. The proof is trivial for small values of n.

Assume first that b > o and that y is a vertex of Y. Then the digraph D — y
satisfies | E(D — y)| > |E(D)| — 2a = 2a(b— 1) — a + 1 and therefore has
a cycle of length 2a, by Proposition 2.1. On the other hand, we have d(y) >
|E(D)|—2(b— 1)a = a+ 1 and then Lemma c permit us to complete the proof.

Assume next that either a = b or y is a vertex of X . Clearly there exists a cycle
of length 2a through y in D by (i). If d(y) = 2a, then D — y has a cycle of
length 2a — 2 by Proposition 1 and, by Lemma c, we complete the argument.
If, on the other hand, d(y) < 2b — 1, then take two distinct vertices z and 2z
of D such that y dominates z and is dominated by z. Let now D' denote the
bipartite digraph obtained from D — {z, y, 2} by adding a new vertex s and the
arcs {(w, s)|(w,z) € E(D)}U {(s,w)|(z,w) € E(D)}. Then |E(D')| >
|E(D)|—2a—2b+3=2(a—1)(b—1) —(a—1) + 1. It follows that there are
cycles of every even length m,2 < m < 2(a — 1), through s in D' by induction,
so the conclusion follows for y.

Proof of Part (iii): Let y;, y2 be two vertices of Y. Then the digraph D, ,, ,
defined in the introduction, satisfies |E( Dy, s| > |E(D)| - 2a = 2a(b—1) —
a + 1 and therefore there are cycles of all even lengths m,2 < m < 2a through
s in Dy, , by (ii). Now it is extremely easy to see that the conclusion of (iii) is
also verified.
Proof of Part (iv): Itis very similar to that of (iii).
The proof of the theorem is complete. 1
The bound in the above theorem is best possible. To see that take the complete
bipartite digraph K}, and, then delete all the incoming arcs to a vertex y in the
larger bipartition set. The resulting bipartite digraph has 2 ab — a arcs, however it
has no path with terminus y.
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From Theorem 2.3 we obtain the two corollaries below. Note that Corollary 2.4
generalises a result proved in [4].

Corollary 24. Let D = (X,Y, E) be a bipartite digraph such that X|=1Y|=
2. If |[E(D)| > "22;" + 1, then any vertex of D is contained in a cycle of each
evenlengthm,2 < m < n.

Corollary 2.5. Let D be a digraph of order n and independence number at least
a If |[E(D)| >nn—1) —(n—a) —a(a=1) + 1, then any set of n — o
vertices is contained in a cycle of length at least min(n, 2(n— o)) inD.

Proof: If n > 2 a, then D is hamiltonian by Theorem a. Assume n < 2o — 1.
Let S be an independent set of cardinality o in D. Now consider a spanning
subgraph D' of D with arc-set E(D') = E(D) — {(z,y)| z,y € V(D) — 8,
(z,y) € E(D)}. Then I)' is bipartite with bipartition (S, D — S) and satisfies
|[E(D)| > |E(D)| —(n—a)(n—a—1) > 2a(n—a)—(n—a+1. Consequently,

it follows from Theorem 2.3 that each set with n — « vertices is contained in a
cycle of length 2(n — a) in I/, so the conclusion easily follows for D. |

Theorem 2.6. Let D = (X,Y,E) be a bipartite digraph with2ab — a + 2 or
more arcs and let x, y be two vertices of D. Then:

(@) any setofa — 1 vertices is contained in a path of length at least2a — 2
fromz toy; and
(i) forevery vertex T of X and every vertexy of Y, there are Dpaths from z fo
y and fromy tox of every odd lengthm,3 < m< 2a — 1.

Proof of (i): Let z and y be two vertices of D and also let S be any set of @ — 1
vertices in D — {z,y}. We distinguish between three cases (a), (b) and (c).

(a) Both the vertices x and y are in X.

In this case we have | E(Dy,,s)| > |E(D)| —2b>2(a— 1)b—(a — 1) + 1.
It follows from Theorem 2.3 that S is contained in a cycle of length 2a — 2 in
Dy . This cycle necessarily contains the vertex s and therefore S is contained in
a path from z to y of length 2a — 2 in D.

(b) Both the vertices z andy arein Y.
The proof is very similar to that of (a).
(c) The vertex z is in X and the vertex y isin Y.

Consider the digraph D — y. It satisfies |E(D — y)| > 2eb—a+2 —2a =
2a(b— 1) —a+ 2. Consider now a vertex z which dominates y. Then, if a = b it
follows from (iii) of Theorem 2.3 that there is a hamiltonian path from z to z. If,
on the other hand, b > a it follows from case (a) above that there is a path from
z to z which contains all the vertices of S. Finally in both cases, using the arc
(z,y), we can find a path from z to y which contains S.
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Proof of (ii): We shall prove that there are paths from z to y of every odd length
m,3 < m < 2a— 1. Let z be a vertex in (Y — y) which is dominated by
z. Now let D’ denote the digraph obtained from D — {z, y, z} by adding a new
vertex s and the arcs {(w, s)|(w, y) € E(D)}U{(s,w)|(2,w) € E(D)}. Then
|E(D")| > |E(D)|—-2a—2b+2 >2(a—1)(b—1)—(a—1)+ 1. Itfollows from
Theorem 2.3 that there are cycles of every even length m,2 < m < 2(a — 1),
through s and, then it is easy to see that the conclusion of this case is verified. This
completes the proof of Theorem 2.6. [

In the above theorem, 2 ab — a + 2 can not be replaced by 2ab— a + 1. To see
that, take two independent sets A and B of cardinalities a and b — 1, respectively,
and then consider the complete bipartite digraph D with bipartition (A, B). Next,
add a new vertex y and all the arcs from y to A and an arc from exactly one vertex
1 of A to y. Clearly, D has 2ab — a + 1 arcs, however it has no path from z to y
of length more than one.

From Theorem 2.6 we obtain the following corollary for digraphs.

Corollary 2.7. Let D be a digraph of order n and independence number at least
«. Letz and y be two vertices of D. If |[E(D)| > n(n—1) —(n—a) —a
(a—1) + 2, then any set of n— o — 1 vertices is contained in a path of length at
leastmin(n— 1,2(n— a — 1)) fromz toy in D.

Proof: If n > 2a + 1, then D is Hamilton-connected by Theorem b. Assume
n < 2a. Let S be an independent set of cardinality «. Consider a spanning
subgraph D' of D with arc-set E(D') = E(D) — {(z,y)|z,y € V(D) — S,
(z,y) € E(D)}. Clearly, D' is bipartite with bipartition (S, D — S) and more-
over |[E(D")| > |E(D)|—(n—a)(n—a—1) >2a(n—a) —(n—a) +2. It

follows that D’ satisfies the conclusion of Theorem 2.6 and consequently D does
also. 1

We shall conclude this section with the following result on dominating cycles.

Theorem 2.8. Let D = (X,Y, E) be a bipartite digraph with2ab—2a+ 1 or
more arcs. Then D has a dominating cycle of length at least2a—2 unlessa = b=
2,V(D) = {z1, 72,01, 2} and E(D) = {(z1,%1),(y1,71),(91,22),(32,92),
(1/2:-’1"2)}'

Proof: (The current proof was suggested by the referee and is shorter and easier
than the original.) For a = 1, we always have a cycle of length 2. Fora = 2 and
b = 2, the theorem is easily verified. In what follows, assume a > 2 and b > 3.
Let C be a longest cycle. The length of C is either 2a — 2 or 2a. If itis 2a, then
anyy € V(D) —V(C),isinY. If E(y,C) = §, then y is isolated in D and
|E(D)| < 2ab — 2a, a contradiction. |

Assume C has length 2q — 2. If C is dominating, then there isa y in V(D) —
V(C) such that E(y,C) = . Since |E(D)| > 2ab—2a+ 1 and E(y,C) = 0,
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D —y is a complete bipartite digraph with possibly one arc missing. Furthermore,
E(z,y) # 0 for all z not on C and in a different bipartition set from y. Let z be
such a vertex. Since at most one arc is missing in D — y and the length of C is
at least four, a new cycle C' can be formed by replacing a segment 2; 23 z3 of C
with 2 z23. Itis easy to see that C' is dominating.

Theorem 2.8 is the best possible because of the bipartite digraph consisting of
the disjoint union of the complete bipartite digraph with bipartition (A, B) , where
|A] = e and |B| = b — 1, and an isolated vertex.

3. Cycles and paths with conditions on the number of arcs involving
out-degrees and in-degrees.

Theorem 3.1. Let D = (X,Y, E) be a bipartite digraph such that for every
vertex © we haved*(z) > r,d~(z) > r, whereb > a > r. Then:
@) if |E(D)| > f(a,b,r) =2ab—(r+ 1(a—7)+1,a—-1>7r>0,
then D has a cycle of length2 a; and
(ii) if |[E(D)| > g(a,b,r) =2ab—1(a—7)+1,a—1 > 1r > 1, then
for any two vertices = andy which are not in the same bipartition set of D
there is a path of length2a — 1 fromz toy.

Proof: The proof is by induction on n. 1
Notation: By ®(a, b, r) (resp. Q(a, b, r)) we denote the family of digraphs with
out-degrees and in-degrees at least » which satisfy the conditions of (i) (resp. of
(ii)).

It is easy to see that the conclusion of the Theorem is true for any digraph
with no more than 5 vertices. In addition, any digraph either in ®(a, b,0) or in
@ (a,b,a—1) is hamiltonian by Theorem 2.3 and any digraph either in Q(a, b, 1)
orin Q(a,b,a — 1) verifies the conclusion of (ii) by Theorem 2.6. The proof is
based on the following two claims.

Claim 1. Ifevery digraphin®(a—1,b—1,r— 1) hasacycle of length2a —2 ,
then every digraph inQ (a,b,r) satisfies the conclusion of (if).
Proof: Assume that D is in Q(a, b, 7). Let y be a vertex of Y and , z be dis-

tinct vertices of X such that z is dominated by y. Now let D’ denote the di-
graph obtained from D — {z,y, 2} by adding a new vertex s in X and the arcs

{(s,p)|p € V(D"), (2,p) € E(D)}U{(p,s)|p € V(D), (p,2) € E(D)}.
Then D satisfies | E(D')| > |E(D)| —2a—2b+2 > f(a—1,b—1,r—1) and
consequently D' has a cycle of length 2a — 2 through s by induction. It follows
that there is a path from y to z in D of length 2a — 1, as required. [ |

Claim 2. Ifevery D in Q(a,b, ) satisfies the conclusion of (ii), then every D
in®(a,b,r) hasacycle of length2a.

Proof: We distinguish between two cases.
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First case: For every vertex z of D wehave d*(2) > r+ landd=(2) > r+ 1.

Assume first b > a. Let y be a vertex of Y. Then |E(D — y)| > f(a,b, 1) —
2a = f(a,b— 1,7), and hence D — y has a cycle of length 2 a, by induction.

Assume now ¢ = b. We may assume r < a — 1 orelse D = K}, which
certainly has a cycle of length 2 a. Since |[E(D)| > f(a,a,r), there existz € X
andy € Y suchthatboth (z, y) and (y, z) belongto E(D). Let D' = D—{z,y}.
Now |E(D)| > f(a—1,a—1,r) sothat D' hasa (2 a—2)-cycle C' by induction.
Let (xz;,95), i=1,2,... ,a—1,byarcs of C' from X —xz toY — y. If for some
i, both (z;,y) and (z,y;) are arcs of D, then replacing (z;, y;) in C’ with a path
(zi,y, z,y:) yields a cycle of length 2 ¢ in D as required. Otherwise, for each 1,
i=1,2,...,a— 1, add to E(D) whichever of (z;,y) or (z,y;) is missing to
form a new digraph D". Then |E(D")| > |[E(D)|+ a — 1 > g(a,b,r) and by
hypothesis, D" has a path of length 2a — 1 from y to z. The path can use only
arcs of D so that adding the arc (z, y) yields a cycle of length 2a in D.

Second case: There is a vertex z such that either d*(z) = r or d*(2) = r holds.

Without loss of generality assume that d=(z) = r holds. Suppose first that z is
in X. Let D' denote the digraph obtained from D by adding the arcs {(p, z)|[p € Y
and (p,2) ¢ E(D)}. Then |E(D’)| > |E(D)|+ b—r > g(a,b,r). Consider
now a vertex y which dominates z. It follows by hypothesis that ther is a path
from the vertex z to y of length 2 a — 1 in D' and it uses only arcs of D. Therefore
by using this path and the arc (y, z) we can find a cycle of length 2a in D.

Suppose now that the vertex z is inY’. Add the arcs {(p,2z)|p € X and (p,2) ¢
E(D)} and let D' denote the resulting digraph. Then as above we can easily
complete the proof. ' ]

In the above Theorem we do not know if the bound is the best possible. Nev-
ertheless, we shall see later, particularly in Theorem 3.5 and Theorem 3.6, that
under the conditions of Theorem 3.1, we can get more information for D which
is, in a sense, best possible. In fact, perhaps the following holds.

Conjecture 3.2. Let D = (X,Y, E) be a bipartite digraph such that for every
vertex z we haved* (z) > r andd=(z) > r, whereb > a > r > 1. Then D has
a cycle of length 2 a, in both cases (i) and (ii) below:

@ b>r(a—r+1) and |[E(D)| > fi(a,b,7) =2ab—r(a+b—27)+1;
and
(ii) b< r(a—r+1) and |E(D)| > fa(a,b,7) =2ab—(r+1)(b—1) + 1.

Remark: It was proved by D. Amar and the second author in [2] that a bipartite
digraph D with out-degrees and in-degrees not less than “‘2‘—‘ has a cycle of length
2 a unless it is isomorphic to some specified digraphs. It follows from this result
that Conjecture 3.2 is true fora < 27 — 1.
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The conditions given in (i) (resp. in (ii)) in the above Conjecture would be the
best possible, for a > 2r (resp. fora > 27 + 1). To see that, let us define the
following digraphs.

For Part (i): LetY;, Y2, X; and X, be independent sets of order b — r, r, a — 7,
r, respectively. Consider the disjoint union of Y3, Y3, X, X, and add all the arcs
in such a way that every vertex of X; dominates every vertex of Y; U Y, and is
dominated by every vertex of Y7, while every vertex of X, is dominated by every
vertex of Y1 UY> and dominates every vertex of Y3 . The resulting bipartite digraph
has out-degrees and in-degrees at least » and £ (a, b, ) — 1 arcs. However, it has
not a cycle of length 2 a since it is not strong.

For Part (ii): Consider the extremal digraph of (i) with |[Y1| = b—r, |Y2| = T,
|X1] =a—r—1and|X;| = r+ 1 and add all the arcs from Y, to X;. Clearly
the resulting digraph has f,(a, b,7) — 1 arcs, but it has no cycle of length 2 a.

The following corollary is an easy consequence of Theorem 3.1.

Corollary3.3. LetD = (X,Y, E) bea bipartite digraph with out-degrees and in-
degrees atleast r such that |X| = |Y| = %. If |[E(D)| > —’5—— (r+1)(3-1)+1,
then D is hamiltonian.

In view of Theorem 3.5, we shall establish the following Lemma.

Lemma 3.4. Letzy,y1,... ,ZTm, Ym,T1 be acycle of length2m < n in a bipar-
tite digraph D and let = be a vertex in D — C. If r is an integer, v > 0, and if
|E(z,C)| > m + 7, then |Q(z)| > r, where Q(z) = {z;|(yi_1,z) € E(D)
and(z,y;) € E(D)} (the indices are taken modulo m,).

Proof: Let6;(z) = |E(yi-1 — z)| +|E(z — y5)|. It follows from the definition

of §;( z) that
5()_{2 if z; € Q(2)
A= <1 otherwise.

Then if Q(z) is the complement of Q () we have

28,-(:1:) <2|Q(2)|+ Q(z)| = 2|Q(z) |+ (m — |Q(2)]).
i=1
On the other hand,
Yo 8= = Y 1B, D)+ Y |E(z, 1)| = |E(5,0)| = m+ 1.
1=1 1=1

i=1

It follows that |Q(z)| > r, which is the desired result. |
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Theorem 3.5. LetD = (X, Y, E) be a bipartite digraph with out-degrees and in-
degrees at least v, where b > a > r+ 1. If |[E(D)| > 2ab— (r+ 1)(a—1) +1,
then every r + 1 vertices of D are on a common cycle of length?2a.

Proof: Let S = {s1,82,...,8+1}, S C V(D), be a set of cardinality r + 1.
We shall prove by induction on r and contradiction that all vertices of S are on a
common cycle of length 2 a.

For r = 0 we have Theorem 2.3. Assume, in what follows, the property true for
7, but not true for r+ 1. Moreover, we may assume SNX = @,thatis, S C Y, since
D has a cycle of length 2 a by Theorem 3.1. We see that for some vertex S,.; of
S, wehave d(Sr+1) > a+ 7+ 1,since }::11 d(S;) > |[E(D)|-2a(b—r—1) >
(r+ 1(a+ 7) + 1. Next consider a cycle C of length 2a which contains all
the vertices of S, except Sy+1. Then [Q(Sy+1)| > v+ 1 by Lemma 3.4; in other
words, we may replace a vertex ¢ of C — (S — S,+1) by S,+1, hence we geta
contradiction of our assumption. 1

The conditions given in the above theorem are, in a sense, the best possible. To
see it consider the extremal digraph of (i) of Conjecture 3.2 with |[Y;| = r+ 1,
|[Y2] =b—7r—1,|X;| = rand | X2 | = a — r on which we add all the arcs from
Y> to X;. In this digraph there is no cycle which contains all the vertices of Y.

Both Lemma 3.6 and Lemma 3.7 are used in the proof of Theorem 3.8.

Lemma 3.6. Lety;,z1,... ,%a,Y%+1, ¥ €Y andxz; € X, be apath P of length
2a < n—1 ina bipartite digraph D and lety be a vertex inY — P. If |E(y, P)| >
a+r+landa > r+1, then|A(y)| > r, whereA(y) = {y; | (zi-1,y) € E(D)
and(y, ;) € E(D), 2 <i< a}.
Proof: It is very similar to the proof of Lemma 3.4 [ |
Lemma 3.7. Let D = (X,Y, E) be a bipartite digraph such thatb > a and for
every vertexz,d*(z) > r,d~(z) > r. If |E(D)| > 2ab—r(a—1) + 1, then
for any two vertices x and y of Y, there is a path from y to z of length2a.
Proof: Letz and y be two vertices of Y. We have E( Dy ;) > 2a(b—1) —r(a—
r+ 1) + r + 1 and therefore there is a cycle of length 2 a through s in Dy, 4, by
Theorem 3.5. The conclusion easily follows. g
Theorem 3.8. Let D = (X,Y, E) be a bipartite digraph with out-degrees and
in-degrees at least v, whereb > a > v+ 1. Letx and y be two vertices of D. If
|E(D)| >2ab—r(a—r)+ 1, than any set of r vertices is contained in a path of
length at least2a — 2 fromz toy.

Proof: LetS = {s1,s2,...,8/}, S C V(D),beasetof cardinality r. If z and y
are any two vertices of D — S, then we have to prove that all the vertices of S are
on a common path from z to y. We distinguish between three cases (a), (b) and
©.

(a) Both the vertices z and y are in X.

309



For any vertex z in D,y , we have d*(2) > r—landd (z) >r—1. In
addition, | E(D,y,)| > |E(D)| —2b >2(a—1)b—r(a—1 —7+1) + 1, hence
any r vertices are on a common cycle of length 2(a — 1) through s, in D, ,, by
Theorem 3.7. The conclusion follows immediately for D.

(b) The vertices z and y are not in the same bipartition set of D.

Assume that z isa vertex of X andy isavertexof Y (thecasez € Y andy € X
is similar). Let 2 be a vertex which dominates y and, then let D’ denote the digraph
obtained from D — {z,y, 2} by adding a vertex s and the arcs {(s,w)|w € D’
and (z,w) € E(D)}U {(w,s)| w € D' and (w, 2) € E(D)}. Then, as in case
(a) we can easily complete the proof.

(c) Both the vertices zandy arein Y.

First, it follows from Lemma 3.7 that there is a path from z to y of length
2a. Thus we may assume S N X = @. Next, for some vertex S, of S, we have
d(S;) > a+rsince Y[, d(S;) > |E(D)|—2a(b—17) > r(a+71)+ 1.
Moreover, contracting the vertices z and y as in case (a), we can see that the set
S — S, is contained in a path P of length 2 a from z to y. It follows from Lemma
3.6that A(S,) > r. Then we can replace a vertex z of P — (S —S,) by S,, which
is the desired result. [ ]

The conditions given in Theorem 3.8 are best possible. To see that, consider
the extremal digraph of Theorem 3.5 with [Y1| = |X;| = r, |[Y2| = b—r and
|X2| = a — r. In this digraph there is no path with both extremities in X, which
contains all the vertices of Y} .
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