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Abstract. A \-design is an n x n (0,1)-matrix A satisfying AtA = \J + diag[k; —
X, ..., kn—X], where At is the transpose of A, J is the nx nmatrix of ones, k; > A>0
(1 < j < m), and not all k;'s are equal. Ryser [4] and Woodall [6] showed that such
an A has precisely two row sums 71 and 72 (11 > 1) Withrp + 72 = n+ 1. Let ey
be the number of the rows of A with sum r;. Itis shown thatife; = 4,then A = 3.

1. Introduction

A )-design is a family of subsets S1,S2,...,Ss of {1,2,...,n} such that |S;| =
kk>A>0(1<i<m),|SinS;|=X(1<i# < n),andnotall k;’s are
equal. In terms of the point-block incidence matrix, it can be viewed as ann x n
(0,1)-matrix A such that

AtA= 2T + diag [k1 — X,..., k, — 2] 1.1)

where A! is the transpose of A, J is the nxn matrix of ones. The fundamental
structure of A-designs, established by Ryser [4] and Woodall [6], is that A has
precisely two row sums: e; rows with sum 71 ; e rows withsumr,, wherery > 7
and r; + 7 = n+ 1. More properties of A-designs are discussed in [1, 3,4, 6].

To complement a (0,1)-matrix with respect to a fixed column is to subtract the
fixed column from all the other columns and identify —1°s with 1°s. Comple-
menting the incidence matrix of a symmetric (v, k, \')-design (not of the form
(4 X —1,2),))) with respect to a fixed column gives a A-design with X = k — X',
(If the symmetric design is of the form (4 X — 1,2, X), the result is again a sym-
metric (4 X — 1,2, X\)-design. cf. Theorem 2 of [3].) All the known examples
of X-designs are obtained in this way. Such \-designs are called type-1 A-designs
according to [1]. The “\-design conjecture” says that all X-designs are of type-1.
The conjecture has been verified for 1 < A < 9 ([2]) and for all prime values of
([SD). Itis easily seen that X < e; if the conjecture is true. On the other hand, the
proof of “\ < e;” would be a considerable step towards the proof of the “\-design
conjecture”. It was proved that e; = 1 implies A = 1, that e; = 2 is impossible
([1D), and that e; = 3 implies A = 2 ([7]). Here we prove that if e; = 4 ,then
X = 3. Hence all the \-designs with e; < 4 are of type-1.
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By a suitable permutation, we can always assume that a A-design A is in the
form

fo h fa
AN AN ~
_[40 A1 - Aq )

where [AoA; ...Ae,] has row sum 7, [BoBi...B,] has row sum rp, A;
has column sum 1 (0 < 7 < e;). (B; has constant column sum by (1.3) be-
low.) Let Ic;, k; be the column sums of the j® columns of [ AgAi...A,] and
[BoBi...B.,] respectively. Then kj + kj = k;. Let p= H=; > 1. The follow-
ing facts ((1.3)<(1.10)) are from [1], [4] and [6]:

k}=>\—p(k}—>\) (1.3)
n 2 _
Z 1 _ M1+ p) p (1.4)
= ki — X Ap
2 _
/\(l+p) (p+m (15)
pt—1
_mp+1l _n+p
Tl—p“’l, Tz_p+1 (1'6)
2 n
(det 4)? = 22207 TTck — x) L7
P
p< A ife >1 (1.8)
By
—
A . At=T+ [”j‘** 7 ] (1.9)
. . ;J

=Y
In(1.9), J.,, J., are the square matrices of ones of orders e, and ez, the remaining
two J’s are the matrices of ones of suitable sizes.

If A has two column sums, namely A = [A“ 4q , then

Bil Btz
A;,, Ay, By, B;, all have constant row sums. (1.10)
We define the balanced i mner product (BIP) of two vectors (a;,a2,...,a,) and

(b1,b2,...,ba) tobe Y 7, k .Forl <1, ]<n,letBIP(z D) betheBIPothe
i and the ]‘h rows of A, BIP(z J) the BIP of the i™ row of A and the complement
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of the ;* row of A, BIP(4, ;) the BIP of the complements of the i and the ;™
rows of A. All these BIP’s can be found using (1.9) and (1.4) (cf. [3]). We list the
ones to be applied in the following section:

BIP(i,i) =1+p, 1<i<e (L.11)
BIP(4, /) = p, 1<i,j<e, i¥7J (1.12)
BIP(3, ) = s e1<iln, 1<j<e (1.13)
. A—p .. .,
BIP(l)]) = T) 1 S 4] S €1, 1’#] (1‘14)
1
BIP(3,7) = p— T e1<i,j<m, iF] 1.15)

2. A =3 whene; =4

The aim of this section is to prove that A = 3 when e; = 4 (Theorem 2.4). We
assume e; = 4 from now on. It follows from (1.5) and (1.6) that

n=(A=Np*+Q2A=Dp+(A+4) .1)
n=M=9p+O0+3)p+1 22)
r2=(A=4)p+(X+4) (2.3)

Recall that in (1.2), A; has column sum ¢ (0 < 7 < 4). Let £f and £; be the

column sums of B; and [A‘] respectively (0 < ¢ < 4). Using (1.3), we have

B;
the following table:
1 0 1 2 3 4
4 A+dp| M+ Xp—p A+ XAp=2p A+ Ap=3p A+ Xp—4p
& A+ 2o [ XA+ dp—p+ 1|2+ Xp—2p+2 [N+ Xp=3p+3 [N+ dp—dp+4
No. of columns
of A; fo f f2 f3 fa

Table 2.1. Values of £ and ¢;
Let Z be the set of integers.
Lemma2.l. p € Z.

Proof: First suppose 30 < ¢ < 3 such that f; # 0 and f;+1 # 0. Since f; # 0
implies £; € Z, we have £f — £},; = p € Z. Now it is sufficient to consider
the following cases: (i) fo = fo = f3 = 0; (i) fo = fo = fa = 0; (iii)
h=h=f=0;{)fi=fi=0.

321



Ofo=fr=fr=0.4= [gi ‘g:]. By (1.10)

ih h h th
—~ N AN A
1...1

Ay = 1...1

Hence (1.11) and (1.12) give

I A fa

42p—p+1 Ap—4p+4
S
Ap—4p+4

=BIP(1,)=1+p
=BIP(1,2) =p

So = 4. By (14)

_h
? dp—p+1

x(1+p)2_‘°=i 1 ___ f . fa
Ap j=1kj—>‘ Ap—p+1 )\p—4p+44

=p+4

which implies A —2Mp — p = 0. Contradiction since p > 1.

(ii) fo = f2 = fa = 0. Since a \-design has at least two column sums, we
must have fi > 0, f3s > 0. Hence 4] — £ = 2p € Z. Then \p € Z since
r2=(A—4)p+ (M+4) € Z. Therefore p € Z since & = A+ M\p—p € Z.

i) fi=fr=f1=0.A= [’gg gz]. By (1.10)

i i i i
—~N N NN A
0...0 1...1 1...1 1...1
A 1...1 0...0 1...1 1...1
T 11..1 1.1 0...0 1...1
1...1 1...1 1...1 0...0
As in (i), we have
3 f
2B -BIP(L,1)=1+
4xp—3p+3 (1,1) P
1 f
- =BIP(1,2) =
23p—3p+3 (L2=»

Hencep=2.
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: — _ A0 Az As
(1V)f1—f3—0.z‘1—[B0 B, B4].Wehave

fo+r o+t fa=n 24
2 +4f1=4n (2.5)
fo f2 fa _M1+p?—p

3o 3p—2p+2 dp—dptd Ap 2:6)

where (2.5) comes by counting the 1°’s in [ AgA2A4], (2.6) is (1.4). Solve the
above system to get

(1 P\
fo—(1—2)>\ p @.7)
f2=300p—-2p+2)>0 (2.8)
fi=(o- —) Go—dp+4) 29)

In (28), o > O since X > 2 (M > p > 1). Atleast one of fo and f4
is nonzero since a A-design has at least two column sums. Hence £; — £; (or
g5 — ) =2p € Z. Thenp = % wheret > 3 is an integer. Putting p = 3
in (2.7) and noticing fo > 0, we see thatt = 3, namely p = % V1<i<4,
1<j<n—4,by(L3)

o(s) , __ bij)
o xp=2p-D

= BIP(j +4,i) = (2.10)

o=

where a(7) is the 7% row sum of By, b(3, ) is the inner product of the j* row of
B, and the complement of the i row of A, . Multiplying (2.10) by )\ p, we have

55y b(i, 1) € Z, or $28=Usb(i, j) € Z. Hence
b(1,7) k
= , kez 2.11
—2p-1) 2(p-1) 2.11)
Now 5k < 1 (by(2.10)and (2.11)) and p = 3 forces k = 0. Hence b(4,7) = 0

foralll << 4 1<j<mn—4.Then B, = 0. Noticing that B, must occur
(since f > 0), we have

Z=X+Xp—2p=0

which implies X = . Contradiction. |
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Lemma 2.2. If a,b,c,a1,b1,01, % + % + 9 € Z, then

b
b

1]
ol

(2.12)

whered = [(a,b),(b,c)] and k € Z.((.,.) denotes the greatest common divisor,
[.,.] denotes the least common multiple.)

Proof: Letd; = (a,b),d; = (b,c), then

a=sd;, b=td;, (s,t)=1
b=t'dy, c=sdy, (s,t)=1

Multiplying & + % + & by ss'd, we have ﬁ@t € Z. Hence ﬂl € Z, namely,
gdh € 2. So, idL 4 ez ]
Lemma23. fi = f, = 0.

Proof: V1 <i<j<4,by(l.14)

%) N CY) R G

o= (o—D T p=2p—n _ BPWD =7 2.13)

where a(4,7) is the number of common zeros of the i and the j™ rows of A;,
b(1, j) is the same number for A, . Rewrite (2.13) as

fo-O=p 0 _ b(iJ)

=0€Z 2.14
Ap do=(p=1) Xp—=2(p—-1) (2.14)
and apply Lemma 2.2, we have
a(4,7) k
= , keZz 2.15
M=(p=1) p-1 @15)
bij) __m mez 2.16)

Ap—=2p=1)  2(p-1)"

(In obtaining (2.15), notice that [ (Ap, Ap—(p—1)), (Ap—(p—1),A=2(p—1))] |
(p — 1). Similar for (2.16).) From (2.14) and (2.15), we have p_Ll < *T‘pﬂ. This
forces k = 0. Hence a(4,j) =0 forall1 < i< j <4.So f; = 0. From (2.14),
b(1,j) = bis independent of 7 and j. Hence A; must be of the form
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0...0 0...0 0...0 1...1 1...1 1...1
4,2 |00 1.1 1...1 0...0 0...0 1...1
2=11...1 0...0 1...1 0...0 1...1 0...0
1...1 1...1 0...0 1...1 0...0 0...0
Hence
b=i62. @.17)

By (2.14) and (2.16), 3255 < 32, This forces m = 0 or 1. If m = 0, then
b=0 and f, = 0. We are done.
Now assume m = 1. Then one can find that

Ap

fo=k—p—2(p—_l) (2.18)
fa= p3 [Ap—2(p—-1]1>0 (2.19)
f= 4p—— [Ao—3(p—1] (2.20)

fa = TP [200—4)0® + (=61 +32)p" + (TA —52)p+28] (2.21)
((2.18) comes from (2.13) and (2.16); (2.19) comes from (2.17) and (2.16); (2.20)
and 221) come from fo + fo + f3+ fa =nand2f, + 3f3 +4 f4 = 4my J Vv
1<i<4,1<j<n—4,letu(s),v()) bethe j* row sums of By ande,
w(4, j) be the inner product of the ;™ row of B, and the complement of the i
row of Az, z(i, j) be the same inner product for By and A;. By (1.13)

u(}j) w(i, j) 2(i,7) pa oL
o +Ap—2(p—l)+)\p—3(p—l)—BIP(7+4’D_p, (2.22)
By (2.22) and Lemma 2.2,
w(4,f) p
= 2.23
—2p-D 2p-1' P @23)

Ap=3(p-1) 3(p-1’
5 L forces p= 0 or 1. If v(j) = 0, then w(4,j) = 0. Hence p = 0. By
(2 22) (2 23) and (2.24),

u(j) =X — 135-1)
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0 < u(y) gfo=)\—p—ﬁ;%)forceSq=2.chce

NeaPT3 if u(7) =
u(j) = ,\3('0_ 5" u1, ifv(j)=0 (2.25)
If v(j) # 0, then w(4, ) # O for some i. Hence p = 1 in (2.23). By (2.22),
(2.23), and (2.24),

N_y_ Ap
D =A = 3-D T3 -D

0 < u(j) < fo=X— p— gy forces g = 1. Hence

N_\ P—=6 o
u(j) = X—é(p_ Dy " U if v(j) #0 (2.26)
Write A as
Ao | Ay | Az | Asg
ByY| 0
B(()Z) Bél)

where B((,]) has row sum u;, B((,Z) has row sum u;. B, must occur since f, > 0
by (2.19). If B, = 0,then £ = A+ Ap — 2p = 0, namely, \ = 1%% < 2.
Contradiction. So, B, # 0. Hence u; must occur, and p > 6 by (2.26). Counting
the 1°s of the submatrix of B{? corresponding to the 1°s of a column of Béz’ , wWe
have

A+ Xp—=2p)uz = foX

which yields

(8—p)A=4p+6 (2.27)
Hence p < 7.1f p=7, X = 34 by (2.27). Then by (2.26)

) P=6 _34

w2 =T " 36 £7

Contradiction. If p = 6, X = 15 by (2.27). From (2.18) through (2.21), f; = 0;
f2 and f3 are even; f4 is odd. By (1.7)

2 n

(det 4)? = 222 T ey - %)
j=1

2

= M(Ez _ )\)1’1(23 _ )‘)J’:(& _ )‘)f.a

Hence \ \
=(Ls —N) ==[Ap—4(p—1]1=5*x7
p P

must be a square of a rational number. Contradiction. 1
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Theorem 2.4. ) = 3.
Proof: Since f; = f, = 0, we can find that

fo=X—p (2.28)
=4 -3(p—-1D]1>0 (2.29)
fa=(OA=Hp2+(-22+12)p—8 (2.30)

( (2.28) comes from (1.14); (2.29) and (2.30) come from fo + f3 + f4 = nand
3fs+4f;=47r.)In(229),f3 >0sincep<A.V1<i<4,1<j<n-4,
let u(7), v(j) be the /™ row sums of By and B3, w(1,j) be the inner product of
the j™ row of Bs and the complement of the i row of A;. By (1.13)

u(7) w(i,j) o1
Nt T3 - S BRU+ 4D = 2. (2.31)

Hence w(4, ) = w(J) is independent of 7. But
v(7) = w(l,7) + w(2,5) + w(3,7) + w(4,)) =4w(j).
So w(j) = %2. Now (2.31) becomes

. v(7)
ua) , 4 =21 (2.32)
A xp=3(p-1) »p

where "—221 € Z. In the same way as (2.11) was obtained from (2.10), we have

V( )
t
, t€Z. 2.33)
3 =3(r=D =D (
From (2.32) and (2.33), we have% by rey % = %- *Tpe % > 0. This
forcest=1or2. Whent =1,
) 2p—3
=d3——p = 2.34
u(j) 3= - Y (2.34)
N_a2p=3(p-1) _
v(j) =4 - - (2.35)
Whent =2,
p—3 )
= 2.34
u(j) = A3( n = (2.34)
. Ap—3(p—-1)
vw(j) =8 ——————==u;. 2.35'
6] 3-1) 2 (2.35)
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Write A as

Ao | As | Ay
s{ B(l) B(l)
B(Z) B(Z)

where B( b B“) have row sums with ¢t = 1, B(z), B§2) have row sums with

(l)
t = 2. Counting the 1’s of [ o)
By

] , we have

sup+(n—4 —s)uy = fo(p+ 1A

Solve to get :
s=(5—p)(p+ DA+ p* —11p. (2.36)

B3 must occur since f3 > 0 by (2.29). Let )a: be the sum of any column of

B;l) Counting the 1°s of the submatrix of g(()z) ] corresponding to the 1°s of the
column of [ Bé;; ] , we have

zuy + (A+Ap—3p—2)uz = fol
which yields

z=5A—-XAp—6. 2.37)
Now counting the 1’s of B{", we have
Tf3 = su
which leads to

Ap=2D(p=5)r=~(p=2D(p+9). (2-38)

By (2.38), p < 4. Hence p = 2,3,4. When p = 4, (2.38) gives A =
Contradiction. When p = 3, X = 3 by (2.38), and we are done. When p = 2
fa=0by(230).V1<i<j<n—4,by(l.15)

olif) | B
2\ 2X-3

=BIP(i+4,j+4)=2—

> -

where (i, ) is the number of common zeros of the i and the j™ rows of By,
B(4, ) is the same number for B;. From the above equation,

alif) +2  fCi,)

2N o3 2%

328



Hence 242*2 = £k € 7, 0ra(i,j) = 22 —2.Now0 < a(i,j) < fo=2-2
forces k= 1. So )
a(i,j) ==X -2. (2.39)

Since u; < 0 (by (2.34')) cannot occur,
u(]')=u1=%)\ forall1<j<n—4. (2.40)

From (2.39), (2.40) and (2.28),
a(i,j) = fo—u(j) foral 1 <i<j<n—4. (2.41)

Recalling the definitions of a(3, 7) and u(j), one can see that for (2.41) to be true,
By has to be of the form:

U1 [

So fo < 1 since the incidence matrix of a A-design is nonsingular. Also fo >0
since a A-design has at least two column sums. So fo=1; and A\=3 by (2.28). &
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