A Series of BIB Designs

K. Sinha

Department of Statistics
Birsa Agricultural University
Ranchi 834006

M. K. Singh

Department of Mathematics Ranchi University Ranchi 834001 INDIA

Abstract. A series of partially balanced incomplete block design yields under certain restrictions, a new series of BIB designs with parameters:

$$\begin{split} v &= \binom{2\,s+1}{2}, \quad b = \frac{1}{2}\,(s+1) \binom{2\,s+1}{s+1}, \\ \tau &= s \binom{2\,s-1}{s}, \quad k = s^2, \quad \lambda = (s-1) \binom{2\,s-2}{s-1}, \end{split}$$

where $s \ge 2$ is any positive integer.

1. Introduction.

We shall recall the definition of a BIB design from Mathon and Rosa (1985).

A balanced incomplete block design (BIBD) is a pair (V, B) where V is a v-set and B is a collection of b k-subsets of V called blocks such that each element of V is contained in exactly r blocks and any 2-subset of V is contained in exactly k blocks.

Let X be a set of n positive integers and the $v = \binom{n}{2}$ elements be represented by 2-subsets $(ij) = (ji), i, j = 1, 2, \dots, n, i \neq j$. Now any pair of 2-subsets having an integer in common are first associates; and any pair of disjoint 2-subsets are second associates. This defines a two-associate-class triangular association scheme.

A partially balanced incomplete block (PBIB) design with two-associate-classes is an arrangement of v elements (treatments) into b subsets (blocks) such that:

- (i) each subset contains exactly k(< v) elements;
- (ii) each element occurs in exactly r subsets;
- (iii) with respect to any element X, the other v-1 elements can be grouped into two classes such that
 - (a) an element in the *i*th (i = 1, 2) class of size n_i , is called *i*th associate of X.
 - (b) if X is ith associate of Y, then Y is ith associate of X,

- (c) for any two elements which are *i*th associates, the number of elements common to the *j*th associate of first and *k*th associate of the second is p_{jk}^{i} (*i*, *j*, *k* = 1, 2) and is independent of the pair of elements;
- (iv) any two elements which are ith associates occur together in λ_i subsets.

This definition of partially balanced incomplete block (PBIB) design is obtained by rephrasing the definition in Clatworthy (1973). Here the PBIB designs are based on triangular association scheme.

2. The construction.

Theorem. There exists a series of two-associate-class triangular partially balanced incomplete block (PBIB) design with parameters;

$$v = {n \choose 2}, b = \frac{1}{2} {n \choose s} {n-s \choose s}, r = {n-2 \choose s-1} {n-s-1 \choose s-1}, k = s^2,$$

$$\lambda_1 = {n-3 \choose s-1} {n-s-2 \choose s-2}, \lambda_2 = 2 {n-4 \choose s-2} {n-s-2 \choose s-2},$$
(1)

where n > s > 2.

Proof: Let X be a set of n positive integers X = 1, 2, ..., n. Let the 2-subsets of X be the treatments of a design and let the s-subsets of X correspond to blocks, for some fixed s such that $n \le 2$. A block corresponding to an s-subset consists of two parts A and B. Part A corresponds to the s-subset and part B to another s-subset obtained from the remaining (n-s) integers. Then 2-subsets of a block are formed by taking an integer each from parts A and B. Thus each s-subset corresponds to $\binom{n-s}{s}$ blocks; each of these b, blocks occur twice in this construction. Hence, only one copy of each block is kept. The values of the parameters (1) can easily be verified.

When n = 2s + 1 in (1), we have:

Corollary. There exists a series of BIBD with parameters:

$$v = {2s+1 \choose 2}, \quad b = \frac{1}{2}(s+1){2s+1 \choose s+1}, \quad r = s{2s-1 \choose s}, \quad k = s^2$$

$$\lambda = (s-1){2s-2 \choose s-1}, \quad s \ge 2.$$
(2)

When n = 2, 3, 4, 5, we get respectively BIBDs:

- (i) v = 10, b = 15, r = 6, k = 4, $\lambda = 2$,
- (ii) v = 21, b = 70, r = 30, k = 9, $\lambda = 12$,
- (iii) v = 36, b = 63.5, r = 28.5, k = 16, $\lambda = 12.5$,
- (iv) v = 55, b = 99.14, r = 45.14, k = 25, $\lambda = 20.14$.

The BIBD (i) is well known. The design (ii) is quasi-multiple by 2 of the known BIBD 'D69', and the design (iii) is quasi-multiple by 5 of the known BIBD 'D338'. The BIBDs with D numbers are from Dipaola et al (1973). Recently, Mathon and Rosa (1985) tabulated BIBDs with $r \leq 41$. The BIBD (iv) is quasimultiple by 14 of the unlisted BIBD:

$$v = 55$$
, $b = 99$, $r = 45$, $k = 25$, $\lambda = 20$.

Illustration: Given below is a plan of a BIBD with parameters:

$$v = 10$$
, $b = 15$, $r = 6$, $k = 4$, $\lambda = 2$, for $n = 5$,

where 2-subsets represent elements and parentheses enclose blocks:

Acknowledgement.

The author is thankful to the referee for suggestions.

References

- 1. W.H. Clatworthy, *Tables of two-associate-class partially balanced designs*, National Bureau of Standards, Washington, D.C.
- 2. J.W. Dipaola, J.S. Wallis, W.D. Wallis, A list of (v, b, r, k, λ) designs for $r \leq 30$, Proc. 4th S-E. Conf. on Graph Theory and Computing (1973), 249-258, Florida Atlantic University, Boca Raon.
- 3. R. Mathon, A. Rosa, Tables of parameters of BIBDs with $r \le 41$ including existence, enumeration and resolvability results,, Annals Discrete Mathematics 26 (1985), 275-308.
- 4. K. Sinha, A series of BIB designs,, J. Australian Math. Soc., Ser. A 27 (1979), 88-90.
- 5. K. Sinha, A BIBD arising from a construction for PBIBDs, Ars Combinatoria 18 (1983), 217-219.