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Abstract. Golomb and Taylor (joined later by Etzion) have modified the notion of a
complete Latin square to that of a Tuscan-k square. A Tuscan-k square is a row Latin
square with the further property that for any two symbols ¢ and b of the square, and for
each m from 1 to k, there is at most one row in which b is the m*» symbol to the right of
a. One question unresolved by a series of papers of the authors mentioned was whether
or not n x n Tuscan-2 squares exist for infinitely many composite values of n+ 1. Itis
shownherethatif pisaprimeandp =7 (mod 12) orp=5 (mod 24), then Tuscan-
2 squares of side 2p exist. If p = 7 (mod 12), clearly 2p + 1 is always composite
andifp=5 (mod 24),2p+ 1 is composite infinitely often. The squares constructed
are in fact Latin squares that have the Tuscan-2 property in both dimensions.

Introduction.

The series of papers [9], [10], [11] has raised a number of interesting questions
related to the idea of a complete Latin square. A Latin square L = (;) of order
n is row complete [column complete] iff the n(n — 1) ordered pairs (l;j, ; j+1)
[Lj, Li+1 7] are all distinct. A Latin square is complete iff it is both row and column
complete. These squares are useful in designing certain experiments where it is
necessary to consider the interaction of nearest neighbors [8], [11].

According to [10], an Italian square is an n x n array in which each of the
symbols 1,2, - -. , n appears exactly once in each row. A Tuscan-k square is an
Italian square such that for any two symbols a and b and foreachm, 1 < m < k,
there is at most one row in which b is the m#* symbol to the right of a. Thus a
Tuscan-1 square is a row complete (not necessarily Latin) Italian square. Tuscan-
1 squares are known to exist [15] for all n, n # 3,5. It has been verified [11]
that n x n Tuscan-(n — 1) arrays exist whenever n+ 1 = p is prime (use the
multiplication table of non-zero elements of the finite ficld with p elements) and
[10] that Tuscan-2 squares exist for all even n,4 < n=2m < 50. For all these
cases except n = 8, the “symmetric polygonal path” method [10] can be used.
Symmetric polygonal paths are special cases of the following idea.

Suppose G is a finite group of order n with identity e. A sequencing [12] of
G is an ordering e, a2, ..., a, Of all elements of G such that the partial products
e,eay = by,eazas = bs,...eay ---a, = b, are distinct and hence also all of G.
Attention will be restricted to a particular type of sequencing.

Definition 1: Suppose G'is a group of order 2 n with identity e and unique element
z of order 2. A sequencing o

®:€,82,..0,00,8n¢1,...,029

Biebr, .. bu,bur1,...,b2n
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with associated partial product sequence 8 will be called a symmetric sequencing
[1)iff gy = zandfor1 < i< n—1,am14i = (aps1-¢) """

It is easy to see that the symmetric polygonal paths of [10] are the partial
sum sequences associated with symmetric sequencings of Z2,, the cyclic group
of order 2n.

Polygonal paths and rotation are used in [10] to construct Tuscan-1 squares.
Stated in terms of sequencings [10, Lemma C1] says that every sequencing of Z,,
generates a Tuscan-1 square. In fact, one can do better than this by rearranging
TOWS.

Theorem 1 [12]. If G is a sequenceable group of order n with sequencing o
and associated partial product sequence f, then the n x n array whose (i,7)
cell contains b;'b; is a complete Latin square.

This means that sequencings give arrays that have the Tuscan-1 property in
both dimensions. For information on sequencings, see [3], [4], [5], [13].

One conjecture in [10] is that for all even n, n > 4, an n x n Tuscan-2
square exists. However, this has not been verified; in fact, it has not previously
been established for so much as an infinite class of values n such that n+ 1 is
composite. The goal of this paper is to exhibit such a class.

If G is a finite group with unique element z of order 2, define

P“W = {{waz-l} ‘T € G\{e»z}}',

Definition 2: Suppose « is a symmetric sequencing of a group G of order 2n and
foreachi,3 < i < n+ 1, A; = a1 - a;. The statement that « is a symmetric
T -sequencing of G means that { A3, As,..., An1 } is a transversal of Fiy, .
Definition 3: A Latin Square L is 2-complete iff it is Tuscan-2 in both dimensions
(horizontally left-to-right and vertically top-to-bottom).
It will be useful to examine the construction of Theorem 1 in detail.
Remark 2. Suppose G, a and B are as in Theorem 1 and C = (c;;) = (b7'b;)
is the associated complete Latin square.
i) cj=c; (Cisskew)
ii) Row 1 of C contains the elements of B in order.
iiiy Row i of C is the left translate of Row 1 by b;* .
iv) Column 1 of C is (Row 1)}
v) Column j of C is the right translate of column 1 by b;.

Proof: The arguments are straightforward.

Note that if b; and b}, are consecutive elements inrow 1, then b,-(b;l bj+1) =
bj+1. Similarly, if b;!b; and b b, are consecutive elements of row i, then as
before, by bj(b;'bjs1) = b7 'bjs1. Since bj'bjs1 = aj.1, an easy translation

34



argument can be used to show horizontal completeness. On the other hand, sup-
pose b;! and b7} are consecutive elements in column 1. Then b;! (b;b3}) = b3}
while if b;'b; and b} b; are consecutive elements in column j, then

by b;[b7 (Bibiz 1) b1 = b b

and a translation argument is not so clear. Nevertheless, an easy argument for
completeness exists [12]. It will be exhibited in 2-completeness form below.

Theorem 3. If G is a finite group of order n with symmetric T, -sequencing a
and associated partial product sequence f3, then the array C = (c;;) = (b,Tl b;) is
a 2-complete n x n Latin square.

Proof: By Theorem 1, C is a complete Latin square. Extend the limits of ¢ in

Definition2t0 3 < s < 2nanditis easy tosee thatfor1 <i<n—1,

-1
Apisi = Agy

sothat {4s,...,Ap1,...,42,} = G\ {e, 2}.

The following argument shows vertical 2-completeness. Horizontal 2-complete-
ness is verified similarly.

Suppose st = Cuy, aNd Cp42 ¢t = Cus2,9- Then

b7 b = b3'b,

and

'12b, b“’zb so that b, bes2 = b bysz.
s=uby propcmes of the sequencmg Then b_lbg = b;'b, s0 that bg = b, and
t=v.
Example 1. A symmetric T3 -sequencing a of Z¢. The T -row contains A3, A4 R
As and Ag.

T 5 4, 2, 1
a: 0, 4, 1, 3, 5, 2
B 0, 4,5 2,1, 3

Figure 1 shows the Tuscan-2 Latin square that arises from « via the rotation
construction of [10]. Note that this square is not 2-complete or complete. Figure
2 gives the 2-complete Latin square that arises from « via Gordon’s construction.

0 45 213 045 2 1 3
1503 2 4 2 014 35
201435 1 503 2 4
312540 4 2 305 1
423051 53410 2
53 410 2 3'1 2 5 4 0
Figure 1 Figure 2
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In view of Theorem 3, the goal of this paper can be restated as the exhibition
of a class of symmetric T3 -sequencings. This will be accomplished as follows.
Only cyclic groups Z,,, p an odd prime, will be considered. In this type of situ-
ation, it is often useful to be able to compute in a field. Thus, the plan will be to
factor down to Z, and Z; and look for images of symmetric T -sequencings on
Z2p. When a symmetric sequencing on Zy, is “projected” to Z, [3], the result is
a 2-sequencing (to be defined later). Projecting the other way to Z, corresponds
to asking how to lift the 2-sequencing back to a symmetric sequencing of Z,.

A certain class of possible 2-sequencings that arise when p is an odd prime
will be analyzed. Many elements in this class are 2-sequencings and some have
an additional property (to be defined later) necessary if they are to be images of
symmetric T3 -sequencings. Most of the elements having this additional property
cannot be lifted to symmetric T3 -sequencings of Z;, but, after all the sifting is
completed, a few gold nuggets remain.

The Construction.

The first order of business is to characterize certain symmetric T, -sequencings in
terms of the factorization process described above.

Definition 4: Suppose H is afinite group of order n with identity e. A 2-sequencing
[31,[71 vy of H isanorderinge, ca, . . ., ¢, Of certain elements of H (not necessarily
distinct) such that

i) the associated partial products
6:eecr,ecr63,...,€C2€3 -+ Cyq

are distinct and hence all of H,
ii) ifye Handy#y™',then

Hi:2<i<nand (g=yorg=y")} =2,

(this will be referred to as the “two occurrence property™)
iii) ifye Handy=y™!,then

Hi:1<i<mand ¢;=y}|=1.

Definition 5: Suppose H is afinite groupof oddordernand v : e, ¢, ¢3, ..., ¢, iS
a2-sequencing of H. Foreachi,3 < 1 < n,letC; = ¢;_; -c; and define Cypyy = Cy.
The statement that «y is a t, 2-sequencing of H means thatif y € H \ {e}, then

{i:3<i<n+land(Ci=yorCi=y )} =2.

The symbol ¢, will denote the row C3,Ca,...,Cy, Cpey SO that row ¢ of a ty
2-sequencing has the two occurrence property.
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If 4 is a 2-sequencing of H and c; and c; satisfy Definition 4 (ii) with respect
to y, the phrase “c; and c; are the two occurrences of {y,y~'} in 4” will be used.
Definition 6: Suppose 1 is a t2 2-sequencing of the odd order group H. Let

0:0,02,03,...,0q,1

be a sequence of length n + 1 of elements of Z, with associated partial sum se-
quence
P:0,02,p3,.-,Pn,Prs1-
For3 <i<n+l,let); = 01 + o; (mod 2) and let » be the sequence
33,3 40 +s D ope1 - The statement that o is compatible with y means that
i) oy=0andong =1,
ii) ify € H\ {e} and ¢; and c; are the two occurrences of {y,y™'}
in «, then o; # Oj,
iiiy ify € H\ {e} and C, and C, are the two occurrences of {y,y'}
illtz, then zu # Ev'

Remark 4. If ¢ is compatible with -, then
i) o contains (n+ 1)/2 O’sand (n+ 1) /2 1%,
ii) 7 contains (n—1)/2 Osand(n—1)2 17%.

Before proceeding to the characterization theorem, an example will serve to
illustrate the definitions. The following symmetric T -sequencing of Z; is taken
from [10] although exhaustive lists of symmetric sequencings of low order cyclic
groups have been known for some time [2].

T2 3, 6, 1’ 2» 8’ 9’ 497
Zy: :0,1,2,4,7,5,3,6,8,9
£:0,1,3,7,4,9,2,8,6,5

Let H = Zs and project down to a t; 2-sequencing of Z1o/Z, and a compatible
sequence o of six elements of Z,.

ta: 3112 n; 1010
Zs: 7:0, 1,2, 4,2 Z: 0:01,0,0,1, 1
§:0,1,3 2 4 p: 0,1,1,1,0,1
Lemma 5. Suppose G is a group of order 2 n, n odd, with a unique element z
of order 2. Then
i) @ has a subgroup H of order m,
i) z¢H,

iliy € H iff zz ¢ H (which occurs iff s~z ¢ H).

Proof: Only (i) requires an argument. Since = is odd, the Sylow-2 subgroup of
G is Z, and the result follows by [14, Corollary 1, p. 144].
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Theorem 6. Suppose G is a group of order 2 n, n odd, with a unique element z
of order 2. Then G has a symmetric T, -sequencing iff
i) G/Z, has a t, 2-sequencing -y and
ii) ~y has a compatible 0-1 sequence a.

Proof: First let o be a symmetric T3 -sequencing of G and let 7 be the natural
projection from G to G/Z;. By [3), (w(e),n(a2),...,7(ay)) = w[a] is a 2-
sequencing of G/Z,. Consider a coset y = {z,22} € G/Z2,z ¢ {e,z}. The
inverse coset is y~! = {z~!, "2} and these two cosets are distinct since n is
odd. Now

yUy™ = {z,22}U{z7",27"2} = {2,57'} U {22,27'2} C Fim.

By hypothesis, {43, ..., An+1 } contains exactly one element from {z,z~'} and
exactly one element from {zz, z~! z}. Thus {y,y~'} occurs exactly twice in

{m(43),...,7(Ap1)}={Cs,...,Ca1 }.

Since this holds for any pair {y,y~'} € (G/Z; \ {e,2}), 7la]l = yisat,
2-sequencing of G/Z,.

Now construct the compatible 0-1 sequence o. Let H be a subgroup of G of
order n and let w; be the natural projection from G to G/H =~ Z, where H is
denoted by 0 and Hz by 1. Then m;(e), m2(82), ..., (aa1) iS a sequence of
0’s and 1’s and clearly 7, (e) = oy = 0 and, Since ape; = 2, Ope1 = 1.

Suppose ¢; and c; are the two occurrences of {y,y~'} in . Since 7(a;) =
¢ and n(a;) = ¢j, 0; # oy if it can be shown that {a;, a;} is a transversal of
{H, Hz}. There are two possibilities. If 7(a;) = n(a;) = {z, z2}, then since
is a symmetric sequencing, a; # a; and the result follows from Lemma § (iii). If,
on the other hand, #(a;) = {z,zz} and n(a;) = {z~',z~'2}, then it is easy to
see [3] that since « is a symmetric sequencing,

a; = z implies a; = zlz

a; = zz implies aj = ™!
and the result again follows from Lemma 5 (iii).

To complete the first half of the argument, suppose C, and C, are the two
occurrences of {y,y~'} int. Since 7(A,) = C, and m(A,) = Cy, 3, # 3
if it can be shown that {A,, A,} is a transversal of {H, Hz}. Again there are
two possibilities. If #(Ay) = 7(Ay) = {z, 2} then since {As,...,An1}isa
transversal of Fi,,, A, # A, and the result follows as before. If, on the other
hand, 7(A.) = {z,z2} and n(A4,) = {z~!, 2712}, then

A, = z implies A, = z712

and A, = zz implies A, = z~!
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so that the first half of the proof is complete.

Suppose, conversely, that y is at; 2-sequencing of G/Z, and there is a com-
patible 0-1 sequence o on G/H = Z;. By [3], «y can be lifted to a class of sym-
metric sequencings of G. It is easy to see that the compatibility of y and o implies
there is a unique lift that projects to both oy and o. Call this symmetric sequencing
a. The argument will be complete if it can be shown that {43, ..., A1} is a
transversal of F;,,. If this is not the case, then by the pigeonhole principle, either

i) thereexisti # j such that A; = A; or
i) thereexisti # j such that A;! = A;.
Similar methods handle both these cases so consider (ii). In this situation 7( A;) =
{Ai,Aiz} = y and n(Aj) = {A7', A7 2} = y~! are the two occurrences of
{y,y~'} in t,. By compatibility E‘ # Y, and this implies A; and A4; are in
different cosets of H, acontradiction. This oompletes the argument for Theorem 6.

It will be useful to establish some notation as an aid to describing the class

of 2-sequencings to be considered. If p is an odd prime,

PS={{z,-z}:x€2Z,\{0}}
$1:1,2,3,....(p=1/2 §:0,1,2,3,...,(p—1)/2
S :(p-1/2,...,3,2,1 z8 : [(p—1)/2]z,...,33,2%,2;2 € Z, \ {0}
s:§1,z32

Clearly s is a “sequence” (it is the concatenation of two ordered sets) of p elements
of Z,. It will be of interest to determine when s is a 2-sequencing of Z,,.

Remark 7. If z € Z,\ {0}, then S, and z8S, are transversals of PS.
Consider s in detail along with its associated partial sum sequence t.

8:0,1,2,3,...,(p—-1)/2,[(p— 1 /2]z,[(p-3)/2]z,...,33,21,2
t:0,1,3,6,...,(p* - 1)/8,...

LetT; denote the first (p—1) /2 elements of t andletT", denote the last (p—1)/2
elements of ¢. Note that the occurrence of (p® — 1) /8 in the middle position of ¢
is missed in the definition of I'; and I'; and that Ty, I, C Z,. Let Q denote the
quadratic residues mod p and let N denote the quadratic non-residues mod p. As
usual,if A, B C Zpandz € Zp, A+z = {a+7:a € A} andzA = {za: a € A}.

Lemma 8. With s : §1 , =8, defined as above, the following results hold.

i) T1=Q+(p*—1)/8if p==1 (mod 8),
I =—zQ+ (p? —1)/8 if p=+1 (mod 8).

ii) I'=N+(p>—-1)/8if p==+3 (mod 8),
I = —zN + (p* —1)/8 if p= %3 (mod 8).
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Proof: Consider I'y first. The elements g, of I'y have the form g,.; = n(n +
1)/2,0 <n< (p—3)/2.But

Wn+l)  (n+1/2)2-1/4 4(n+1/2)2—1 4[(n+1)-1/2]> -1
2 2 - 8 - 8

and2~! = (p+1)/2.Since 1 < n+ 1< (p—1)/2

("+ l) - 1/2 € {l,2,...,(p— l)/2}—(p+ 1)/2
= {—l»—2,---a"(P_ l)/2}

Thus

[=(4Q-1)/8=(Q-1)/8=Q-87'-81=Q.87"+(p* — 1)/8.

Now2 € Qifp= +1 (mod 8 and2 € N if p = +3 (mod 8) [6] so the
results relative to I'y are clear.

In order to compute I'; look at the elements in the s-row above the members
of I';. The sum of the first 1 elements here can be thought of as the sum of all
these elements minus the sum of the elements following the first ¢ elements. For
example, with i = 1

[(p—1)/21z = [(#* - 1)/8 - (p— 1)(p— 3)/8]=.
It follows that (with (p? — 1)/8 = w)
2 = {w+zlw—(p—1)(p-3)/8],...,w+z[w—1-2/2],w+z[w—0]}. (1)
Without the translation by w, (1) becomes
{zlw—(p— 1 (p—3)/8),...,z[w—1-2/2],z[w - 0]}. )
Without the multiplication by z, (2) becomes

{lw—=(p—1(p-3)/8],...,[w—1-2/2],[w —0]}. A3)
Without the translation by w, (3) becomes (in reverse order)
{-0,-1,-3,...,—(p—-3)(p-1)/8}. ©)]
By the first part of the argument

oo -Q-(p*-1)/8 ifp==+1 (mod 8)
( )_{_N—(pz-—l)/s ifp=+3 (mod 8)

and the result follows by retracing the steps back up to (1).
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Theorem 9. With s : Sy, xS, defined as above, s is a 2-sequencing of Z, iff
i) p=1 (mod 4 and z € N or
ii) p=3 (mod 4) and z € Q.

Proof: Recallthat —1 € Qifp=1 (mod 4) and—1 € Nifp =3 (mod 4)
[6]. Lemma 8 gives four cases to be resolved. Since the arguments for all the
cases are similar only one case will be presented here.

Ifp=1 (mod 8),then

I =Q+(p?—1)/8 and Ty = —zQ + (p* — 1)/8.
Since
Zp=Zy+ (p* — 1)/8=[(QUN)(p* — 1)/81U[{0} + (#* — 1)/8]

s will be a 2-sequencing iff —zQ = N. Since —1 € Q, this holds iff z € N.

Lemma 10. With s : S;, =5, defined as above, the t, row associated with s
has the two occurrence property of Definition 5 (independent of whether or not s
is a 2-sequencing) iff t =1,—3 (mod p).

Proof: Clearly

{C3,C4,...,Cpeny2} = {3,5,...,p—2}
{C(,»s)/z,...,Cp}U{Cpn} ={(p-2z,...,3z}U{z}
C(p..g)/z = (l+ z)(p— l)/2.
Since z{1,3,5,...,p— 2} is a transversal of PS, the ¢, row has the two occur-

rence property iff (1+ z)(p — 1)/2 = +1 (mod p). Easy computations now
give the result.

Theorem 11. With s : §1 , 8, defined as above, s = y is a t, 2-sequencing of
Zy iff
i) z=1 (mod p) and p=3 (mod 4) or
ii) z=-3 (mod p) andp=5,7 (mod 12).
Proof: Combine the results of Theorem 9 and Lemma 10. Use the facts that
—-1e€Qifp=1 (mod 4), 3e€eQif p=+1 (mod 12)
—1eN if p=3 (mod 4), 3eNif p=45 (mod 12)

To begin, suppose s is a £ 2-seqﬁencing of Z,. If z = 1 (mod p), then
z € Q and by Theorem 9,p = 3 (mod 4). If z = —3 (mod p), then split
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things into two cases. Suppose first that p = 1 (mod 4). Then —3 € N by
Theorem 9. If —1 € N, thenp = 3 (mod 4), a contradiction. Thus —1 € Q,
3eNandp=45 (mod 12). Sincep=7 (mod 12) andp =1 (mod 4) is
not possible,p =5 (mod 12).

Lastly, suppose p = 3 (mod 4). Then —3 € Q by Theorem 9. If —1 € Q,
then p = 1 (mod 4), a contradiction. Thus —1 € N,3 € Nandp = +5
(mod 12). Sincep =5 (mod 12) and p = 3 (mod 4) is not possible, p = 7
(mod 12).

The converses are straightforward.

Interest now centers on the question of when the ¢, 2-sequencings  on Zy
promised by Theorem 11 can be lifted to symmetric T -sequencings of Z,,. By
Theorem 6 it will suffice to find compatible 0-1 sequences o of length p+1. As will
become clear shortly, compatibility induces considerable structure to the possible
lifts in the case of the t, 2-sequencings of Theorem 11.

Suppose H is a group of odd order nand -y is a ¢, 2-sequencing of H.

Position:1 2 3 ... n n+1
12: Cs ... Cy Cun1
v €C2, C3y ...y Cq

6. e dy, ds,..., dy,

By definition, both the ¢, -row and the «-row have the two occurrence property.
Definition 7: If  is as above

Fy={{i,5}: 3y € H\ {€} 3 ¢, c; are the two occurrences of {y,y~'} in 7},
F, = {{u,v}: 3y € H\ {e} 3 C., C, are the two occurrences of {y,y~'} int,}.
It is clear that F, is a partition of {2,3, ..., n} into pairs and F,, is a partition of

{3,4,...,n+ 1} into pairs.
What can be said about a compatible sequence o?

Position: 1 2 n—-1 n n+1
n: Ek Eu . Ev
g 0 o5 0p1 ox o 1
p:

By definition 01 = 0 and 0,1 = 1. There are two very useful rules that can
be described. Recall that 2,, = 0k-1 + o} in Z;. Since this equation holds in a
group, the following rule is valid.

2/3 Rule: If any two of the values in the equation )", = o0}_; + o} are known,
the third value is forced.
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Compatibility gives another rule with two instances.
Disagreement Rule:
(1) If{i,j} € F, and o; is known, then g; is forced.
(2 If{u,v} € F, and ), is known, then ) is forced.
Itis now easy to settle the lifting question for one family of ¢, 2-sequencings
exhibited in Theorem 11.

Theorem 12. Let -, be the t, 2-sequencing of Z, described in Theorem 11
when p = 3 (mod 4) and z = 1 (mod p). Then v, has a compatible 0-1
sequence oy, iff p= 3.

Proof: It is straightforward to compute that

o2 hipaora) ifp=3

27 {p+1,0+3)/2}, (3.0}, {4 p—1},... {@+ D /2,@+5)/2}, ifp>3.
7 ={{2.P}={(p+ D/2,(p+3)/2}, ifp=3
! {2,P},{3,P—1};---,{(P+ l)/2:(P+3)/2}’ ifp>3.

What can be said about a compatible 0-1 sequence o? The following diagram
may be helpful.

Position: 1 2 3 4 ...(p+3)/2... p—1 p p+1
: 1

T 0
o: 00 1 1

Since {(p+ 1) /2, (p+ 3)/2} is a consecutive pair in F,, the Disagrecment Rule
Says 3 (pe3)/2 = 1 and this forces 3, = O which in turn yields o, = 1 by the
2/3 Rule and o3 = 0 by Disagreement. If p = 3, all entries are computed and the
symmetric T, -sequencing of Z that results is the unique “symmetric polygonal
path” example found in [10]. If p > 3, then the two possibilities for (a3, Op-1)
[ie., (0,1) and (1,0) by Disagreement] both lead to the conclusion Y5 = 3,
by the 2/3 Rule. This contradiction shows that there is no compatible 0-1 sequence
in this case.

Lemma 13. Suppose p is an odd prime,p = 5,7 (mod 12),'y=s:§1,—3Sz

is as in Theorem 11 and c; and C; are as in Definition 5. The following results
hold.

Y ._{i—l, 1<i<(p+1)/2
%=13(i-1) (mod p), (p+3)/2<i<p,
» 2i-3, ' 3<i<(p+1)/2
Ci= { 1, ' i=(p+3)/2
3(2i—3) (mod p), (p+5)/2<i<p+1,
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1ii)
-3(p-1/2=[(p—-1)/2+2] (mod p).
iv) Ifp=7 (mod 12), then
a) cuprsys =1 (mod p)
b) Ciapesy6 = —1 (mod p)

©) Cspinie = —2 (mod p)
d Gy =-3 (mod p).

v) If p=5 (mod 12), then
a)  cupr10)/6 =2 (mod p)
b) Ciaprays6 = =5 (mod p)
©) Cisprsyie = —4 (mod p)
d) Cp1=-3 (mod p).
Proof: The computations are routine. Parts (iii)-(v) are useful in laying out ex-
amples of the constructions to follow.
Now restrict attention to the p =7 (mod 12) case.
Lemma 14. Suppose p is an odd prime,p = 7 (mod 12) and v = s : &),
—38, is as in Theorem 11. The following results hold.
i) Fy= AyUB,UC, where
Ay ={{3i,(4p+8)/6 —i}: 1 < i< (p—1)/6}
={{3,(4p+2)/6},{6,(4p—4)/6},...,{(p— 1)/2,(p+ 3)/2}},
B,={{3i-1,(4p+2)/6+i}: 1 < i< (p—1)/6}
={{2,(4p+8)/6},{5,(4p+ 14)/6},...,{(p—3)/2,(5p+ 1) /6}},
Ci={{3i+1,p+1-4}:1<i<(p-1)/6}
={{4,p},{7,p—-1},....,{(p+ 1)/2,(5p+7)/6)}}.
i) If {z,y} € AyUC,, then c; + ¢, =0 (mod p).

If {z,y} € B,, then c; = c,,.
i) Fy, = Ay, UBy, UGy, UD,, where

A, ={¢, . ifp=1
? {(3i+2,(4p+8) /6 —i}}: 1 <i<(p-T)/6, ifp>T
={{5,(4p+2)/6},{8,(4p—4)/6},...,{(p - 3)/2,(p+ 5)/2}},
B, ={{3i+1,(4p+8)/6+i}: 1 <i<(p—1)/6}
={{4,(4p+14)/6},{7,(4p+20)/6},...,{(p+ 1)/2,(5p+ T) /6}},
C, ={{3i,p+2-i}:1<i< (p—-1)/6}
={{3,p+1},{6,p},...,{(p—1)/2,(5p+ 13)/6}},
Dy, ={{(p+3)/2,(4p+8)/6}}.



iv) If {z,y} € A, UC;, UDy,, thenC; + C, =0 (mod p).

If {z,y} € B,, then C; = C,.

Proof: The computations are routine.

The general plan is to show that the 2/3 Rule and the Disagreement Rule
severely restrict the number of possible 0-1 sequences compatible with . After
that is accomplished, it is not hard to decide what happens in the few cases that
remain.

It will be useful to establish a new notation as follows. Suppose a value is
chosen for ), in row 7. By disagreement, )3 = (3,,, +1) (mod 2) since
{3,p+ 1} € C¢,. Denote this by

——
p+1—3.

The bracket above means one is working with the upper (72) row and that a value
at ), forces the other value at )~ by disagreement. Recall that oy = 0 and
ope1 = 1. If )", and op41 are known, the 2/3 Rule gives o,,. Then, by disagree-
ment, o, forces o4 since {4,p} € C,. Denote this by

et

The bracket below means one is working with the lower (o) row and that a value
at o, forces the other value at o4 by disagreement. Schematically, then, the short
path has diagram

—
p+1—-3

N
p—4

where the arrow with no corresponding bracket implies that the 2/3 Rule was used.

Now choose a value for o, . This will turn out to force all other values in the
proposed compatible 0-1 sequence o. There are two parts to the long path that
arises. The beginning is, in the notion established,

2 — (4p+8)/6 (4p+ 8)/6;(p+3)/f.
I e

/‘
3 -5 (4p+2)/6
(.

Notice that the pairs used so far are the first pairs of A,, B,, C, and C;, and the
only pair in D, .
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If p > 7 continue by noting that o3 and o4 give ) , by the 2/3 Rule.

~ A ~ —
4 (4p+14)/6 — (4p+ 14)/6 =5 =5 — (4p+2)/6

5)

——

—+(4p—-4)/6 -6 -6 -p—op—1—7
—_——— L,——J

The bracketed pairs are the first unused pairs in By, B,, Ay,, A, Ct, and C,
respectively. They all arise via disagreement. The unbracketed consecutive pairs
all arise via the 2/3 Rule. A basic observation is that this process iterates. The nt*
iteration of (5) is seen to be

3n+1[4p+14+6(n—1)1/6 — [4p+ 14+ 6(n—1)]/6 —3n+2

-

A

—o§n+2—o[4p+2—6(»—1)/?—»&—4—6(13-1)]/6—»3n+3‘ ©)

N~
A

—3n+3 —p—(n— l)‘—ﬁe—n—v3n+4

The bracketed pairs of the n*# iteration are the first unused elements of B, B,,
At,, Ay, Cy, and C, respectively.

Now F,, has (p— 1)/2 pairs and is partitioned into three subsets A.,, B, and
C,,all with (p — 1) /6 pairs. The short path has one pair in F.,, the beginning of
the long path has two pairs in F., and each iteration of the long path has three pairs
in F,. It follows that (p — 7) /6 iterations will completely determine 0. Note that
sincep=7 (mod 12), (p— 7) /6 is even.

Lemma 15. Suppose p is an odd prime, p = 7 (mod 12) and v = s : S,
—38; is as in Theorem 11. There are exactly four possibilities for a 0-1 sequence
o compatible with .

Proof: 3", ,, can be either 0 or 1 and o, can be either 0 or 1. As shown above,
once these choices are made everything else is forced.

Lemma 15 does not say that there always is a compatible 0-1 sequence. In
fact, conflicts between the two rules may arise at the end of the long path. An
analysis of the iteration process shows that the values of five o-row positions de-
termine what happens for the entire iteration. The controlling positions at the start
of the first iteration are (in order)

(PI;P2’P3)P43P5) = (314'(4p+ 2)/61(4p+ 8)/631’)
After two iterations, the new controlling position P is the old P; plus 6. In general

PP +6 Ps—P -2 Ps «— Ps -2
P, —P+6 Py — Py +2
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This process also repeats with every two iterations of the long path.
Let the initial value of controlling position P; be denoted IV; and the final
value after (p — 7) /6 iterations be denoted F'V;.

Lemma 16. Suppose p is an odd prime,p =7 (mod 12) and vy = s: §1,-38,
is as in Theorem 11. Pick a value for , and for o, and compute the associated
o-row and 7 -row using the short path and long path. Then (with arithmetic in
Z, ), a is a compatible 0-1 sequence for ~ iff

i) FVa+ FV3 #IV3+1IV4=0(p2)s6 + 0(apss)/6

i) FVi+ FV, # FV3 + FVs.

Proof: Condition (i) guarantees no conflict in the entries for the F;, position pair
{(p+3)/2,(4p + 8)/6} and condition (ii) prevents a conflict in entries for the
F,, position pair {(p+ 1)/2,(5p+7)/6}.

It is clear that as p gets larger and more iterations are required for the long
path, the ordered 5-tuple (FV,, FV,, FV3, FV,4, FVs) must cycle since only 32
possibilities exist. Fortunately the cycle is always of length 2 (i.e., 4 basic itera-
tions).

Lemma 17. Suppose p is an oddprime,p =7 (mod 12) and y=s: 51,-3%
is as in Theorem 11. Consider the four possibilities for the ordered pair (} .1, 02) .
) (Cpe1,02) = (0,0). Then forn >0

a) after 4niterations, (FVy,...,FVs) =(1,0,0,1,1),
b) after 2 + 4niterations, (FVy,...,FVs) = (0,0,1,1,1).

i) (3 pe1,02) =(0,1). Then for n > 0

a) after 4niterations (FVi,...,FV5) = (0,0,1,0,1),

b) after 2 + 4niterations (FW,...,FVs) =(0,1,1,1,0).
i) (3 pi1,02) =(1,0). Thenforn> 0

a) after 4niterations (FV1,...,FVs) =(0,1,1,1,0),

b) after 2 + 4niterations (FW,...,FVs) = (0,0,1,0,1).
iv) (Ep”,oz) =(1,1). Thenforn>0

a) after 4niterations (FW,...,FV5) = (1,1,0,0,0),

b) after 2 + 4niterations (FV4,...,FVs) = (0,1,1,0,0).
Proof: The computations are straightforward.

_Theorem 18. Suppose p is an odd prime, p = 7 (mod 12) and v = s :
S1,—38, is as in Theorem 11. Then ~ has exactly one 0-1 sequence o that is
compatible with ~ and Z», has a symmetric T, -sequencing.

Proof: Suppose first that p =7 (mod 24). Then 4 n iterations of the long path
are required to compute the g-row (n= 0 if p = 7) so that I'V; = F'Vj; in this situ-
ation. Apply Lemma 16 to the four (a) cases of Lemma 17 and only the (0, 0) case
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survives. If p = 7, the symmetric T -sequencing of Zy4 that arises is equivalent
(in the sense of [10]) to the unique example found in [10].

Suppose p = 19 (mod 24). Then 2 + 4 n iterations of the long path are
required to compute the o-row. Apply Lemma 16 to the four (b) cases of Lemma
17 (note that I'V3 and IV4 come from the corresponding (a) cases) and only the
(1,0) case survives. This completes the proof.

It is now possible to answer the question of [10] about the existence of an
infinite class of n x n Tuscan-2 squares such that n+ 1 is composite.

Remark 19. If p is an odd prime,p =7 (mod 12), then 2p + 1 is composite.

Proof: Clearly2p+ 1=12n+3=3(4n+1).

A consequence of Dirichlet’s Theorem is that there are infinitely many primes
psuchthatp =7 (mod 12).

Before goingontothep = 5 (mod 12) case, the reader might like to verify
the follo!ving computations for p = 19.
7=8:851,-35=5,165;

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T 3,57 9 11,13, 15,17, 1, 6, 12, 18, 5, 11, 17, 4, 10, 16
v~ 0,1,23, 4, 5 6, 7, 8 9, 11,14, 17, 1, 4, 7, 10, 13, 16
& 0,1,3,6,10,15 2, 9, 17, 7, 18,13, 11, 12, 16, 4, 14, 8, S

F,=A,UB,UC, UD,,
= {{5,13},{8,12}} U {{4,15},{7,16},{10,17}}
U{{3,20},{6,19},{9,18}} U {{11,14}}
Fy= A, UB,UC,
={{3,13},{6,12},{9,11}} U {{2,14},{5,15},{8,16 }}
U{{4,19},{7,18},{10,17}}

short path:
——
20 -3
N
19 - 4
N —
beginning of long path:
2—-14 14 - 11
N et
N /
313



first iteration: 4 —15 — 15955 -5 5513 5 12 56 — 6 =19 —

18 —» 7

——

last iteration: 7 —+16 — 16 -8 —» 8 512 —- 11 -9 — 9 5,18 —
N et \/—J

17 —» 10

————

Choose (g0, 02) = (1,0).

Position: 1 2

Tz 22, 5, 1, 28,30, 13,15, 36, 1, 6, 12, 18, 24, 11, 17, 4, 29, 35
2 4, 24, 6, 7, 8, 28, 11, 33, 17, 1, 23, 26, 29, 13, 16, 19
25, 29, 15, 21, 28, 36, 26, 37, 32, 11, 12, 35, 23, 14, 27, §, 24
, 34, 21, 27, 14, 20, 26, 32, 37, 2, 23, 25, 8, 10, 31, 33, 16
9, 12, 15, 37, 21, 5, 27, 10, 30, 31, 32, 14, 34, 35, 36, 18
33, 4, 16, 31, 30, 13, 18, 7, 17, 9, 2, 34,10, 6, 3, 1, 19

By Theorem 3, the symmetric T -sequencing « generates a 2-complete 38 x 38
Latin square.

Procedures in the case p = 5 (mod 12) are similar to those just described
forp=7 (mod 12).

Lemma 20. Suppose p > 5 is an odd prime,p=5 (mod 12) and y=s: S,
—38, is as in Theorem 11. The following results hold,
i) Fy= AyUB,UC, where

Ay={{31,(4p+4)/6+i}:1 <i< (p+1)/6}
={{3,(4p+10)/6},{6,(4p+16)/6},...,{(p+1)/2,(5p+5)/6}},
B,={{3i—1,(4p+10)/6 —i} : 1 < i< (p+ 1) /6}
={{2,(4p+4/6},{5,(4p—-2)/6},...,{(p—1)/2,(p+ 3)/2}},
Cy={{3i+1,p+1-i}:1<i< (p—5)/6}
= {{4’1’}){7:?_ 1},”-,{(17— 3)/2s(5p+ ll)/6}}

ii) If {x,y} € ByUC,, then c; + ¢, =0 (mod p).
If {z,y} € A,, then c; = c,.
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HI) ng = Agz U Bg, UCg, U Dg, where
A, = {{3i+2,(4p+10)/6+4}: 1 < i< (p—5)/6}
={{5,@p+16)/6},{8,(4p+22) [6},...,{®>—1)/2,(5p+5)/6}},
B, = {{3i+1,(4p+10)/6 —i}: 1 < i< (p—5)/6}
= {{4,(4p+)/6},{7,(4p—2)/6},...,{(p - 3)/2,(p+ 5)/2}},
C, = {{3i,p+2 —i}:1<i<(p+ 1)/6}
={{(3,p+ 1},{6,p},....,{(p+ 1)/2,(5p+ 11)/6}},
Dy, = {{(p+3)/2,(4p+10)/6}}.
iv) If {z,y} € B, UCy,, then C; + C; =0 (mod p).
If {z,y} € Ay, UDy,, then C, = Cy.
Proof: The computations are routine.

With the same conventions as in the p = 7 (mod 12) case the short path
has the same diagram

e,
p+1 -3
N
2—94
The beginning of the long path has the diagram
2 — (4p+4)/6 (4p+10)/6 — (p+3)/2.
N e’
/

3 (4p+10)/6

' Note that the pairs used so far are the first pairs of A,, B,, C, and C;, and the only
pair in D;,. Again o3 and o4 give Y4 by the 2/3 Rule. Since p > 5, the long
path continues

e e, ~ - ~
4 - (4p+4)/6 - (4p—2)/6 =5 > 5 — (4p+16)/6
N !
o
——
—>$4p+ 16) /6 —»g—>6 —>p-—->e—l —7.

As before, the bracketed pairs are the first unused pairs of By, , By, At,, Ay, Ct,
and C,, respectively and this process iterates. The xth iteration is seen to be

Tn+ 1o [(4p+4) —6(n—1)1/6 — [(4p—2) —6(n—1)]/6 —3n+2

g

A

—5n+2 = [(4p+16) + 6(n—1)1/6 — [(4p+ 16) + 6(n—1)]/6 —3n+3  (8)

-~

—3n+3 —p—(n— l)‘—tp—‘n—03ﬂ+4 .
| S
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The bracketed pairs of the ' iteration are the first unused pairs of By, , B,, Ay,
A,, C, and C, respectively. This time the cardinality of C, is one less than that
of A, and B,. This means that o will be completely determined by (p — 5) /6
iterations with the additional stipulation that one omits the last pair of the last
iteration. For the record, the last iteration is

(P=3)/2 > (p+5)/2 = (p+3)/2 > (p—1)/2

—(p—1)/2 > (5p+5/6 - (5p+5)/6 > (p+ /2 ()

—(p+1)/2 > (Sp+11)/6 — (5p+5)/6 — (p+1)/2.

Sincep=5 (mod 12), (p— 5)/6 is even.

Lemma 21. Suppose p > 5 is an odd prime,p=5 (mod 12) and y=s: S,
—38, is as in Theorem 11. There are exactly four possibilities for a 0-1 sequence
o compatible with ~.

Proof: The same argument as for Lemma 15 holds.

Once again there are controlling positions in o. At the start of the first itera-
tion, they are

(P1|P2’P3’P4)P5) = (3)4)(4p+4)/6)(4p+ 10)/6’p)'
After two iterations, the controlling positions satisfy

P, e—P+6 P —P; -2 Ps «— Ps -2
Pz(—P2+6 P4(—P4+2

exactly as in the other case. Again this process iterates. The order of entry in
controlling positions during the course of an iteration is P, P4, P, Ps, P,. Thus,
on the last iteration, Ps and P, are not needed because the last pair of the last
iteration is omitted. Let F' P; denote the final position P;. Then {FP,, FP4} € F,
since

3+[(p—5)/12]-6=(p+ 1)/2

and
(4p+10)/6+ [(p—5)/12] - 2= (5p+5) /6

implies
{FP,,FPs}={(p+1)/2,(5p+5)/6} € A,.

Again let the initial value of the controlling position P; be denoted by I'V;
and the final value after (p — 5) /6 = 2 n iterations be denoted by F'V;.
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Lemma 22. Suppose p > 5 is an odd prime,p=5 (mod 12) and y=s: Si,
—38, is as in Theorem 11. Pick a value for 2p+1 and for o, and compulte the
aasociated o-row and T -row using the short path and long path. Then (with
arithmetic in Z, ), o is a compatible 0-1 sequence for = iff
iy Fi # FV4
i) FVa=FVs
iiiy FVi+ FV3 #£IV3+ IV,.

Proof: Note that (i) and (ii) insure no conflict will arise on the “fold back” that
occurs as the last step of the last iteration. Finally, (iii) prevents a conflict in entries
for the F;, position pair {(p+ 3)/2,(4p+ 10)/6}.

Again (FV,, FV,, FVa, FVs, FVs) must cycle after a certain number of it-
erations.

Lemma 23. Suppose p > 5 is an odd prime,p=5 (mod 12) and y=s: S,
—38, is as in Theorem 11. Consider the four possibilities for the ordered pair
(2,»1;02).
i) (Epm“Z) =(0,0). Thenforn>0
a) after 4niterations (FVy,...,FVs) = (1,0,1,0,1),
b) after 2 + 4niterations (FV;,...,FVs) =(0,0,1,1,1).
i) (Z}H-l’GZ) =(0,1). Thenforn >0
a) after 4 n iterations (FV,,...,FVs) =(0,0,0,1,1),
b) after 2 + 4 niterations (FV1,...,FVs) =(0,1,1,1,0).
iif) (Erl,az) =(1,0). Thenforn >0
a) after 4niterations (FVy,...,FVs) =(0,1,1,1,0),
b) after 2 + 4niterations (FW;,...,FVs) = (0,0,0,1,1).
iv) (X pe1,02) = (1,1). Then for n> 0
a) after 4 niterations (FV4,...,FVs) =(1,1,0,0,0),
b) after 2 + 4niterations (FV;,...,FVs) =(0,1,0,1,0).

Proof: The computations are straightforward.

Theorem 24. Supposep > 5 isanoddprime,p=5 (mod 12) andy=s: 5},
—38, is as in Theorem 11, If p = 5 (mod 24) then ~ has exactly two 0-1
sequences o that are compatible with ~ and these give rise to inequivalent (in the
sense of [10]) symmetric T; -sequencings of Z,. If p = 17 (mod 24) then ~
has no compatible 0-1 sequence o.

Proof: Consider the case p = 17 (mod 24) first. In this situation 2 + 4 n iter-
ations (modulo the modification on the last iteration) are required to compute the
a-row. Apply Lemma 22 to the four (b) cases of Lemma 23 (note that I3 and
IV, come from the corresponding (a) cases) and all cases fail.
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Suppose p = 5 (mod 24). Then 4n iterations are required to compute the
o-row. Apply Lemma 22 to the four (a) cases of Lemma 23 and the (0,1) and (1,1)
cases survive,

In order to show that the two solutions are inequivalent, it suffices to consider
the first three positions of the associated 4’s and o’s. Clearly

7:0,1,2,...
§:0,1,3,...

in each case. It can easily be shown that the associated os are as follows.

Case (0,1:0:0,1,0,... Case(1,1):0:0,1,1,...
p:0,1,1,... p:0,1,0,...

When each of these cases is applied to lift -, the associated 8 begins as follows.
Case (0,1): #:0,1, odd Case (1,1): 5: 0,1, even

Clearly there is no automorphism ¢ of Z,,, such that o[ 8] = 8.
Remark 25. Theorem 24 can be extended to include p = 5.

Proof: This is an easy hand computation. Note that C, = ¢ if p = 5. It turns out
that the short path gives all of the o-row so that only two cases exist; Y = {0,1}.
Both of these cases work and they give the only two examples [10] that exist.

Remark 26. If p is an odd prime,p = 5 (mod 24), then 2p + 1 is composite
infinitely often.

Proof: (P.A.Leonard) Require, in addition to the hypothesis, thatp = 2 (mod 5).
The two conditions are equivalent (by the Chinese Remainder Theorem) to the
single condition p = 77 (mod 120). By Dirichlet there are infinitely many such
primes and in each such case, 5[2p + 1.

Suppose G is a finite group with a unique element of order two and « is a
symmetric sequencing of G/Z,. Since a is clearly a 2-sequencing of G/Z,, it
can be lifted to a collection of symmetric sequencings of G. In certain situations,
the idea of doubling and redoubling symmetric sequences is very useful. That is
not true in the current context.

Theorem 27. Supppose G is a finite group with a unique element Z of order 2
and
v:€0C2,C3,...,Cq

is a 2-sequencing of G[Z,. Consider the following patterns.
. Uz Zz Uz >
1) €, Civ1,Cis2 ={ U },{ 7 },{ U1 }, where 72 = Z,
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.. U vz vz [u'z

II) C{,C§+1,...,cj,cj+l = U ) 4 [RERS} V—-l U—l ’

Uz VZ UZ VZ

§i1)) Ciy Ci+ly 444G, Cj4l = U ’ \74 1oy U ) v [’

s i T L R e
any of the patterns (i), (ii), or (iii) or G is Abelian and ~y has pattern (iv),
then ~ cannot be lifted to a symmetric T, -sequencing of G.

Proof: The argument is based on the basic properties of possible lifts (see Lemma
3 and the proof of Theorem 4 in [3]) and is very simple. Note that (iv) gives an
alternate way of doing Theorem 12.

Corollary 28. If G is a finite group with a unique element of order 2 and o
is a symmetric T; -sequencing of G[Z,, then a cannot be lifted to a symmetric
T, -sequencing of G.

Proof: Use either (i) or (ii) of the preceding result.
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