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Abstract. Let D be a strict diconnected digraph with n vertices. A common out-
neighbor (resp. in-neighbor) of a pair of vertices u and v is a vertex z such that uz and
vz (resp. zu and zv) are arcs of D. It is shown that if

d*(u1) + d*(v1) +d(u2) + &7 (1) >2n—1

for any pair u;, v; of nonadjacent vertices with a common out-neighbor and any pair
u2, v2 of nonadjacent vertices with a common in-neighbor, then D contains a directed
hamiltonian cycle.

Our notation and terminology are as in [1]. In particular, D = (V(D), E(D))
denotes a digraph on » vertices with the vertex set V(D) and the arc set E(D).
A digraph is strict if it has no loops and multiple arcs, and diconnected if, for
any two vertices u and v, D contains a path from u to v and a path from v to u.
The arc e with head u and tail v is represented by e = uv. Define juv| = 1 when
uv € E(D) and |uv| = 0 when uv ¢ E(D). Ifv e V(D) and S C V(D), we
denote the set of arcs from v to S(resp. from S to v) by E(v, S) (resp. E(S,v)).
Furthermore, we define d§(v) = |E(v,S)|, d5(v) = |E(S,v)|. Obviously,
d*(v) = |E(v,V(D))|and d~(v) = |E(V(D),v)|. If S C V(D), an S-
path is a directed path of length at least two having exactly its origin and terminus
in common with S. A common out-neighbor (resp. in-neighbor) of a pair vertices
u and v is a vertex z such that uz, vz € E(D) (resp. zu, zv € E(D)).

Now we prove the following theorem.

Theorem. Let D be a strict diconnected digraph with n vertices. If
d*(u1) + d*(v1) + d7(u2) +d (v2) >2n-1

for any pair uy,v; of nonadjacent vertices with a common out-neighbor and any
pair uy vy of nonadjacent vertices with a common in-neighbor, then D contains
a directed hamiltonian cycle.

Proof: By contradiction. Suppose that D satisfies the hypotheses of the theorem,
but does not contain a directed hamiltonian cycle. Let S be a longest directed
cyclein D.

Suppose first there is no V(S)-path in D. Since D is diconnected, D contains
a directed cycle S; having precisely one vertex, say u, in common with S. Let
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S=un133...%u, S1 = up1y2 ...y, A= {71,32,...,%}, B = {p1,12,... , s}

and F = V(D)\(AU B U {u}). Clearly, |A| = a,|B| = band f = |F| =

n—(a+b) — 1. Since there is no V(S)-path in D, z,, y and 1, y; are pairs of

nonadjacent vertices with a common out-neighbor and in-neighbor, respectively.
Since D contains no V(S) -path,

dp(z,) = dg(z1) = dj(w) = dz(y1) = 0. ¢Y)
Also since D contains no V(S)-path, there is not a path of the form z, vy, y,
vz, where v € F. Hence,
[Zav| + oy <1, [gov] + vz | <1
for each v € F. Furthermore,

di(5a) + d5(31) + di(w) + (1)
< YLzl + lvga]) + (ool + vz ] < 2. @

veF
Clearly,

da(za) < a—1, dz(z1) < a—1, dp(w) < b—1, dg(y) < b-1. (3)
Combining (1) - (3), we get

d'(za) + d'(y) + d™(z1) + d™ (1)
<2(a—1) + 2(b—1) + 2 f + |zau| + |ppu| + |uz1]) + Juy;|
=2(a+b+ f+1)—-2=2n-2,

but this contradicts a hypothesis of the theorem.

Suppose, therefore, that D contains a V(S)-path P = z,y1y3 ... yz1 where
Z1,%, € V(S).Let P, = 2123 ...%,," P2 = T,21 ... 2.7 be the directed path on
the cycle S such that S = P, U P,. Let the path P be chosen so that ¢ is minimum.
Since S isalongestcyclein D,c > 1. Let A = {z1,... ,1,}, B = {y1,... ,t}»
C={z,...,2;}and F = V\(AUBUQ). Clearly, |A| = o, |B| = b, |C| = ¢
and f = |F| = n— (a + b+ c). Because of the minimality of c and ¢ > 1, g,
2c and y1, 21 are pairs of nonadjacent vertices with a common out-neighbor and
in-neighbor, respectively. By the same reason, we have

de(w) = dg(y1) = dp(2e) = dg(z1) = 0. @)

If there exist z;, ;.1 € A(i=1,...,a— 1) such that z;2,, 2.z;,; € E, then
Ti2122 - .. ZcTis1Tis2 - .- TY1Y2 -.. YpT1T2 ... Z; iS a cycle longer than S. This
contradiction shows that

|Ziz1] + |zezia1| <1 (i=1,...,a-1).
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Hence,
a
di(ze) + dz(z1) = Y (lzemi| + |ziz1])
-
ot ’ ®)
= > (zezinr |+ |ziz1 ) + |zemt | + |maz1| S @ + 1.

=1

A similar argument yields
da(ys) + dz(y1) <a+ 1. ©)

It follows from the maximality of S that there exists no vertex v € F such that
2., vy € Eoryyv,vy; € E. Hence,

lzcv] + Joy] €1, |wv]+ |va1] L 1
for every v € F. Furthermore
dp(2e) + dp(y1) < f,  dp(w) +dp(21) < f. 0
Clearly,
By <b—1,dg(y1) <b-1,dg(2) <c—1,dg(z1) <c—1. (8)
Combining (4) - (8), we have

d* () + d*(2c) + d"(11) + d™(21)
<2a+D+2(b—-1D+2(c—-1D)+2f=2(a+b+c+ f) —2=2n-2,

this contradiction proves the theorem. |
The following example shows that the theorem above is best possible in the
sense that it becomes false if the degree condition is relaxed.

Example 1 [3,p.4]: Letu beavertexof K} , (n > 5), the complete symmetric
digraph with n— 2 vertices. Obtain digraph H,, by adding two new vertices v and
w, each of which dominates all n— 2 vertices of K _, and is dominated by only
u.

The pair v, w is the only pair of nonadjacent vertices with a common out-
neighbor and in-neighbor, and

d'(v) +d'(w) +d~(v) +d~(w) =2n—2.

H does not contain a directed hamiltonian cycle.
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The second example (Figure 1) shows that, in some sense, the theorem above
is not “weaker” than the well-known Meyniel’s theorem [4].

Example 2: Let D = (V, E) be a digraph with n = 2k (k > 4) vertices. The
pairs ay, as and by, by are the only pairs of nonadjacent vertices with a common
out-neighbor and in-neighbor, respectively. Clearly,

d*(a1) +d'(a2) + d~(b1) + d~(b2)
=(k+1)+k+(k—1)+(k—1)=4k—-1=2n-1,

and D,, has a directed hamiltonian cycle S = a1bavi azva v3 ... vg—2 by vk
vk ... v2k—401. But D does not satisfy the conditions of Meyniel’s theorem.
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