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Abstract. Given a sequence §:d,dz, ... ,dp of non-negative integers, we give nec-
essary and sufficient conditions for a subsequence of § with p — 1 terms to be graphic.

1. Introduction.

Throughout this paper S: di > da > ... > d, denotes a non-increasing sequence
ol non-negative integers. For k = 1,2,...,p we define L(S, k) = {i:1 <
i< kandd; > k— 1}, R(S,k) = {z k<i<pandd; > k}anddk =
[1(8, k)| + |R(S, k)|. Following [1], we call the sequence §: d;,d2, ... ,d, the
corrccted conjugate sequence of S. If there exists a simple graph G on p vertices,
sayvi,va,...,vpsuchthatdeg,(v;) = di,fori=1,2,... pthenSis said to be
graphic and the graph G is said to be a realization of §. For our convenicnce we
denote the union of two sets A and B by A + B. And follow the usual convention
thatif m < m,then {i:n< i< m}=0and 31 (...) =0.

A theorem of P. Erdos and T. Gallai [2] characterizes graphic sequences as fol-
lows; sce Berge [1].

Theorem A. (Erdos and Gallai): The following statemcents are equivalent.
(1) S is graphic.
() Yh, d; iseven; and Y5, d; < k(k — 1) + Y°_,,, min(d;, k), fork =
1,2,...,p.
@) SP, diiseven; and Sk di < K 4, fork=1,2,...,p

In [3], Johnson proves that if S is graphic then the sequence dy > dp > ... >
d, > d is graphic iff d is a non-negative even integer. In [4], Reid extended this
result by giving necessary and sufficient conditions [or a sequence d; > ... >
dy > d > dgs1 > ... > d, (Obtained from S by inserting d) o be graphic.

In this short note, we give necessary and sufficient conditions for the subse-
quence S(j):dy > ... > dj_1 > djs1 > ... > dp Of S (obtained from S by
deleting d;) to be graphic.

2. Graphic subsequences.

Notation: InS:d; > ... > dp, let m be the largest integer such that d,, > m—1;
som < djy + 1.
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Theorem 1. Let m be defined as above. If j > m + 1, thenS(j) is graphic iff

(4) the sum of the terms inS(j) is even;

©)] .
k, if 1<k<d;

k
E@—ds)z{d;, if di+1<k<Lj—1;
= devr, if  j<k<p—1.

Proof: Letc; =d;fori=1,2,...,j—1;and¢; = dyyq fori=j,j+1,... ,p—1,
so that S(7) is the sequence c; > ¢2 > ... 2> Cp1.

By the Erdos-Gallai theorem, S( ) is graphic iff (4) holds and Ef;l (Ci—c) >
0,fork=1,2,...,p— 1. So, we express T in terms of d;. Since, j > m + 1
and dpms1 < m — 1, we firstobserve thatd; < dpe1 <m—1< 7 =2,

6) dp =T +1, if 1 < k<dj.
L(8, k) = L(8(j),k), since dj=¢;, if 1 <i<k.
Next,

R(S,k)y ={irk<i<jandd; > k}+ {i:j <i<pandd; >k}
={k+1,...,j}+{i:j<i<pandd; >k}, sinced; > k.
R(8(j),k)={itk<i<j—lande; > k}+ {i:j<i<p—1landc >k}
={k+1,...,7—-1}+{i:j<i<p—1landdy >k},
since ¢;_1 = d;j_1 > k.

But
{i:j <i<pandd; >k} =|{i:j<i1<p—1anddy > k}|
Hence,
IR(S, k)| = |R(S(j), k) | + 1,

and we havce (6).
(7) dp =%, if j+1<k<j—1.
As in (6),

I.(8,k) = L(8(7),k) .

Next,
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R(S,k) ={i:k<i<pandd; >k}
={itk<i<j—1landd; >k}, sinced; < k-1
={itk<i<j—1land¢ >k}
={itk<i<p-—1landc >k}, sincec;=dj; <k—1
= R(S8()),k) .

We, thus, have (7).
(8) di=7%, if j<k<p—1.
L(S,k)={i:1<i<j—1andd; > k— 1}, sinced; <j—2<k—-2
= L(S(j),k), sincec;=d;if1 <i<j—1.
Next,

R(S,k) = 0= R(S(j),k) , sinceciss < dess < dj <j—2 < k—2.

So, we have (8).
Now, by using (6), (7) and (8) one easily finds that

Ef=1(zi—di)—k, if 1<k<d;
f=l(al'—di)—dj if di+1<k<j—1;
Ef=l(zl'—di)_da+l, if ]SkSp_l.

Therefore, S(7) is graphic iff (4) and (5) hold. |

k
Y @E—a)
i=1

Theorem 2. Let m be defined as before. If j < m, thenS(j) is graphic iff
(9) the sum of the terms inS(j) is even;

(10)
k, if 1Sk£]—l;
k ‘ . .
k+ diey — dj, if j<k<m—1;
S@oa)z] Frdn G i i<ksm
i=1 (k=1 +dp1—dj, if m<k<di+1;
dis if dj+2<k<p-1.

Proof: Define the sequences (c;) and (¢;) asin Theorem 1. Since j < m we have
the following equations.

A1) dy =G +1, if 1<k<m—1.
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If k < j, then for every i(1 < i < k), ¢; = d; and so L(S,k) = L(S(j), k).
Ifk>j+1,thenci_y =di > dp_1 > kandso

L(S,k) ={1,2,...,k—1}=L(S(5),k) .
Next,
R(S,k)={itk<i<m}+{i:m+ 1< i< pandd; >k}, sinced,, > k.

R(S(j),k)={itk<i<m—-1}+{itm<i<p—1landdi >k},
since ¢y > dpy >m—1> k.

But
{i:m<i<p-—1landdyi >k} =|{iim+1<i<pandd; > k}|
So,

|R(S, k)| = |[R(8(j), k) | + 1,
and we have (11).
(12) dm = Cm.
L(Ssm) = {1s21°°' y T — l}= L(S(]);m): SiﬂCCCm_l 2 dmZ m— 1.

Next,

R(S,m) =0=R(S(j),m), sincecms1 = dms2 < dme1 <m—1.

We, thus, have (12).
(13) dy =T+ 1, if m+1<k<dj+1.

[L(S(7), k) |
=|{i:1<i< k—1land¢; > k—1}, sincecy_y =dt < dppe1 < m—1< k-2,
=|{i:r1<i<j—1andd; > k—-1}|+ |[{i:j<i< k—landdy > k—1}|
=|{i:r1<i<j—1landd; > k—1}|+ |[{i:j+1 <i< kandd; > k—1}
=|L(S,k)|—1, sinced; > k—1.
Next,
R(S,k) =0=R(S(j),k), since cxs1 < cp—1 < k—2

as above. So, we have (13).

(14) dy=7¢, if dj+2 <k<p-1.
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L(S,k)={i:1<i<j—1andd; > k—1}, sinced; < k—2
={it1<i<kandc; > k—1}, sinceci;=d;,if 1<i<j—1;
andc,-=d;+1 <k-2,
= L(8()),k) .

Next,

R(8,k) =0=R(S(j),k), sincecg+1 = dis2 < dgs1 < k—2.

We, thus, have (14).
The rest of the proof is as in Theorem 1. ' 1

3. Relationship between the graphicness of S and S( ;).

It is clear from Theorem 1 and Theorem 2 that S(j) (1 < j < p) need not be
graphic even though S is graphic and d; is even. And conversely, it is also clear
from Theorem 2, that S need not be graphic even though S(;) (1 < j < m)
is graphic and d; is even. However, it does easily follow from Theorem 1 that if
S(;) is graphic and d; is even, for some j, m+1 < j < p, thenS is graphic. (This
fact is also proved in Theorem 1 of Reid [4].) In this last case, we can actually
construct a realization of S from a given realization of S(;) as follows.

We first note that d; < 7 — 2, because j > m + 1. Let G be an arbitrary real-
ization of S(j) on the vertices v1,v2,... ,¥j_1, j+1,... , Vp Such that deg(v;) =
d;. We give below an algorithm which generates d;/2 independent edges, say
(u1,u2),(u3,uq),... ,(ug1, uq) inG. Once these independent edges are gen-
erated it is easy to construct a realization of S from G': delete the edges (u1,u2),

.+, (ug;-1,u4;), take a new vertex v; and join v; with ug, uz, ... , uq,.

Greedy algorithm to generate d;[2 independent edges in G
Stepl: Letn=1;letGi:=G.

Step 2: Select an edge say e, = (u25-1, U2,) from Gy.
Define Gpi1:= Gy — {U2p-1,U2-} and ni=n+ 1.

Step3: Ifn< d;/2,then goto Step 2; if n> d;/2 ,then STOP.

To show that this algorithm does generate d; /2 independent edges it is enough
if we show that E(G,) # @ (1 < n < d;/2) in Step 2, so that an edge e,, can
indeed be selected from G,,.

G, is a graph obtained from G by deleting 2n—2 vertices. So, there are at least
J—2-(2n-2)(>0,since2n < d; < j — 2) vertices from vy, v3,... ,vj_2
of degree atleast dj_p — (2n—2)(> dj --2n+ 2 > 0) in G,. So, E(G,) # 9.
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