GRAPHIC SUBSEQUENCES

S.A. Choudum

School of Mathematical Sciences Madurai Kamaraj University Madurai 625 021 INDIA

Abstract. Given a sequence $S: d_1, d_2, \dots, d_p$ of non-negative integers, we give necessary and sufficient conditions for a subsequence of S with p-1 terms to be graphic.

1. Introduction.

Throughout this paper $S: d_1 \geq d_2 \geq \ldots \geq d_p$ denotes a non-increasing sequence of non-negative integers. For $k=1,2,\ldots,p$ we define $L(S,k)=\{i\colon 1\leq i< k \text{ and } d_i\geq k-1\},\ R(S,k)=\{i\colon k< i\leq p \text{ and } d_i\geq k\}$ and $\overline{d}_k=|L(S,k)|+|R(S,k)|.$ Following [1], we call the sequence $\overline{S}\colon \overline{d}_1,\overline{d}_2,\ldots,\overline{d}_p$ the corrected conjugate sequence of S. If there exists a simple graph G on p vertices, say v_1,v_2,\ldots,v_p such that $\deg_G(v_i)=d_i$, for $i=1,2,\ldots,p$ then S is said to be graphic and the graph G is said to be a realization of G. For our convenience we denote the union of two sets G and G by G by G and G follow the usual convention that if G and G are G and G and G and G are G and G and G and G and G and G are G and G and G and G are G and G and G are G and G and G are G and G are G and G are G and G and G and G are G and G are G and G and G and G are G are G and G are G are G and G are G are G and G are G and G are G and G are G are G and G are G are G and G are G are G are G and G are G a

A theorem of P. Erdos and T. Gallai [2] characterizes graphic sequences as follows; see Berge [1].

Theorem A. (Erdos and Gallai): The following statements are equivalent.

- (1) S is graphic.
- (2) $\sum_{i=1}^{p} d_i$ is even; and $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{j=k+1}^{p} \min(d_j, k)$, for $k = 1, 2, \ldots, p$.
- (3) $\sum_{i=1}^{p} d_i$ is even; and $\sum_{i=1}^{k} d_i \leq \sum_{i=1}^{k} \overline{d_i}$, for $k = 1, 2, \ldots, p$.

In [3], Johnson proves that if S is graphic then the sequence $d_1 \ge d_2 \ge \ldots \ge d_p \ge d$ is graphic iff d is a non-negative even integer. In [4], Reid extended this result by giving necessary and sufficient conditions for a sequence $d_1 \ge \ldots \ge d_k \ge d \ge d_{k+1} \ge \ldots \ge d_p$ (obtained from S by inserting d) to be graphic.

In this short note, we give necessary and sufficient conditions for the subsequence S(j): $d_1 \ge ... \ge d_{j-1} \ge d_{j+1} \ge ... \ge d_p$ of S (obtained from S by deleting d_j) to be graphic.

2. Graphic subsequences.

Notation: In $S: d_1 \ge ... \ge d_p$, let m be the largest integer such that $d_m \ge m-1$; so $m \le d_1 + 1$.

Theorem 1. Let m be defined as above. If $j \ge m + 1$, then S(j) is graphic iff

(4) the sum of the terms in S(j) is even;

$$\sum_{i=1}^{k} (\overline{d}_{i} - d_{i}) \ge \begin{cases} k, & \text{if} & 1 \le k \le d_{j}; \\ d_{j}, & \text{if} & d_{j} + 1 \le k \le j - 1; \\ d_{k+1}, & \text{if} & j \le k \le p - 1. \end{cases}$$

Proof: Let $c_i=d_i$ for $i=1,2,\ldots,j-1$; and $c_i=d_{i+1}$ for $i=j,j+1,\ldots,p-1$, so that S(j) is the sequence $c_1\geq c_2\geq \ldots \geq c_{p-1}$.

By the Erdos-Gallai theorem, S(j) is graphic iff (4) holds and $\sum_{i=1}^{k} (\overline{c}_i - c_i) \ge 0$, for $k = 1, 2, \ldots, p-1$. So, we express \overline{c}_k in terms of \overline{d}_k . Since, $j \ge m+1$ and $d_{m+1} \le m-1$, we first observe that $d_j \le d_{m+1} \le m-1 \le j-2$.

(6)
$$\overline{d}_k = \overline{c}_k + 1$$
, if $1 \le k \le d_j$.

$$L(S, k) = L(S(j), k)$$
, since $d_i = c_i$, if $1 < i < k$.

Next.

$$R(S,k) = \{i: k < i \le j \text{ and } d_i \ge k\} + \{i: j < i \le p \text{ and } d_i \ge k\}$$

$$= \{k+1, \dots, j\} + \{i: j < i \le p \text{ and } d_i \ge k\}, \text{ since } d_j \ge k.$$

$$R(S(j), k) = \{i: k < i \le j-1 \text{ and } c_i \ge k\} + \{i: j \le i \le p-1 \text{ and } c_i \ge k\}$$

$$= \{k+1, \dots, j-1\} + \{i: j \le i \le p-1 \text{ and } d_{i+1} \ge k\},$$

$$\text{since } c_{j-1} = d_{j-1} \ge k.$$

But

$$|\{i: j < i \le p \text{ and } d_i \ge k\}| = |\{i: j \le i \le p-1 \text{ and } d_{i+1} \ge k\}|.$$

Hence.

$$|R(\boldsymbol{S},k)| = |R(\boldsymbol{S}(j),k)| + 1,$$

and we have (6).

(7)
$$\overline{d}_k = \overline{c}_k$$
, if $d_j + 1 \le k \le j - 1$.
As in (6),

$$L(S,k) = L(S(j),k).$$

Next,

$$R(S, k) = \{i: k < i \le p \text{ and } d_i \ge k\}$$

$$= \{i: k < i \le j - 1 \text{ and } d_i \ge k\}, \text{ since } d_j \le k - 1$$

$$= \{i: k < i \le j - 1 \text{ and } c_i \ge k\}$$

$$= \{i: k < i \le p - 1 \text{ and } c_i \ge k\}, \text{ since } c_j = d_{j+1} \le k - 1$$

$$= R(S(j), k).$$

We, thus, have (7).

(8)
$$\overline{d}_k = \overline{c}_k$$
, if $j \le k \le p-1$.

$$L(S, k) = \{i: 1 \le i \le j - 1 \text{ and } d_i \ge k - 1\}, \text{ since } d_j \le j - 2 \le k - 2$$

= $L(S(j), k)$, since $c_i = d_i \text{ if } 1 \le i \le j - 1$.

Next,

$$R(S, k) = \emptyset = R(S(j), k)$$
, since $c_{k+1} < d_{k+1} < d_{j} < j - 2 < k - 2$.

So, we have (8).

Now, by using (6), (7) and (8) one easily finds that

$$\sum_{i=1}^{k} (\overline{c}_i - c_i) = \begin{cases} \sum_{i=1}^{k} (\overline{d}_i - d_i) - k, & \text{if} \quad 1 \le k \le d_j; \\ \sum_{i=1}^{k} (\overline{d}_i - d_i) - d_j & \text{if} \quad d_j + 1 \le k \le j - 1; \\ \sum_{i=1}^{k} (\overline{d}_i - d_i) - d_{s+1}, & \text{if} \quad j \le k \le p - 1. \end{cases}$$

Therefore, S(j) is graphic iff (4) and (5) hold.

Theorem 2. Let m be defined as before. If $j \le m$, then S(j) is graphic iff (9) the sum of the terms in S(j) is even; (10)

$$\sum_{i=1}^{k} (\overline{d}_i - d_i) \ge \begin{cases} k, & \text{if } 1 \le k \le j - 1; \\ k + d_{k+1} - d_j, & \text{if } j \le k \le m - 1; \\ (k-1) + d_{k+1} - d_j, & \text{if } m \le k \le d_j + 1; \\ d_{k+1}, & \text{if } d_j + 2 \le k \le p - 1. \end{cases}$$

Proof: Define the sequences (c_i) and $(\overline{c_i})$ as in Theorem 1. Since $j \leq m$ we have the following equations.

(11)
$$\overline{d}_k = \overline{c}_k + 1$$
, if $1 \le k \le m - 1$.

If $k \le j$, then for every $i(1 \le i < k)$, $c_i = d_i$ and so L(S, k) = L(S(j), k). If $k \ge j + 1$, then $c_{k-1} = d_k \ge d_{m-1} \ge k$ and so

$$L(S, k) = \{1, 2, ..., k-1\} = L(S(j), k)$$
.

Next,

$$R(S,k) = \{i: k < i \le m\} + \{i: m+1 \le i \le p \text{ and } d_i \ge k\}, \text{ since } d_m \ge k.$$

$$R(S(j),k) = \{i: k < i \le m-1\} + \{i: m \le i \le p-1 \text{ and } d_{i+1} \ge k\},$$

$$\text{since } c_{m-1} \ge d_m \ge m-1 \ge k.$$

But

$$|\{i: m \le i \le p-1 \text{ and } d_{i+1} \ge k\}| = |\{i: m+1 \le i \le p \text{ and } d_i \ge k\}|.$$

So,

$$|R(S, k)| = |R(S(j), k)| + 1,$$

and we have (11).

(12)
$$\overline{d}_m = \overline{c}_m$$
.

$$L(S, m) = \{1, 2, ..., m-1\} = L(S(j), m), \text{ since } c_{m-1} \ge d_m \ge m-1.$$

Next,

$$R(S, m) = \emptyset = R(S(j), m)$$
, since $c_{m+1} = d_{m+2} \le d_{m+1} \le m - 1$.

We, thus, have (12).

(13)
$$\overline{d}_k = \overline{c}_k + 1$$
, if $m+1 \le k \le d_j + 1$.

=
$$|\{i: 1 \le i \le k-1 \text{ and } c_i \ge k-1\}$$
, since $c_{k-1} = d_k \le d_{m+1} \le m-1 \le k-2$,

$$= |\{i: 1 \le i \le j-1 \text{ and } d_i \ge k-1\}| + |\{i: j \le i < k-1 \text{ and } d_{i+1} \ge k-1\}|$$

$$= |\{i: 1 \le i \le j-1 \text{ and } d_i \ge k-1\}| + |\{i: j+1 \le i < k \text{ and } d_i \ge k-1\}|$$

$$= |L(S, k)| - 1$$
, since $d_i \ge k - 1$.

Next,

$$R(S, k) = \emptyset = R(S(j), k)$$
, since $c_{k+1} \le c_{k-1} \le k - 2$

as above. So, we have (13).

(14)
$$\overline{d}_k = \overline{c}_k$$
, if $d_j + 2 \le k \le p - 1$.

$$L(S, k) = \{i: 1 \le i \le j - 1 \text{ and } d_i \ge k - 1\}, \text{ since } d_j \le k - 2$$

$$= \{i: 1 \le i \le k \text{ and } c_i \ge k - 1\}, \text{ since } c_i = d_i, \text{ if } 1 \le i \le j - 1;$$

$$\text{and } c_j = d_{j+1} \le k - 2,$$

$$= L(S(j), k).$$

Next.

$$R(S, k) = \emptyset = R(S(j), k)$$
, since $c_{k+1} = d_{k+2} \le d_{k+1} \le k-2$.

We, thus, have (14).

The rest of the proof is as in Theorem 1.

3. Relationship between the graphicness of S and S(j).

It is clear from Theorem 1 and Theorem 2 that S(j) $(1 \le j \le p)$ need not be graphic even though S is graphic and d_j is even. And conversely, it is also clear from Theorem 2, that S need not be graphic even though S(j) $(1 \le j \le m)$ is graphic and d_j is even. However, it does easily follow from Theorem 1 that if S(j) is graphic and d_j is even, for some $j, m+1 \le j \le p$, then S is graphic. (This fact is also proved in Theorem 1 of Reid [4].) In this last case, we can actually construct a realization of S from a given realization of S(j) as follows.

We first note that $d_j \leq j-2$, because $j \geq m+1$. Let G be an arbitrary realization of S(j) on the vertices $v_1, v_2, \ldots, v_{j-1}, v_{j+1}, \ldots, v_p$ such that $\deg(v_i) = d_i$. We give below an algorithm which generates $d_j/2$ independent edges, say $(u_1, u_2), (u_3, u_4), \ldots, (u_{d_j-1}, u_{d_j})$ in G. Once these independent edges are generated it is easy to construct a realization of S from G: delete the edges $(u_1, u_2), \ldots, (u_{d_j-1}, u_{d_j})$, take a new vertex v_j and join v_j with $u_1, u_2, \ldots, u_{d_j}$.

Greedy algorithm to generate $d_j/2$ independent edges in G:

Step 1: Let n = 1; let $G_1 := G$.

Step 2: Select an edge say $e_n = (u_{2n-1}, u_{2n})$ from G_n . Define $G_{n+1} := G_n - \{u_{2n-1}, u_{2n}\}$ and n := n+1.

Step 3: If $n \le d_j/2$, then go to Step 2; if $n > d_j/2$, then STOP.

To show that this algorithm does generate $d_j/2$ independent edges it is enough if we show that $E(G_n) \neq \emptyset$ ($1 \leq n \leq d_j/2$) in Step 2, so that an edge e_n can indeed be selected from G_n .

 G_n is a graph obtained from G by deleting 2n-2 vertices. So, there are at least j-2-(2n-2) (>0, since $2n \le d_j \le j-2$) vertices from $v_1, v_2, \ldots, v_{j-2}$ of degree at least $d_{j-2}-(2n-2)(\ge d_j-2n+2>0)$ in G_n . So, $E(G_n) \ne \emptyset$.

References

- 1. C. Berge, "Graphs and Hypergraphs", North-Holland, Amsterdam, 1973.
- 2. P. Erdos and T. Gallai, *Graphen mit Punkten vorgeschriebenen Grades*, Mat. Lapok 11 (1960), 264–274.
- 3. R.H. Johnson, A note on applying a theorem of Tutte to graphical sequences, J. Comb. Theory (B) 18 (1975), 42–45.
- 4. K.B. Reid, *Extension of graphical sequences*, Utilitas Mathematica 12 (1977), 255–261.