Stability, total vertices and hamiltonian cycles

A. Pawel Wojda and Mariusz Woźniak Instvtut Matematyki Akademia Górniczo-Hutnicza Al. Mickiewicza 30 30–059 Kraków, Poland

Abstract. A known theorem of Bigalke and Jung says that the only nonhamiltonian, tough graph G with $\alpha(G) \leq \mathcal{H}(G) + 1$, where $\mathcal{H}(G) \geq 3$, is the Petersen graph. In this paper we characterize all nonhamiltonian, tough graphs having k total vertices (i. e. adjacent to all others) with $\alpha(G) \leq k + 2$ (Theorem 3).

1. Terminology

We consider only finite undirected graphs without loops or multiple edges. For the sake of completeness we recall some definitions.

Let G=(V,E) be a graph with vertex set V=V(G) and edge set E=E(G). $\omega(G)$ denotes the number of components of G. The graph G is tough if $|S| \ge \omega(G \setminus S)$ for any $S \subset V$ with $\omega(G \setminus S) > 1$. We shall denote by $\alpha = \alpha(G)$ the cardinality of a maximum set of independent vertices of G (stability) and by $\mathcal{H}(G)$ the connectivity of G. A vertex $v \in V(G)$ is called total iff v is adjacent to all remaining vertices of G.

A complete graph with *n* vertices is denoted by K_n as usual. Given graphs G and H, $H \subset G$ means that H is a subgraph of G, i. e. $V(H) \subset V(G)$ and $E(H) \subset E(G)$. If at the same time V(H) = V(G), then H is a factor of G.

The star * denotes the operation of join on vertex disjoint graphs, with the convention that

$$F*G*H=(F*G)\cup(G*H),$$

where U denotes the ordinary union of (not necessarily disjoint) graphs.

 $G \bigcup H$ stands for vertex disjoint union of the graphs G and H.

2. Results

Our work was motivated by the following theorem of Bigalke and Jung, [3].

Theorem 1. Let G be a tough graph. If $\alpha(G) \leq \mathcal{H}(G) + 1$ and $\mathcal{H}(G) \geq 3$ then either G is hamiltonian or $\mathcal{H}(G) = 3$ and G is the Petersen graph.

The analogous theorem for $\mathcal{H}(G)=2$ is not true; however the class of non-hamiltonian, tough graphs with $\mathcal{H}(G)=2$ and $\alpha(G)=3$ can be easily characterised (Theorem 2). In order to formulate Theorem 2, as well as Theorem 3, we shall define some classes of graphs.

Definition of class G^0 : A graph $G \in G^0$ iff there exist three integers n_1, n_2, n_3 ; $n_i \geq 3$, such that G is obtained from $K_{n_1} \bigcup K_{n_2} \bigcup K_{n_3}$ in the following way: in each graph K_{n_i} we choose two distinct vertices a_i, b_i and add the edges $a_i a_j$ and $b_i b_j, 1 \leq i < j \leq 3$.

Definition of class \mathcal{J} : A graph $G \in \mathcal{J}$ iff there exist three integers $p_1, p_2, p_3; p_i \geq 2$, such that G is constructed from $K_{p_1} \bigcup K_{p_2} \bigcup K_{p_3}$ by choosing one vertex a_i in each K_{p_1} and adding the edges $a_i a_j$, $1 \leq i < j \leq 3$.

Definition of class \mathcal{G}^1 : A graph $G \in \mathcal{G}^1$ iff G is of the form $G = K_1 * J$ for some $J \in \mathcal{J}$.

Definition of class \mathcal{G}^k , k>1: A graph $G \in \mathcal{G}^k$ iff $G = (K_{n_k} \cup \cdots \cup K_{n_{k-1}}) * K_k * J$ for some integers n_i , $i = 1, \dots, k-1$, and some $J \in \mathcal{J}$.

Remark: The classes \mathcal{G}^0 and \mathcal{G}^k already occur in the literature cf. [2]-[7].

Now we can formulate

Theorem 2. Let G be a tough graph with $\mathcal{H}(G) = 2$ and $\alpha(G) = 3$. Then either G is hamiltonian or $G \in \mathcal{G}^0$ or G is a factor of a graph $G' \in \mathcal{G}^1$.

This theorem is an immediate consequence of a theorem of Jung [4,Theorem 1].

Our main result is the following

Theorem 3. Let G be a tough graph having k total vertices, $k \ge 1$. If $\alpha(G) \le k+2$ then either G is hamiltonian or $G \in \mathcal{G}^k$.

Remark: The following graph \widetilde{G} of Tietz shows that the condition in Theorem 3 that G has k total vertices cannot be replaced by the weaker condition that $\mathcal{H}(G) \geq k$. Let G_p be the Petersen graph and let $x \in V(G_p)$. Denote by x_1, x_2, x_3 the vertices adjacent to x. \widetilde{G} is constructed from G_p by replacing the vertex x by K_3 and the edges xx_i , i = 1, 2, 3, by the edges ax_1, bx_2, cx_3 where $\{a, b, c\} = V(K_3)$.

Let us mention a related result of D. Amar, I. Fournier and A. Germa, [1].

Theorem 4. If $\mathcal{H}(G) \geq 2$ and $\alpha(G) = \mathcal{H}(G) + 2$, then there is a longest cycle C of G such that $\alpha(G \setminus V(C)) \leq 2$.

3. Lemmas

Let P = [a, b] be a path of a graph G = (V, E) with ends a and b. We denote by \overrightarrow{P} the orientation of P from a to b. This orientation defines the relation of order in V(P) (denoted by \leq). Let x, y be two vertices on P such that $x \leq y$. We denote by $x\overrightarrow{P}y$ the consecutive vertices on P from x to y and by $y\overrightarrow{P}x$ the same

vertices but in reverse order. We use also the notation x^+ and x^- for the successor and the predecessor of x on P with respect to \overrightarrow{P} (if it exists).

A path P is said to be complete if the subgraph of G induced by V(P) is complete. In particular, for any $a \in V$, a is considered as a complete path.

For a connected graph G we denote by s(G) the minimum number of disjoint paths of G covering G. Let $\mathcal{M}(G)$ be the set of all path-coverings (P_1, \dots, P_s) of G with minimal number of elements i. e. s = s(G). We put

$$M = \{(p_1 \cdots, p_s) \in N^s : \text{ there exists } (P_1, \cdots, P_s) \in \mathcal{M}$$

with $p_i = |P_i|, i = 1, \cdots, s\}.$

The path-covering (P_1, \dots, P_s) is said to be extremal iff $(|P_1|, \dots, |P_s|)$ is a maximal element of M with respect to the standard lexicographic order in N^s .

Lemma 5. Let (P_1, \dots, P_s) be an extremal path-covering of a connected graph $G = (V, E), P_i = [a_i, b_i], i = 1, \dots, s$. If $s \ge 2$ then the vertices a_1 and b_1 are not adjacent.

Proof: It is easily seen that $|V(P_1)| \ge 3$. Suppose that $a_1b_1 \in E$. Since G is connected, there exists an edge $xy \in E$ with $x \in V(P_1)$ and $y \in V(P_i)$, $i \ne 1$. If, e. g. $x \ne a_i$ and $y \ne b_i$ then the paths P_1, P_i can be replaced by $P'_1 = a_i \overrightarrow{P}_i yx \overrightarrow{P}_1 b_1 a_1 \overrightarrow{P}_1 x^-$ and $P'_i = y^+ \overrightarrow{P}_i b_i$ with $|P'_1| > |P_1|$, a contradiction. The remaining cases we leave to the reader.

Corollary 6. If $(P_1 \cdots P_s)$ is an extremal path-covering of a connected graph G and $s \ge 2$ then there is no cycle with vertex set $V(P_1)$.

Lemma 7. Let (P_1, \dots, P_s) be an extremal path-covering of a connected graph G. $P_i = [a_i, b_i]$, $i = 1, \dots, s$. If $s \ge 2$ then the set $\{a_1, b_1, a_2, \dots, a_s\}$ is independent.

Corollary 8. For a connected graph G we have: If $s(G) \ge 2$ then $\alpha(G) \ge s(G) + 1$. If $\alpha(G) = s(G)$ then $\alpha(G) = 1$ i. e. G is complete.

Lemma 9. Let G be a connected graph with $\alpha(G) = s(G) + 1$, $s(G) \ge 2$ such that $\omega(G \setminus \{v\}) \le s(G)$ whenever $v \in V(G)$. Then $\alpha(G) = 3$ and $G \in \mathcal{J}$.

Proof: Let (P_1, \dots, P_s) be an extremal path-covering of G, $P_i = [a_i, b_i]$, $i = 1, \dots, s$. By Lemma 7 the set $A = \{a_1, b_1, a_2, \dots, a_s\}$ is independent and contains $s+1=\alpha(G)$ elements. Thus, for $i \neq 1$, the vertex b_i must be connected by an edge with A (if $b_i \notin A$). By the extremality of the covering we have only one possibility i. e. $a_ib_i \in E$. Suppose now that there exist vertices $x \in P_i$ and $y \in P_j$, $1 < i < j \le s$, such that $xy \in E$. Proceeding similarly as in the proof of Lemma 5 and using the fact that the vertices a_i, b_i are adjacent, we get a contradiction. Hence

for
$$1 < i < j \le s$$
 the paths P_i , P_j are not connected by an edge. (1)

Let x, y be two vertices on P_i , $i \neq 1$, and suppose that $xy \notin E$. Then, by (1) and the maximality of $|V(P_1)|$ the set $\{a_1, b_1, a_2, \dots, a_{i-1}, x, y, a_{i+1}, \dots, a_s\}$ is independent and has s + 2 elements, a contradiction. Thus

for
$$i \neq 1$$
 the paths P_i are complete. (2)

Let $x,y\in V(P_1), \ x>a_1^+,\ y< b_1^-$. We shall show that if $a_1x\in E$ then $a_1x^-\in E$ and if $yb_1\in E$ then $y^+b_1\in E$. Indeed, let $a_1x\in E$. By Corollary 6 the edge $b_1x^-\notin E$; otherwise $xa_1\overrightarrow{P}_1x^-b_1\overleftarrow{P}_1x$ would be a cycle with vertex set $V(P_1)$. The vertex x^- is not adjacent to any vertex $a_i,\ i\neq 1$; otherwise the path $a_ix^-\overleftarrow{P}_1a_1x\overrightarrow{P}_1b_1$ would be longer than P_1 . Since $\alpha(G)=s+1$, the set $\{a_1,x^-,b_1,a_2,\cdots,a_s\}$ is not independent, implying that x^- must be adjacent to the vertex a_1 . By symmetry, $y^+b_1\in E$ whenever $yb_1\in E$.

Denote by a_0 the last vertex on P_1 adjacent to a_1 and by b_0 the first vertex on P_1 adjacent to b_1 (with respect to the orientation \overrightarrow{P}). Then $a_1x \in E$ for $a_1 < x \le a_0$ and $yb_1 \in E$ for $b_0 \le y < b_1$. Proceeding similarly as in the proof of (2) and using Corollary 6 it is easy to show that

$$a_0 \le b_0$$
 and for all vertices x and y of P_1 we have
if $a_1 < x < a_0$ and $b_0 < y < b_1$ then $xy \notin E$ (3)

Now we shall show that

if
$$a_1 \le x < a_0$$
 then there is no edge between x and P_i , $i \ne 1$, if $b_0 < y \le b_1$ then there is no edge between y and P_i , $i \ne 1$. (4)

Indeed, suppose e. g. that $xz \in E$, where $z \in V(P_i)$, $i \neq 1$. Recall that, by (2), P_i is complete. Then the paths P_1 , P_i can be replaced by one path $z^+ \overrightarrow{P}_i b_i a_i \overrightarrow{P}_i zx \overleftarrow{P}_1$ $a_1 x^+ \overrightarrow{P}_1 b_1$ (if $z \neq b_i$), contradicting the minimality of the number of paths.

Suppose now that $a_0 = b_0$. We know from (1) that there is no edge between P_i and P_j for $0 \le i < j \le s$. Since $0 \le i$ connected, the paths $0 \le i \le j \le s$. Since $0 \le i$ connected, the paths $0 \le i \le j \le s$. Since $0 \le i \le j \le s$ connected with $0 \le i \le s$ connected with $0 \le i \le s$ connected with some path $0 \le i \le s$. From the assumptions of the lemma, we conclude that $0 \le i \le s$ connected with some path $0 \le i \le s$ components.

$$a_0 < b_0. (5)$$

Let c be the last vertex on P_1 connected by an edge, cy say, with some P_i , $i \neq 1$, $y \in V(P_i)$. By (4) we have $a_0 \leq c \leq b_0$. Assume first that $c^- \neq a_1$. We shall show that c^- is not connected with any path P_j , $j \neq 1$. Suppose that there exists a vertex y_1 such that $c^-y_1 \in E$ with $y_1 \in V(P_j)$. If i = j and e. g. $y \neq y_1$, then the

path $a_1 \overrightarrow{P}_1 c^- y_1 y c \overrightarrow{P}_1 b_1$ is longer then P_1 . If $i \neq j$ then the paths P_1 , P_i , P_j may be replaced by two paths with vertex sets $a_1 \overrightarrow{P}_1 c^- \cup V(P_j)$ and $c \overrightarrow{P}_1 b_1 \cup V(P_i)$. In both cases we obtain a contradiction with the definition of an extremal path-covering.

However the vertex c^- must be adjacent to at least one vertex of the independent set $\{a_1,b_1,a_2,\cdots,a_s\}$. We obviously have $a_1c^- \in E$ and, by definition of a_0 , $c^- \le a_0$. From the definition of the vertex c and from (4) it follows that there exists only one vertex on P_1 (namely c) connected with each P_i , $i \ne 1$. Moreover $a_0 \le c \le a_0^+$ and for reasons of symmetry $b_0^- \le c \le b_0$. Suppose, e. g. $c = a_0$. Since the number of components of the graph $G \setminus \{c\}$ must be $\le s$, it exists an edge, xy say, with $a_1 \le x < c$ and $b_0 \le y \le b_1$. The case $y > b_0$ is impossible by (3). If $y = b_0$ and e. g. $x \ne a_1$, $x \ne a_0$ then the path $b_1 \ P_1 b_0 x P_1 a_1 x^+ P_1 cz$, with $z \in P_2$ is longer than P_1 , a contradiction. Thus, by symmetry, $a_0^+ = c = b_0^-$, and the above argument can be used to show that $a_0 b_0 \in E$ since $a_0 b_0$ is the only possible edge connecting $a_1 P a_0$ and $a_0 P b_1$. Similarly one may prove that the case $c^- = a_1$ is impossible.

Now it is easy to show that s=2 ($\alpha=3$). Otherwise the three paths P_1, P_2, P_3 could be replaced by two paths: a path with vertex set $V(P_2) \cup \{c\} \cup V(P_3)$ and $a_1 \overrightarrow{P}_1 a_0 b_0 \overrightarrow{P}_1 b_1$. Finally G is a factor of a graph $G' \in \mathcal{J}$ and, since $\alpha(G)=3$, G and G' must coincide. This completes the proof.

4. Proof of Theorem 3

Let G be a nonhamiltonian, tough graph with $\alpha(G) \le k + 2$ and let $X = \{x_1, \dots, x_k\}$ denote the set of total vertices of G, k > 1.

We evidently have $\mathcal{H}(G) \geq k$. If $\mathcal{H}(G) > k$ then we have

$$\alpha(G) < k + 2 < \mathcal{H}(G) + 2$$

and, by Theorem 1, either $\mathcal{H}=3$, $\alpha=4$ and G is the Petersen graph (which is impossible) or $\mathcal{H}=2$, $\alpha=3$ and k=1. In this case, on the basis of Theorem 2, $G\in\mathcal{G}^1$.

Thus we can assume that $\mathcal{H}(G) = k, k \geq 2$ and $\alpha(G) = k + 2$. Then X is a cut-set of G. Let us denote by A_1, \dots, A_r the components of $G \setminus X$.

Since G is tough we have

$$r \leq k$$
. (*)

Let $s_i = s(A_i)$ denote the minimal number of paths covering A_i and let $s = s_1 + \cdots + s_r$. Thus we have s paths $P_j = [a_j, b_j], j = 1, \cdots, s$, covering $\bigcup_{i=1}^r A_i$. Let us observe that if $s \le k$ then we are able to define a hamiltonian cycle C in G as follows

$$C = x_1 a_1 \overrightarrow{P}_1 b_1 x_2 a_2 \overrightarrow{P}_2 b_2 x_3 \cdots x_s a_s \overrightarrow{P}_s b_s x_{s+1} x_{s+2} \cdots x_k x_1.$$

Thus $s = \sum_{1}^{r} s_{i} \ge k + 1$. Let $\alpha_{i} = \alpha(A_{i})$, $i = 1, \dots, r$. By Corollary 8 we have

$$k+2=\alpha(G)=\sum_{1}^{r}\alpha_{i}\geq\sum_{1}^{r}s_{i}\geq k+1.$$

If $\sum_{i=1}^{r} s_i = k+2$ then $\alpha_i = s_i$ for $i = 1, \dots, r$ and, by Corollary 8, $\alpha_i = s_i = 1$. Thus $\sum_{i=1}^{r} 1 = r = k+2$, a contradiction with (*). If $\sum_{i=1}^{r} s_i = k+1$ then $\sum_{i=1}^{r} (\alpha_i - s_i) = 1$ and we can assume, without loss of generality, that

$$\alpha_i = s_i$$
 for $i = 1, \dots, r-1$ and $\alpha_r = s_r + 1$.

By Corollary 8, $\alpha_i = s_i = 1$ and the subgraphs A_i are complete for $i = 1, \dots, r-1$. Moreover, the graph A_r satisfies the assumptions of Lemma 9. First observe that $k+1 = \sum_{i \neq r} s_i + s_r = r-1 + s_r$; thus, by (*), $s_r \geq 2$. Next, suppose there exists a vertex v of A_r such that $\omega(A_r \setminus \{v\}) \geq s+1$. Then

$$\omega(G\setminus\{x_1,\cdots,x_k,v\})\geq r-1+s_r+1=k+2$$

which is impossible since G is tough. By Lemma 9, $A_r \in \mathcal{J}$. In particular we have $s_r = 2$, $\alpha_r = 3$; thus r = k. This completes the proof of Theorem 3.

References

- 1. D. Amar, I. Fournier and A. Germa, Structure des graphes de connexité k > 2 et de stabilité $\alpha = k + 2$, Annals of Discrete Math. 17 (1983), 11–17.
- 2. D. Bauer, A. Morgana, E. F. Schmeichel and H. J. Veldman, Long cycles in graphs with large degree sums, preprint 1987..
- 3. A. Bigalke and H. A. Jung, Über hamiltonsche kreise und unabhängige ecken in graphen, Monatsh. Math. 88 (1979), 195–210.
- 4. H. A. Jung, *Note on hamiltonian graphs*, in "Proceedings of the Second Czechoslovakian Symposium on Graph Theory, Prague 1974", Publ. House Chech. Acad. Sci., 1975.
- 5. Z. Skupień, On maximal non-hamiltonian graphs, Rostack. Math. Kolloc. 11 (1979), 97–106.
- Z. Skupień, Sharp sufficient conditions for hamiltonian cycles in tough graphs, to appear in Banach Center Publications, Vol. 25.
- 7. Z. Skupień, On tough maximally non-hamiltonian graphs.