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Abstract. A known theorem of Bigalke and Jung says that the only nonhamiltonian,
tough graph G with a(G) < H(G) + 1, where H(G) > 3, is the Petersen graph.
In this paper we characterize all nonhamiltonian, tough graphs having k total vertices
(i. e. adjacent to all others) with a(G) < k + 2 (Theorem 3).

1. Terminology

We consider only finite undirected graphs without loops or multiple edges. For
the sake of completeness we recall some definitions.

LetG = (V, E) be a graph with vertex set V = V(G) andedge set E = E(G).
w(G) denotes the number of components of G. The graph G is tough if |S| >
w(G\ S) forany S C V withw(G \ S) > 1. We shall denote by & = a(G)
the cardinality of a maximum set of independent vertices of G (stability) and by
H(G) the connectivity of G. A vertex v € V(Q) is called total iff v is adjacent
to all remaining vertices of G.

A complete graph with n vertices is denoted by K, as usual. Given graphs G
and H, H C G means that H is a subgraph of G, i. e. V(H) C V(G) and
E(H) C E(G). If at the same time V( H) = V(G), then H is a factor of G.

The star * denotes the operation of join on vertex disjoint graphs, with the con-
vention that

FxG«H=(F+xGYU(Gx*H),

where U denotes the ordinary union of (not necessarily disjoint) graphs.
G H stands for vertex disjoint union of the graphs G and H.

2. Results
Our work was motivated by the following theorem of Bigalke and Jung, [3].

Theorem 1. Let G be a tough graph. If a(G) < H(G) + 1 and H(G) > 3
then either G is hamiltonian or H(G) = 3 and G is the Petersen graph.

The analogous theorem for H(G) = 2 is not true; however the class of non-
hamiltonian, tough graphs with #(G) = 2 and a(G) = 3 can be easily charac-
terised (Theorem 2). In order to formulate Theorem 2, as well as Theorem 3, we
shall define some classes of graphs.
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Definition of class G%: A graph G € GO iff there exist three integers n; , m , ma;

n; > 3, such that G is obtained from K, |J Ky, |J K», in the following way: in
each graph K, we choose two distinct vertices a;, b; and add the edges a;a; and
b,'bj,l <i<j<3.

Definition of class 7: A graphG € J iff there exist three integers p1, p2, p3; pi >

2, such that G is constructed from Kp, | J Ky, |J Kp; by choosing one vertex g; in
each K,, and adding the edges a;a;,1 <1< j < 3.

Definition of class G': A graph G € G! iff G is of the form G = K »J for some
JeJT.
Definition of class G*, k>1: A graph G € G* iff G = (K -+~ Ky ) * Ki*
J for some integers n;,i = 1,--- ,k— 1,andsome J € J.
Remark: The classes G° and G* already occur in the literature cf. [2]-[7].

Now we can formulate

Theorem 2. Let G be a tough graph with H(G) = 2 and a(G) = 3. Then
either G is hamiltonian or G € G° or G is a factor of a graph G' € G'.

This theorem is an immediate consequence of a theorem of Jung [4,Theorem
1].

Our main resuit is the following

Theorem 3. Let G be a tough graph having k total vertices, k > 1. If a(G) <
k + 2 then either G is hamiltonian or G € G*.

Remark: The following graph G of Tietz shows that the condition in Theorem
3 that G has k total vertices cannot be replaced by the weaker condition that
H(G) > k. Let Gp be the Petersen graph and let z € V(Gp). Denote by
71,72, T3 the vertices adjacent to . G is constructed from Gy by replacing the
vertex z by K3 and the edges zz;,i = 1,2,3, by the edges ax1, bz, cz3 where
{a)b) C} = V(K3)-

Let us mention a related result of D. Amar, 1. Fournier and A. Germa, [1].

Theorem 4. If H(G) > 2 and o G) = H(G) + 2, then there is a longest cycle
C of G such that a(G\ V(C)) £ 2.

3. Lemmas
Let P = [a, b] be a path of a graph G = (V, E) with ends a and b. We denote by

T” the orientation of P from e to b. This orientation defines the relation of order
in V(P) (denoted by <). Let z,y be two vertices on P such that z < y. We

denote by x—ﬁy the consecutive vertices on P from z to y and by y‘ﬁz the same
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vertices but in reverse order. We use also the notation z* and z~ for the successor
and the predecessor of = on P with respect to P (if it exists).

A path P is said to be complete if the subgraph of G induced by V ( P) is com-
plete. In particular, for any a € V, a is considered as a complete path.

For a connected graph G we denote by s(G) the minimum number of disjoint
paths of G covering G. Let M(G) be the set of all path-coverings (P, - - - , P,)
of G with minimal number of elements i. e. s = s(G). We put

M={(p1---,ps) € N®: thereexists(P;,--- ,P,) € M
withp; = |P],i=1,---,s}.

The path-covering (Py,--- , P,) is said to be extremal iff (|P,|,--- ,|P,|) is a
maximal element of M with respect to the standard lexicographic order in N*.

Lemma$. Let (Py,--- , P,) be anextremal path-covering of a connected graph
G=(V,E), P;=[a;,b],i=1,---,s. If s > 2 then the vertices a; and b, are
not adjacent.

Proof: It is easily seen that |[V(P;)| > 3. Suppose that a;b; € E. Since G
is connected, there exists an edge zy € E withz € V(P;) andy € V(P),
i1 # 1. If,e.g.z # a;and y # b; then the paths P, P; can be replaced by
P{ = a,-?,-yz?l b101?1 £~ and P,! = y" ?,‘bg with IP“ > |P1 |, a contradiction.
The remaining cases we leave to the reader. |

Corollary 6. If (P, --- P,) is an extremal path-covering of a connected graph
G and s > 2 then there is no cycle with vertex set V(P;). B

Lemma?7. Let (P,--- , Ps) be an extremal path-covering of a connected graph
G. P; = [a;,b;],i = 1,--- ,s. If s > 2 then the set {a1,b1,0a2,--- ,a,} is
independent. |

Corollary 8. For a connected graph G we have: If s(G) > 2 then Aa(G’) >
s(G) + 1. If a(G) = s(G) then a(G) =1 i.e. G is complete. 1

Lemma9. Let G be a connected graph with a(G) = s(G) + 1, s(G) > 2 such
that w(G\ {v}) < s(G) wheneverv € V(G). Then o(G) =3 and G € J.

Proof: Let (P, -- -, P,) be an extremal path-covering of G, P; = [a;,b;], i =
1,---,s. ByLemma7 the set A = {a1,b1,02,--- ,a,} is independent and con-
tains s + 1 = a(G) elements. Thus, for i # 1, the vertex b; must be connected by
an edge with A (if b; ¢ A). By the extremality of the covering we have only one
possibility i. €. a;b; € E. Suppose now that there exist vertices z € P;andy € P,
1 <1< j < s,suchthat zy € E. Proceeding similarly as in the proof of Lemma
5 and using the fact that the vertices a;, b; are adjacent, we get a contradiction.
Hence

for1l < 1 < j < sthe paths P;, P; are not connected by an edge. 1)
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Let z,y be two vertices on P;, i # 1, and suppose that zy ¢ E. Then, by (1)
and the maximality of |V(P1)| the set {al, bi,a2, - ,84_1,Z,Y, G541, - ,a,}
is independent and has s + 2 elements, a contradiction. Thus

fori # 1 the paths P; are complete. ()

Letz,y € V(P1),z > af,y < by. We shall show that if a;z € E then
a1z~ € E and if yb; € E then y*b; € E. Indeed, let a;z € E. By Corollary
6 the edge byz~ ¢ E; otherwise za; ?1 z”b; ?1 x would be a cycle with vertex
set V(P,). The vertex z~ is not adjacent to any vertex a;, ¢ ¥ 1; otherwise the
path a;z'(ﬁlalzﬁ'lbl would be longer than P;. Since a(G) = s+ 1, the set
{a1,z7,b1,02,--- ,a,} is not independent, implying that z~ must be adjacent to
the vertex a;. By symmetry, y*b; € E whenever yb; € E.

Denote by ao the last vertex on P; adjacentto a; and by bg the first vertex on P
adjacent to b; (with respect to the orientation T”). Thena;x € Efora; < £ < ag
and yb; € E for bp < y < b;. Proceeding similarly as in the proof of (2) and
using Corollary 6 it is easy to show that

ap < bo and for all vertices z and y of P; we have
ifa; <z < apandby < y < by thenzy ¢ E ?3)

Now we shall show that

ifa; < T < ao then there is no edge betweenz and P;, i # 1,
if bp < y < by then there is no edge between y and P;, 1 # 1. 4

Indeed, suppose e. g. that zz € E, where z € V( P;),1 # 1. Recall that, by (2), P;
is complete. Then the paths P, , P; can be replaced by one path z* ?;b;a;?.-zz‘ﬁl
a;zt 1_3’1 by (if z # b;), contradicting the minimality of the number of paths.
Suppose now that ap = by. We know from (1) that there is no edge between P;
and P; for 2 < 1 < j < s. Since G is connected, the paths P; with § # 1 must be
connected with P; and by (4) only the vertex ao can be connected with some path
P;. As is seen from (3), in this case the graph G \ {ao} has s + 1 components.
From the assumptions of the lemma, we conclude that ag # by, i. €., by (3),

ao < bo. ®)

Let c be the last vertex on P; connected by an edge, cy say, with some P;, i # 1,
y € V(P,). By (4) we have ap < ¢ < bg. Assume first that ¢~ # a;. We shall
show that ¢~ is not connected with any path P;, j # 1. Suppose that there exists a
vertex y; suchthatc™y; € Ewithy, € V(P;).Ifi = jande. g y # y1, then the
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path a; l_”lc‘yl yc1_"1 by is longer then Py. If i # j then the paths Py, P;, P; may

be replaced by two paths with vertex sets a; 1_’)1 ¢~ UV(F;) and cl_’)l b UV(E).
In both cases we obtain a contradiction with the definition of an extremal path-

covering.
However the vertex ¢~ must be adjacent to at least one vertex of the independent
set {a1,b1,a2,--- ,a,}. We obviously have a;c~ € E and, by definition of ao,

¢~ < ao. From the definition of the vertex ¢ and from (4) it follows that there
exists only one vertex on P; (namely c) connected with each P;, i # 1. Moreover
a0 < ¢ < ag and for reasons of symmetry by < ¢ < bo. Suppose, €. g. ¢ = ao.
Since the number of components of the graph G \ {c} must be < s, it exists an
edge, Ty say, witha; < z < candbp < y < b;. Thecase y > b is impossible
by (3). Ify = b ande. 8. 7 # a1, T 7 ao then the path by P 1boz P 1a17* P1cz,
with z € P, is longer than Py, a contradiction. Thus, by symmetry, o} = ¢ = by,
and the above argument can be used to show thatagbo € E since ag b is the only

possible edge connecting a; _I?ao and bo T”bl . Similarly one may prove that the
case ¢~ = a; is impossible.

Now itis easy to show that s = 2 (a = 3). Otherwise the three paths P, , P;, P3
could be replaced by two paths: a path with vertex set V(P,) U{c}UV (Ps) and

ai T"l aobo _ﬁlb; . Finally G is a factor of a graph G’ € J and, since a(G) = 3,
G and G’ must coincide. This completes the proof.

4. Proof of Theorem 3

Let G be a nonhamiltonian, tough graph with a(G) < k + 2 and let X =
{z1,-- -, 7} denote the set of total vertices of G, k > 1.
We evidently have H(G) > k. If H(G) > k then we have

a(G)<k+2<H(G)+2

and, by Theorem 1, either ¥ = 3, a = 4 and G is the Petersen graph (which is
impossible) or = 2, « = 3 and k = 1. In this case, on the basis of Theorem 2,
Gegl.

Thus we can assume that H(G) = k, k > 2 and o(G) = k+ 2. Then X is a
cut-set of G. Let us denote by Ay, - - - , A, the components of G \ X.

Since G is tough we have

r<k. ™)
Let s; = s(A;) denote the minimal number of paths covering A; and let s =
s1 + - --+s,. Thus we have s paths P; = [a;,b;],/ = 1,--- s, covering UL, A;.

Let us observe that if s < k then we are able to define a hamiltonian cycle C in G
as follows

— — —
C=1m101 P1bizyas P2byT3 - - Tes P ybsTss1 Tusz -+ - kT .
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Thus s = ;3;2k+l.
Leto; = a(A4;),i=1,---,r. By Corollary 8 we have

L4 T
k+2=a(G) =) 06> si2k+1.
1 1

IfY1si=k+2thena; = s;fori=1,---,rand, by Corollary 8, o; = s; =
1. Thus 3771 = » = k + 2, a contradiction with (*). If "7 s; = k + 1 then
3 1(a; — s;) = 1 and we can assume, without loss of generality, that

a;=s;fori=1,... r—1and

o, =3+ 1.

By Corollary 8, a; = s; = 1 and the subgraphs A; are complete for 1 =
1,--- ,r — 1. Moreover, the graph A, satisfies the assumptions of Lemma 9.
First observe that k + 1 = E‘.#, s;+ s, = r — 1+ s,; thus, by (¥), s, > 2. Next,
suppose there exists a vertex v of A, such that w(A, \ {v}) > s+ 1. Then

w(G\{z1, -, 2, v}) DT =145, +1=k+2

which is impossible since G is tough. By Lemma 9, A, € J. In particular we
have s, = 2, o, = 3; thus » = k. This completes the proof of Theorem 3. J
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