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1 Introduction

Let m denote a semifield plane of order ¢ and kernel K ~ GF(q), where
¢ = p" and p is a prime number. A p-primitive Baer collineation of 7 is a
Baer collineation a whose order is a p-primitive divisor of ¢—1, i.e., |a| | ¢—1
but |a| fp*—1for 1 < i < r. A semifield plane of order p*,p > 2, is called a
p-primitive semifield plane if it admits a p-primitive Baer collineation.
In [2] we studied isomorphism of p-primitive semifield planes and gave the
exact number of nonisomorphic p-primitive semifield planes. In this article
we give the autotopism group of p-primitive semifield planes and show that
this group is solvable. In all known situations the autotopism group of a
semifield plane is solvable (see e.g. [4]).

Let m be a p-primitive semifield plane. Then 7 admits a matrix spread

set of the form
{[ fE‘v) :p ] tu,v € GF(pz)}

where f is an additive function in GF(p?). Thus f(v) = fov+ fiv? for some
fo, fi EGF(p?). We shall denote this plane by x(f) or «(fo, f1)-

2 The autotopism group
Let # = w(fo, fi) be a p-primitive semifield plane. Every autotopism of
7 is an automorphism of = which sends (X,0) and (0, X) into (X,0) and

(0, X), respectively. From the proof of [2, 3.1] it follows that any element
in A() is expressed in one of the following forms:
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b r+1
with fo =0, fi =a(ff)” where a = [31] and —'= [ ] i
4

Here o is an automorphism of GF(p?); thus elther oc=1loro:z— zP.
Therefore, if g and h are two semilinear autotopisms (with o # 1), then g-h
is a linear autotopism. Therefore, if there exists a nonlinear autotopism go
of 7 then every autotopism of 7 is either linear or is the product of a linear
autotopism by go. Thus, it is enough to determine the linear autotopisms
and whether there exists one autotopism which is not linear.

With respect to the four different types of autotopism, notice that if
hy and h, are both linear autotopisms of the same type then h; - hy is
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a linear autotopism of type 1. Thus, if hg is a linear autotopism of type
i,i € {2,3,4}, then any other linear autotopism of type i is the product
of ho by a linear autotopism of type 1. Hence, to determine the linear
autotopisms it suffices to study the linear autotopisms of type 1 and the
existence of a linear autotopism of type i for i € {2, 3,4}.

Every p-primitive semifield plane 7 = #(fy, f;) admits linear auto-
topisms of type 1 as we will show. Notice that if k is a linear autotopism
of type 1 then letting w = b; /a; we have b; = a;w and bs = aqw” and k is
of the form

z 0
=10 v
k= zw 0
0 yuf

with z,y,w € GF(p?) — {0}, (z/y)P*' = a and y/zw = c. We denote this
matrix by M(z,y, w) and by H the following subgroup of A(7) : H =
(M(z,y,w) : (z/y)P*! = a and y/zw = c) for a given value of a € GF(p)
and ¢ € GF(p?).

For linear autotopisms of types 3 and 4, we have that a p-primitive
semifield plane 7 = 7(fo, f1) admits linear autotopisms of types 3 and 4
if and only if fo = 0 and f; = af} for some a €GF(p) — {Ol Taking the
(p + 1)-st power in each side of this last equality, we get f2*' = a2fP%1;
hence a = 1. Since fy = 0 then f; ¢GF(p) [2, 2.2]. Hence a cannot be 1,
thusa = —1and f/~!' = —1.

Now we describe the autotopism group of any p-primitive semifield plane
by considering the following cases:

a) fo=0,

b) fi =0,

¢) fo#0and f; #0.
Case a: fo =0.

7 admits linear autotopisms M(z, y, w) of type 1 with (z/y)P*! =a =1
and any value of ¢ since fo = 0. Since there are p? — 1 possible values for
each of z and w, and for every z there are p + 1 values of y such that
(z/y)P*! = 1, we have that [H| = (p* — 1)%}(p+1).

It can be shown by an easy calculation that the transformation

0 1

_| i 0
9= 0

—
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is a linear autotopism of = of type 2.

By our remarks early, we have that = admits a linear autotopism of
types 3 and 4 if and only if f/~! = —1.

If fl" = —1 then it follows by straightforward computation that the
following transformations h and k are linear autotopisms of 7 of type 3 and
4, respectively:

-1 0
_1 0 e
h= 0 e
hH O
where e is an element of GF(p?) of order 2(p + 1).
0 e
- 0
k=g-h=
g i 0
0 efl
Also, by direct computation, we obtain that the semilinear transformation
10
0 e
t= 10
0 e

where e is an element in GF(p?) of order 2(p+1) and o # 1 is an autotopism
of w. Therefore, by our remarks above,

A(m) = (g,h,€) - H H a A(x) and A(7)/H =~ I3 x I3 x Z>.
Hence |A£1r)| =8(p* - 1)%(p+1).

If ff=" # —1 then the semilinear transformation
0 1
PO
1
¢ 10
01

with o # 1 is an autotopism of 7 which is not linear. In this case A(7) =
(9,€) - H and it has order 4(p® — 1)%(p+ 1).
Case b: fiy =0

7 admits linear autotopisms M (z,y, w) of type 1 with ac®~! = 1 and
therefore a? = 1. Given a, for each of the p? — 1 values of z, there are p+1
vales of y such that (z/y)?*! = a and for every pair (z,y) there are p — 1
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values of w such that a - (y/zw)?~! = 1. Therefore |H| = 2(p + 1)(p —
1)(p? — 1) = 2(p? — 1)2. The linear transformation

0 1
_|fo O
9= 0 fo
fg+1 0
is a linear autotopism of 7 of type 2, and since f; # 0, 7 admits no linear
autotopism of types 3 and 4.
The semilinear transformation
10
01
{=
fo 0
0 fF

with o # 1 is an autotopism of .

Therefore A(7) = (g,€) - H and it has order 8(p® — 1)2.
Casec: fo#0and f; #0

7 admits linear autotopisms M(z, y, w) of type 1 with (z/y)Pt! =a =1
and (y/zw)P~! = ¢*~! = 1. For each of the p? — 1 possible values of z,
there are p + 1 values of y such that (z/y)?*! =1 and p — 1 values of w
such that (y/zw)P~! = 1. Thus |H| = (p? — 1)2. The linear transformation

01"
s 0

9= 0 u

uPs 0

where u = tfy (#?~! = —1) and s is an element in GF(p?) with the property
that s+l = P41 _ P+l (hy [9 9.9, 5 # 0) is an autotopism of 7 of type
2. Since fo # 0, there is no linear autotopism of 7 of types 3 and 4.

7 admits a nonlinear autotopism if and only if f; = af? for some a €
GF(p)—{0}. Taking the (p+1)-st power in both sides, we get ff*! = a2 fP+!
and thus a? = 1. Hence, the condition is now ff P-1) _ 4,

Therefore, if f12 *-1) # 1, w does not admit a nonlinear autotopism, and

the autotopism group is given by
A(r) = (9) - H

and has order 2(p? — 1)2.

If f12 (»=1) — 1 then 7 admits a nonlinear autotopism; in particular, the
semilinear transformation
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oW
-o

t= v 0
0 (GFr
where v = L’-; and z is an element in GF(p?) such that 2P+! = fP~! and
o # 1 is a nonlinear autotopism of . In this case,

A(r) = (9,0 - H
and |A(7)| = 4(p? - 1)2.
We have completed the proof of the following theorem.

Theorem 2.1 Let # = w(fo, fi) be a p-primitive semifield plane and let
A(r) be its autotopism group.
Let

z 0

M(z,y,w) = 0y

where z,y,w € GF(p?) — {0}.
(i) If fo=0 and fP~' = —1 then A(x) = (g,h,£) - H where

1
g=| 1 0 Jh=| 0 ¢ , lel=2(p+1)

10
0 d

where |d| = 2(p+1) and 0 #£ 1, and H = (M(z,y,w) : (z/y)**! =1).
In this case |A(7)| = 8(p® — 1)%(p + 1).
(i) If fo =0 and 271 # —1, then A(x) = (g,£) - H where g and H are

as given above and £ is given by

0 1

P

L= o 10 with o # 1.
01
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Moreover, |A(7)| = 4(p% = 1)*(p + 1).
(143) If fi = 0 then A(7) = (g,£) - H where

1
fo 0 , L= 0 witho # 1

9= 0 fo fo O
P+ 0 0 f

and H = (M(z,y,w) : (2/y)*®*) = 1 and (y/zw)~" = 1). |A()| =
8(p? —1)2.

(iv) If fo # 0 and f2®= £ 1, then A(x) = (g) - H where

n O
O =

g= 0 u with u = tfy and sP*1 = ff“ - fg“
uPs 0
and H = (M(z,y,w) : (z/y)P*! = 1 and (y/zw)?~' = 1). Here
|A(7)| = 2(p* - 1)*.

(v) If fo # 0 and ff(p-l) =1, then A(w) = (g,€) - H where g and H are
as in (iv) and £ is given by

!

o N
— O

— : — fo p+1 _ pp—1

= I wztha#l,v_zandz =fi .
0 2y

In this case, |A(7)| = 4(p? - 1)%.

Corollary 2.2 Let n(fo, f1) be a p-primitive semifield plane and let A(w)
be its autotopism group. Then A(w) is solvable.

Proof:

Notice that the subgroup H of A(7) is a normal abelian subgroup of
A(m) and A(7)/H is also abelian. Thus A(x) is solvable.
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