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Abstract. Let P(G) denote the chromatic polynomial of a graph G. Two graphs G
and H are chromatically equivalent, written G ~ H, if P(G) = P(H). A graph G is
chromatically unique if G 2 H for any graph H such that H ~ G. Let G denote the
class of 2-connected graphs of order n and size n+ 2 which contain a 4-cycle or two
triangles. It follows that if G € G and H ~ G, then H € G. In this paper, we determine
all equivalence classes in G under the equivalence relation ‘~’ and characterize the
structures of the graphs in each class. As a by-product of these, we obtain three new
families of chromatically unique graphs.

1. Introduction.

Let P(G) denote the chromatic polynomial of a (simple) graph G. Two
graphs G and H are chromatically equivalent, in notation : G ~ H, if P(GQ) =
P( H). Trivially, the relation ‘~’ is an equivalence relation on the class of graphs.
A graph GG is chromatically unique if G = H for any graph H such that H ~ G;
that is, (G) = {G} (up to isomorphism) where (G) denotes the equivalence class
determined by G under ‘~’.

Chao and Zhao studied in [4] the structures of certain connected graphs of
order n and size n+ 2 which contain no end vertices via their chromatic polynomi-
als. Let G denote the class of 2-connected graphs of order n and size n+ 2 which
contain a 4-cycle or two triangles. It follows that (see Lemma 7) if G € G and
H ~ G, then H € G. By applying certain results of Chao and Zhao [4], we shall
determine in this paper all equivalence classes in G under ‘~’ and characterize the
structures of the graphs in each class. As a by-product of these, we obtain three
new families of chromatically unique graphs.

Throughout this paper, all graphs are assumed to be connected. The reader
may refer to [2],[6], for all notation and terminology not explained here.

1This work was done while the author was visiting the Department of Mathematics, National Univer-
sity of Singapore.
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2. Basic Results.

To begin with, we shall state in this section a few basic results which will be
useful to us. Of fundamental importance is the following.

Lemma 1. (Reduction Theorem [1]). Let G be a graph and e an edge of G.
Then
P(G)=P(G—¢) — P(G-¢),

where G — e is the graph oblained from G by deleting e, and G- e is the graph
obtained from G by contracting the end vertices of e and removing all but one of
the multiple edges, if they arise.

The following result of Zykov [9] provides a shortcut for calculating chro-
matic polynomials. As usual, the symbol ‘)’ is used to denote the variable in each
chromatic polynomial.

Lemma 2,

Suppose G\ and G, are graphs each containing a complete subgraph K,
withr vertices. Let G be the graph obtained from G, UG by identifying the two
subgraphs K,. Then

P(GP(G2) _ _ P(G1)P(G2)
P(K,) AA=1...(A=r+1)’

P(G) =

When r = 2 in Lemma 2 and when G, and G, are of order at least three, we call
the graph G an edge-gluing of G and G, . By Lemma 2, all edge-gluings of G,
and G, are chromatically equivalent.

Let G? be a given graph which is an edge-gluing of some graphs, say G;
and G, . Forming another edge-gluing of G; and G, we obtain a new graph G(1.
Note that G may not be isomorphic to G(®. Clearly, GV is an edge-gluing of
some graphs, say H, and H,. Note that H; and H, may not be G; and G,.
Forming another edge-gluing of H; and H,, we obtain another graph G®. The
process of forming GV from G(? (or G from GV) is called an elementary
operation. A graph G is called a relative of H if G can be obtained from H by
applying a finite sequence of elementary operations. It follows from Lemma 2
that if G is arelative of H, then G ~ H.

The next result, due to Whitney [8], has profound consequences in the study
of chromatic polynomials. In order to understand this result, we need the concept
of a broken cycle. Let G be a graph with = vertices and m edges, together with a
bijection a : E(G) — {1,2,...,m}. Let C be a cycle of G and e an edge of C
such that a(e) > a(z) for all z € E(C). Then the path C — e in G is called a
broken cycle induced by a.



Lemma 3. (Whitney’s Broken Cycle Theorem). Let G be a graph withn vertices
and m edges together with a bijection e : E(G) — {1,2,...,m}. Then

n—1
P(G) = Y (~-D'm2™,

=0

where h; is the number of spanning subgraphs of G that have i edges and that
contain no broken cycles induced by o.

From the above lemma, one can derive the following easily.
Lemma 4. Let G be a graph with n vertices and m edges. Then in the polyno-
mial P(QG), the coefficient of
(i MNisl;
() A*!is—m;
i) M2 is (3) — t1(G), where t,(G) is the number of triangles in
G.

In addition to the above, Farrell [S] provided explicit expressions for the co-
efficients of the next two terms : A\™> and A™* . However the coefficient of \**
is too complicated to be useful.

Lemma 5. Let G be as in Lemma 4. Then the coefficient of \* in P(G) is
—(Z‘) +(m—2)t(G) + 1a(G) — 213(G),

where t2(QG) is the number of pure C, (i.e. Cs without chords), and t3 (G) the
number of the complete graph K4 in G.

If a graph G contains a cut-vertex, then it is easy to see that (A — 1) |P(G).
Whitehead and Zhao [7] showed that the converse is also true.

Lemma 6. A graph G contains a cut-vertex if and only if (A — 1)2 |P(G).

A graph is 2-connected if it contains no cut-vertices. The following immedi-
ate consequence of Lemma 4, 5 and 6 provides some simple necessary conditions
for two graphs to be chromatically equivalent.

Lemma7. Let G and H be two chromatically equivalent graphs. Then G and H
have respectively the same number of vertices, edges and triangles. If both G and
H do not contain K4, then they have the same number of pure C, . Furthermore,
G is 2-connected if and only if H is so.
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3. Classification of Graphs in G.

Recall that G is the class of 2-connected graphs of order n and size m = n+ 2
which contain either a 4-cycle Cy4 or two triangles C3. Let G € G. Then the total
degrees of vertices in G is 2(n+ 2) and deg(v) > 2 foreachv in G. If G contains
K, as a subgraph, then it can be shown that G & K4, which is chromatically
unique. Assume that G does not contain K4 as a subgraph. Then by exhaustion,
it can be checked that G must be one, or a relative of one, of graphs (1) - (9).

For convenience, we denote the graphs (1) - (9) by G1(a), G2(f), G3(e,
f)r G4(gs h) » GS(Z) Y, Z), G6(P, 9), G7(3,t, u)”): GS(&'Y)”) and G9(O’, 6)
respectively. From time to time, we may simply use G1,G3, - - - , Gy respectively
to denote the above-mentioned graphs if no confusions arise from doing so. We
also say that G is a graph of type (1).

Note that each of the graphs G and G;(1 = 3,4,...,7) is chromatically
equivalent to a graph of the following form (see Chao and Zhao [4] ) :

\
,/ /’ AY \\
/' > C
a P \‘ \
’ b d. N
!/ \
! ‘ ~ \
' / \ \
t [/ \\ ]
. N,
6. ...... J ommmeea .b
'X(a) b) c’ d’j)

where the internal path lengths a,b, c,d, j are given in the following table
(for G7, see the remark below) :

Graph | a b c d J
Gh 2 1 o 1 1
Gs e 2 f 2 0
G4 g 1 h 1 2
Gs x y 3 1 z
Ge D 2 q 1 1
G 8 t 2 2 v+ v

Remark.

The fact that G7 = X (s,t,2,2,u + v) is not obvious. The following proof is
due to Chao and Zhao [4]. By Lemma 1, we have
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The graphs G2,Gs and Gy are homeomorphs of K4, which can be repre-
sented as follows : Q

K4(a;b: c, dn k)])
where the internal path lengths a, b, ¢, d, k, j are given in the following table

Graph a b c d k J
G2 1 B 1 1 1 1
Gy 8 1 Ul 1 5 2
Gy 1 € o 1 1 1
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Our purpose here is to establish the following result.

Theorem. Foragraph G, let (G) = {H|H is a graph and H ~ G}. Then

(1) H € (G:) ifand only if H is a relative of G\.
(2) The graph G, is chromatically unique (see [ 3],/ 4]).
(3) (i) The graph G (e, f) is chromatically unique provided that e #
3orf#4;
(il) (G3(3)4)) = {G3(3’4)1G5(3 ) 3) l)}‘
(4) H € (Gs) ifand only if H is a relative of Gs.
(5) (@ Forzx#3ory#3orz+1,H €(Gs)ifandonlyif H isa
relative of Gs;
(i) (G5(3,3,1)) = (G3(3,4)).
(6) H € (Gg) ifand only if H is a relative of Ge.
(M H e {(Gi(s,t,u,v)) ifandonly if H = G7(s,t,u',v') with u'+
vV=u+v
(8) The graph Gy is chromatically unique.
(9) The graph Gy is chromatically unique.

4. Proof of the Main Theorem.

Let H be a graph. Chao and Zhao [4] showed that if H is chromatically equivalent
to any one of G1,G3,Gy,...,G7, then H must be of the form X (a,b,c,d, ).
Hence H must be of type (i) wherei = 1 ori = 3,4,...,7 by Lemma 7.
Likewise, if H is chromatically equivalent to one of G>, Gs, Gy, then H must
be of type (2), (8), or (9).

Chao and Zhao also showed that if we first let w = X — 1 in the chromatic
polynomials of X (a, b, c,d, j) and K4(a, b, c, d, k, j), and next multiply the poly-
nomials by (w + 1)2, then the coefficients of the resulting polynomials can be
explicitly expressed in terms of the internal path lengths between the vertices of
degree greater than two. For out purpose, only partial sums of the polynomials
are given below.

(w+ 1)2P(-X(G,b, c,d, ) =w™+ -+ Z(_l)m—iwi-rz
i€l
+ (=D (-
1eJ
# A=)l 4 (—D)w,

where I = {a,b,c,d,j} and J = {a, b, c,d}.
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(w+ l)ZP(K4(a,b,C,d, k:]))
=™+ ...+ (_l)m—a—dwa+d+l

+ (_l)m—b-cwb+c+l + (—l)m"j'ku)j+"+l

+ E(_l)m—iwﬂl + E(_l)m—i—lwiﬂ
[{I i€l
+(=D™w? + 3(=1)™w? + 2(=1)™w,

where L = {a,b,c,d, k, j}.

In the sequel, we shall use [ w?] P(G) to denote the coefficient of [w?] in the
polynomial (w + 1)2 P(G) obtained from P(G) in the above manner.

We are now ready to prove our theorem.

Proof of Theorem:

2) The graph G, has been shown to be chromatically unique in [3],[4].

1) Let H be a graph such that H ~ G. By Lemma 7, H is a 2-connected graph
of order n and size n+ 2, and with at least two C;. By 2), H must be a relative
of G 1.

3)Let G = Gi(e, f) and let H be a graph such that H ~ G. Ife = 2, then
H has at least 3 pure Cj. It is not hard to check that the only ways to arrange 3
pure C, in a graph with total degrees 2n + 4 are as in G3(2, f),Ge(2, f) and
G9(2, f). By considering the broken cycles of length f + 1 in each graph, it is
easy to see that these three graphs are not chromatically equivalent to one another.
Hence G'3(2, f) is chromatically unique.

Assume that f > e > 3. Then H is 3-colourable (since G3 (e, f) is) and
hence it contains no K4. By Lemma 7, H has exactly one pure C4. Thus H must
beof type (3), (4),...,o0r (7). If H = G3(€, ), then it is not hard to see by using
Whitney’s Broken Cycle Theorem that e = €’ and f = f'; thatis H & G3 (e, f).
We next show that P(G3) # P(G;) forall i =4,5,...,7,except whene = 3,
f=4.

Since

[w’1P(Gs) = A~)™ + (~1)™
=2(-)™ 4 (=™

and

[w*1P(Ga) = 2= + ()™ + (—m-d-!
=2-D™ 1+ (=)™ + (=)™,
P(Gs) # P(Ga).
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For [w?]1P(G7) to be equal to [w?]P(G3), we must have ¢t = 1. In this case,
G is chromatically equivalent to Gs.
Now

[W1P(G3) = (=)™ + (=)™ 1 ¢ (—1ym-¢-!
= (=)™ + (=)™ + (-1)™3,

while

[w?1P(G6) = (—D)™+ (=)™ 4+ (=)™ + (-1)™t-!
=(=D™+ (=)™ + (=)™ + (-)™ 2.
Hence P(Gs) # P(Gs) and consequently P(G3) # P(G7).
Now suppose that P(G3) = P(Gs). For [w?]1P(Gs) to be equal to
[w?1P(G3), we must have z = 1, so that the coefficient is

(D™ + (=)™ ¢+ (=)™ = (=)™ + (=)™ + (=)™

Thus G's must be of the form

(z2>v)

If y < e, then the above graph contains a broken cycle (apart from the one
formed by C,) of length y, while all other cycles of G5 are of length greater than
y, which contradicts Whitney’s Broken Cycle Theorem. If y > e, then G35 has
a broken cycle of length e + 1 while the above Gs does not, which is again a
contradiction. Hence we must have y = e.

Since G'3 has 2 broken cycles of length e + 1, the above G's must also have
2 broken cycles of the same length. This implies thatz = y = eand f = e+ 1.
We consider two cases.

Case 1: Suppose z,y > 3. Then

[w*1P(Gs) = (~1)™<"1
= (1™
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while
[w*1P(Gs) = (=)™t + (—1)™¢
= (=)™ + (-n™2.
Hence P(G3) # P(Gs), a contradiction.

Case 2: Suppose z = y = 3 = e and f = 4. Then by the Reduction Theorem
(Lemma 1), it can be shown that the chromatic polynomials of both G5 and Gs
are equal to

(w—1)(w* + w)(w* — v’ +2w? 2w+ 1),

where w = A — 1. As shown below, it is clear that G5 ¥ G's.

O—

G3(3,4)

Gs(3,3,1)

4) Let H be a graph such that H ~ G4. We have seen that H is not G,G, or
Gis. If H is of type (4), then it is easy to see by Whitney’s Broken Cycle Theorem
that HH is a relative of G4. We next show that P(G4) # P(G;) fori=5,6,7.
Since
[w?1P(Gq) =AD" + ()™ 4 (-t
=2(=D" + (=)™ + (-)™?
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and

[w?1P(Gs) = 2(—1)™ ! + (—1)™4!
= 2(_1)'"-1 + (—l)""‘2,

we see that P(G4) # P(Gs). Also

[w?1P(Gs) = 2(=1)™ ! + (-4
=2(-D™" + (-2,

implies that P(G4) # P(Gs). Finally

2(=D™ 4+ (=1)™2 ft=1
2(-1m™-1 ift#1,

which shows that P(G4) # P(G1).
5)LetG = Gs(z,y,2), where z > y > z > 1. We have seen that P(G) #
P(Gj),fori =1,2,4 and P(G) # P(Gs(e, f)) except whene = 3 = T =
y,z=1land f=4.

Let H = Gs(z',y,2'), where 2’ > ¢ > 2/ > 1. Suppose H ~ G.
fy+z2< y+2,theny+ 2z < z'+2 andhence y+ 2z < 7' + y'. Thus
G = Gs(z,y, z) contains a broken cycle of length y + z while H = Gs(z', ¢/, 2')
does not. Hence P(G) # P(H), a contradiction. By symmetry, y + z = ¢ + 2'.
Butz+y+2z=1'+y + 2. Hence z = z'. Now suppose z < 2. Then
z+2< z'+2 andz+ 2 < z'+ y'. Hence Gs(x, y, 2) contains a broken cycle of
length z + z while Gs(z',y’, 2') does not. Therefore P(G) # P(H) which is a
contradiction. By symmetry, we must have z = 2’ and soy = ¢/. Thatis, G = H
if H ~ G. However Gs is not chromatically unique as it is an edge-gluing of C;
and a generalized 6-graph.

Note that G5(z,2,1) & G¢(z,3) forallz > 2.

For y > 2, it can be checked that

[w?1P(G7) = {

[w*1P(Gs5(z,y,2)) # [w*1P(Gs).

Hencefory > 2, P(Gs(z,y,2)) # P(Ge).

In order that [w?] P(Gs) = [w?]P(G7), we must have ¢ = 1, which im-
plies that G is chromatically equivalent to G¢. Hence if t # 1 in Gy, then
P(Gs) # P(Gy).
6)Ift = 1in G, then clearly G7 ~ Gs. Ift # 1 in G, then it is easy to check
that [w?] P(Gs) # [w?1P(G7). Hence P(G7) # P(Ge). Soif H ~ G, then
H must be of type (6). It is now easy to.check that H is a relative of Gs.

7) We have seen in Section 3 that if u + v = v’ + v/, then G7 (s, t, u,v) ~ G7(s,
t,u',v"). In fact, on studying the coefficient of each term of (w + 1)2P(G),
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one sees that G7(s,t,u,v) ~ G7(s',t',4',v') ifand only if s = &', t = t' and
ut+v=u' +1.

8) and 9) We now consider Gs and Gy. We recall that Gs and Gy are homeo-
morphs of K4, which are not chromatically equivalentto G;(i = 1,2,...,7). In
order that [w?]P(Gs) = [w?]P(Gy), two of §,~, 7 in Gs must be equal to 1.
Suppose § = v = 1 ory = 5 = 1. Then G contains a triangle while Gy does
not. Thus § = n = 1. In this case, Gg(1,7,1) = Go(2,). Henceif sorn # 1,
P(GS(S)'Y:‘”)) #P(G9)-

Suppose Gs(&',v', ') ~ Gs(8,~,n). Then by considering the coefficients
[w1P(Gs(8,7,m) and [w*'1P(Gs(&, v, 7)) for£ € {a,b,c,d, k,j} (see
table 2), we see that min{§,~,n} = min{&',+',n'}. Moreover {§,v,7} =
{&',+', 7'} as multisets.

Now consider the coefficients of w®*#*! = wo*2 whtetl = 42 and y/+k+1
= w¥*3, We observe that if min {8, v, n} = 7, thenn = %/, and if min{8,~,n} = 7,
then v = 4'. By the same token, if min{§,v,7} = n = 7/, then we must have
7 =~and§ = &. If min{§,~,n} = 4 = 4/, then it is not hard to see by
Whitney’s Broken Cycle Theorem that n = 7' and 4 = 4'. Hence we conclude
that G5 (&',4',7") ¥ Gs(8,~,n). Finally, suppose Gy (a’,€’) ~ Go(0,€). Then
it is easy to argue by Whitney’s Broken Cycle Theorem that o = ¢’ and e = ¢'.
Hence Gy (o', €) = Gy(a,¢€). This completes the proof of our theorem.
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