The Intersections of Commutative Latin Squares

Chin—Mei Fu® | Hung—Lin Fu‘® and San—Huei Guo‘?

Abstract

A latin square of order n is an nxn array such that each
of the integers 1,2,---,n (or any set of n distinct symbols)
occurs exactly once in each row and each column. A latin
square L = [f;,;] is said to be commutative provided that £,; =
4, for all i and j-, Two latin squares, L = [4;,;] and M = [mj;,j],
are said to have intersection k if there are exactly k cells (i,))
such that £;,j = m;,;.

Let I[n] = {0,1,2,- - - ,n2-9,n2—8 n2—6,n2}, H[n] = I[n] U
{n2—7,n24}, and J [n} be the set of all integers k such that
there exists a pair of commutative latin squares of order n
which have intersection k. In this paper, we prove that J[n] =
I[n] for each odd n > 7, J[n] = Hin] for each even n > 6, and
give a list of J[n] for n < 5. This totally solves the intersection
problem of two commutative latin squares.

1. Introduction and Definitions

The study of the intersections of two latin squares
started around ten years ago. T. Webb [4] considered the latin
squares which are commutative and idempotent. Since then,
several results have been found in this direction. [2,3]
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A latin square of order n is an nxn array such that each
of the integers 1,2,- - -,n occurs exactly once in each row and
each column. A latin square L = [f,] is said to be
commutative provided that ¢;,; = 4,; for all i and j. L is
idempotent if 4;,; = i for each i, and ﬂ is called unipotent if 4;,;
= ¢ for some fixed c. If {f,1,62,9,+*,fn,n} is just the set
{1,2,---,n}, then L is said to be a diagonal latin square. It is
easy to see that a commutative latin square of odd order must
be a diagonal latin square.

A partial latin square of order n (briefly PLS(n)) is an
nxn array such that each element occurs at most once in each
row and each column. A partial commutative latin square of
order n can be defined similarly. Two PLS(n) are said to be
comparable if the corresponding cells are either both filled or
both empty. Two comparable PLS(n), P; and Py, are disjoint
if they don’t have any entry in common in corresponding cells,
and Py and P; are mutually balanced if for each row (and each
column), they contain the same set of entries. Figure 1.1 is an
example of two mutually balanced and disjoint PLS(3).

112 211
213 1|1 11213
13 3|1
Figure 1.1

A PLS(u), P = [py;], is said to be embedded in a latin
square of order v, if there exists a latin square L = [6,;] of
order v such that 6,; = pi,j for each filled cell in P. Tt is
well-known that a commutative latin square of odd order u
can be embedded in a commutative latin square of order v for
each v > 2u. [1] Figure 1.2 is an example of the embedding of a
commutative latin square of order 3 into a commutative latin
square of of order 7.

Two latin squares, L = [{;,;] and M = [m;,j], are said to
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13 2 6 4 75
3 215 7 46
21 3 7 6 5 4
6 5 7 4 2 3 1
4 76 2 5 1 3
74 5 3 1 6 2
5 6 41 3 2 7
Figure 1.2

have intersection k, denoted by |Ln M| = k, if there are
exactly k cells (i,j) such that 4,; = m;,j. In [2], it was shown
by Fu that the set of all intersections of two latin squares of
order n, n > 5, is precisely {0,1,2,: - - ,n2—7,n2—6.n2—4,n2}. But,
for the intersections of two commutative latin squares, the
above set is not correct. In this paper, we prove that the set of
all possible intersections denoted by J[n], is the set I[n] =

0,1,2,-- -,n2—9,n2—8,n2—6,n2§4f0r odd n > 7 and Hn] = Ifn] U

n2—7,n2—4} for even n > 6. Moreover, we use computer to find
J%n] for n < 5, and this totally solves the intersection problem
of two commutative latin squares.

2. The Main Results

In what follows, without mention otherwise, we consider
only commutative latin squares (or partial latin squa,res%. By
observation, there do not exist two disjoint mutually balanced
partial latin squares (DMB PLS) with one, two, three or five
cells filled only. Thus, we have the following lemma.

Lemma 2.1. J[n] C H[n| for each n.

As to the case when n id odd, the intersections n2-—7,
n2—4 are not possible any more. We prove it in next lemma.

79



Lemma 2.2. J[n] C I|n] for each odd n.

Proof. It suffices to show that n2—4 and n2—7 are not in
Jn]. fn24€] [né, then there exists a pair of DMB PLS with
four entries only. Since the latin squares are commutative, two
of the four entries must be on the diagonal, and they are the
same. But this is not possible for a commutative latin square
of odd order. Hence we have shown that n2—4 ¢ J[n]. On the
other case, let n2—7 € J[n]. Then, there exist two DMB PLS
with seven entries only, and they must be in one of the six
shapes as shown in Figure 2.1. By looking at their DMB mates
in Figure 2.2, it is easy to see that (1), (2) and (3) are not
possible, and the x in (4), (5) and (6) can only be d or e. In
either case, we have two common elements on the diagonal of a
commutative latin square of odd order. It is not possible.
This implies that n2—7 ¢ J[n].

a|bj|ec d|a b|c
b d d|b|e b d
c|d a| e c|d]| a
(1) (2) (3)
a|d]e a | d a d
d|b d|b|e b|e
e c e | c d|efc
(4) (3) (6)
Figure 2.1
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x|d]|d a |y y| b
d y a |l x| a b
d|y 'y a b | x
(1) (2) (3)
x|b|ec d | a d a
b|d a|x|c e|b
¢ e c| e a|b|x
(4) (5) (6)
Figure 2.2

From Lemma, 2.1 and Lemma 2.2, in order to show that
J[n] = I[n] for odd n and J[n] = H[n] for even n, it suffices to
show that I[n] C J[n] and Hln] C J[n] for n is odd and even
respectively.

Before we go any further, we need several definitions.
Let Sp be the set of all permutations on {1,2,---,n}, and we
use L, to denote the latin square obtained by permuting its

entries with o € Sy, i.e., if L = [4,j], then L, = [0(4,;)]. For
example, in Figure 2.3, L’ = L, where ¢ = (123). A bit of
reflection, we notice that |L N L,| = 4. In what follows, we
will use A + B = {a+b: a € A and b € B}.

Lemma 2.3. If n is odd, n > 7, and J[n] = I[n], then
J[2n+1] = I[2n+1] and J[2n+3] = I[2n+3].

Proof. It is well-known that a commutative latin
square of order n (briefly CLS(n)), n is odd, can be embedded
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11234 213|114
2111413 3121411
L: L-:
31412 |1 1 (432
4 13 |1¢(2 4 11123
Figure 2.3

in a CLS(2n+1). [1] Let A be a CLS(n) which is embedded in
a CLS(2n+1) L. (Figure 2.4) Since A can be replaced by
another CLS(n), the entries 1,2,---,n in C can be permuted
independently, so are the entries n+1,n+2,- - -,2n+1 outside A.
Hence we have J[n] + {0,n+1,2(n+1),- - -,(n—2)(n+1),n(n+1)
+ {0,2n+1,2(2n+1),- - -,(n—1)(2n+1),(n+1)(20+1)} C J[2n+1].
By the assumption that J Rl] = I[n] and n 2 5 we have I[2n+1]
C J£2n+1]. This implies that J[20+1] = I[2n+1]. Similarly, a
CLS(n) can be embedded in a CLS(2n+3). [1] By the same
idea, we also have J[2n+3] = I[2n+3].

A
B
CLS (n)
L P
CLS (2n+1)
BT C
Figure 2.4

With the above lemma, we are able to handle the case
when n is odd. Now we need a lemma for the case when n is
even.
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Lemma 2.4. If n is even, n > 6, and J[n] = H[n|, then
J[2n] = H[2n] and J[2n+2] = H[2n+2].

Proof. The lemma follows directly from the fact [3]
that a CLS(n), n is even, can be embedded in a CLS(u) when u
= 2n or 2n+2, using the idea of the proof in Lemma, 2.3.

With the two recursive constructions in Lemma 2.3 and
Lemma 2.4, we can prove that J[n] = I[n] for each odd n > 7,
and J[n] = H[n|] for each even n > 6 provided that we can show
J[m] = H[m] and J[k] = I[k] for m = 6,8,10 and k = 7,9,11,13.
For completeness and convenience, we also find J[n] for n < 5.

Lemma 2.5. J[1] = {1}, J[2] = {0,4}, J[3] = {0,3,9},
J[4] = {0,1,2,3,4,6,8,9,12,16} and J[5] = I|5]\{7,14,16,17,19}.

Proof. J[1], J[2] and J[3] are easy to obtain. J[4] and
J[5] are mainly the results of using the computer. See
Appendix A.

Lemma 2.6. J[6] = H[6).
Proof. By Appendix B.
Lemma 2.7. J[7] = I[7].

Proof. Since a CLS(3) can be embedded in a CLS(7),
thus with the same idea as in Lemma 2.3, we have {0,3,9} +
{0,4,12} + {0,7,14,28} C J[7], which is {0,3,4,7,9,10,- - -,23,26,
27,28,29,31,32,35,37,40,41,43,49} C J[7]. Moreover, we can
permute the rows of the rectangle B in L and permute the
entries 1,2,3 in C (Figure 2.4), then we have {0,3, ? + {0,8,24}
+ {0,4,12} + {4} C J7]. This implies that {4,7,8,11,12,13,15,
16,17,19,21,24,25, 27,28 31,32,33,35,37,40,41 43,40} ' ¢ J[1].
Combine the above two results, we have {0,3,4,7,8,--+,29,31,
32,33,35,37,40,41,43,49} C J[7]. With Appendix C which shows
that {1,2,5,6,30,34,36,38,39} C J[7], we have J[7] = I[7).

Lemma 2.8. J[8] = H[8].
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Proof. A CLS(4) can be embedded in a CLS(8).
Figure 2.5) Since B can be any latin square based on the set
5,6,7,8}, hence by using Lemma 2.5, we have {0,1,2,3,4,6,8,9,

12,16} + {0,1,2,3,4,6,8,9,12,16} + {0,2,4,6,8,12,16,18,24,32} C
J[8]. This implies that H[8]\1§‘55,58} C J[8]. Moreover, 55 and
53 can be obtained by using Appendix C, thus we have proved
that J[8] = HI[8].

____A B
CLS (4) LS (4)
L :p—-
CLS (8) C
BT CLS (4)
Figure 2.5

Lemma 2.9. J[9] = I[9].

Proof. By the result of Webb’s thesis [4], we have
9+2t: t = 0,1,2,---,30,32,36} C J[9]. And if we consider the
LS(9) of the form as in Flgure 2.6, then we obtain {0,3,9} +

{039F + {0,3,9} + {0,6,18} + {0,6,18} + {0,6,18} C J[9],
which is {3k: k = 0,1,2,-+,25,27} C J[9]." With the aid of the
Appendix D, we are able to show that J[9] = I[9].

A D E
CLS (3) LS (3) LS(3)
pT B F
CLS(9) : CLS (3) LS(3)
gL FT C
CLS (3)
Figure 2.6
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Lemma 2.10. J[10] = H][10].

Proof. Since a CLS(5) can be embedded in a CLS(10)
(as Flgure 2.5), hence by using Lemma 2.5 and the
1ntersect10ns of two latin squares F2], we have {0,1,2,- -,6,8,
13,1525} + {0,1,- - 131595} + {2t:t =
19 21 25 C J[10]. ThlS 1mphes tha,t {0,1,- --,87,88 90,92,
100} C .210] "By Appendix E, {89,91,93,04,96} C J{10], thus
J[10] [10].

Lemma 2.11. J[11] = I[11].

Proof. By the idea of the proof of Lemma 2.3, we
embed a CLS(5) in a CLS(11) and then we obtain J[5] + {0 6,
12,18,30} + {0,11,22,33,44,66} C J[11]. From Lemma 2.5, we
have {01 +,109.111 121} C J[11]. And by Appendix F, we
get {110,112 115} C J[ll] Moreover, 113 € J[ll], which s a
result of [4] Thus J[11] = H[11].

Lemma 2.12. J[13] = I[13].

Proof. By embedding a CLS(3) or CLS(5)into a
CLS(13) and Lemma 2.3, and Webb’s result, we are able to
obtain I13] \ {7,142,158} C J[13]. And from Appendix G, we
conclude that J [13] C I[13

As a direct result of Lemma 2.3 to 2.12, we have our
main theorem:

Theorem 2.13. J[n] = I|n] for each odd n > 7 and J[n] =
Hin] for each even n > 6.
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