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Abstract. We study the isomorphic factorization of complete bipar-
tite graphs into trees. It is known that for complete bipartite graphs,
the divisibility condition is also a sufficient condition for the existence
of isomorphic factorization. We give necessary and sufficient condi-
tions for the divisibility, that is, necessary and sufficient conditions
for a pair [m,n] such that mn is divisible by (m 4+ n — 1), and in-
vestigate structures of the set of pairs [m,n] satisfying divisibility.
Then we prove that the divisibility condition is also sufficient for the
existence of an isomorphic tree factor of a complete bipartite graph
by constructing the tree dividing K(m,n).

1. Introduction

A factor of a graph G is a spanning subgraph of G and a factoriza-
tion of G is a decomposition of G into an edge disjoint union of factors.
A factorization in which all of the factors are isomorphic to each other
is called an isomorphic factorization. Isomorphic factorizations are ex-
tensively studied by F.Harary and others (see references in F.Harary and
R.W.Robinson[3]). If a graph G is decomposed into t isomorphic factors,
then a trivial necessary condition is that t divides the size of G. This
condition is called the divisibility condstion. It is shown in [4,5] that if
G is a complete graph or a complete bipartite graph, then the divisibility
condition means the existence of isomorphic factors. If any topological
condition is required on isomorphic factors, then the situation differs. In
[3], it is pointed out that characterizing isomorphic factors, which are trees,
of a complete graph or a complete multipartite graph is an open problem.

In this paper, we investigate the isomorphic factorization of complete
bipartite graphs into trees. We characterize the divisibility condition, that
is, we give necessary and sufficient conditions for a pair [m, n] of positive
integers so that mn is divisible by m + n — 1. We classify pairs [m, ]
satisfying divisibility, and show that there is a binary tree structure in the
set of such pairs. Then, we give a construction algorithm for the isomorphic
factorization of a complete bipartite graph into trees and prove that the
divisibility condition is also a sufficient condition for the existence of an
isomorphic factorization of a complete bipartite graph into trees.

For any integers m and n, (m,n) stands for the nonnegative greatest
common divisor of m and n. I m divides n, then we write m | n, and
otherwise we write m [ n. A pair [m,n] of positive integers is called a
factor pair ( abbreviated FP ), if (m+n — 1) divides mn. Since a complete
bipartite graph K(m,n) has mn edges and any spanning tree has m+n—1
edges, the divisibility condition is equivalent to the divisibility of mn by
m+n—1
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A graph G = (V, E) consists of a nonempty finite set V' of vertices and
a finite set F of edges, each of which is associated with two vertices.

For graph theoretic terminology and notation, we follow Bondy and
Murty[2] and for any terminology and notation for isomorphic factoriza-
tion, we follow Harary et al[3,4,5]. For number theoretic terminology and
notation, we refer to Shapiro|[7).

2. Necessary and sufficient conditions for divisibility

In this section, we give necessary and sufficient conditions for positive
integers m and n so that m + n — 1 divides mn.
Theorem 2.1. For any integers m and n,
(m+n-1,mn)=(m,n—1)(m-1,n).
Proof. Let ¢ be any divisor of (m+n —1,mn). Since ¢ | mn, there exist
c1,¢2 such that ¢; | m, c2 | » and ¢ = ¢j¢5. Since ¢ | m +n — 1 and
c1 | ¢, we have ¢; | (m +n — 1,m). Similarly, we have c; | (m + n — 1,7).
Therefore ¢ | (m +n —1,(m + 2 — 1,m)(m +n — 1,2)).
Next, we assume that ¢ divides (m+n—1, (m+n—1,m)(m+n—1,2n)). Then
there exist integers c;, ¢z such that ¢; | (m+n —1,m), c2 | (m+n —1,n)
and c =cyco. Thene |m+n—-1,c1|m,co|m+n—1andc; | n, we
have ¢ | (m + n — 1, mn) since ¢ = cicp divides m +n — 1.
Therefore we have (m+n—1,mn) = (m+n—1,(m+n—1, m)(m+n—1,n)).
Since (m+n—1,m)=(n-1,m),(m+n—-1,n)=(m—1,2), (n—1,m) |
m+n-1,(m—-1,n)| m+n—1and ((n —1,m),(m—1,n)) = 1, we have
(m+n-1,(m+n—-1,m)(m+n—-1,n))=(m+n-1,(n-1,m)(m—1,n))
=(n-1m)m-1,nr). O
Theorem 2.2. For any positive integers m,n, a pair [m,n] is an FP if
and only if (m,n —1)(m —1,n)=m+n —1.
Proof. It is obvious that (m + n — 1) divides mn if and only if
(m+mn—1,mn) =m+n—1. Combining this with Theorem 2.1 yields
the Theorem. 0O
From this theorem, we can deduce many necessary conditions and suf-
ficient conditions.
Proposition 2.3.
1.Ifm>n=1,then (m+n—1)|mn.
2. Ifm=n>1, then (m+n—1)f mn.
3. Ifm=k(2k+1), n = k(2k — 1) for some k> 1,
then (m +n —1) | mn.
4 Ifm=kn-1),n>2 (k+1)|n andk>1,
then (m +n — 1) | mn.
5. Ifm=k% n=(k-1)% and k > 2,
then (m+n—1) | mn.
6. m=kn+1,2>1,(k+1)|(n—1)and k >0,
then (m +n — 1) | mn.
7. Ifm=2k,n=2k—1andk>1, then (m+n—1)|mn.



8. If n is a prime number and (m +n — 1) | mn,
thenm=kn+1 and (k+1)|(n—-1).
9. If m — 1 is a prime number, m > n and (m +n — 1) | mn,
thenn = k(m—1) and (k+1) | m.
10. If m is a prime number and m > n, then (m +n — 1)} mn.
Proof. omitted. O
To investigate the structure of factor pairs, we introduce several num-
bers.
Let dm =(m,n —1)=(m,m+n—1),
dp=(m-1,n)=(m+n-1,2),
m=dnpa,n—1=d,o' and
n=d,fand m—-1=d,0.
Then (a,a') = (8,8') = (a,8') = (', 8) = (dm,ds) = 1.
Theorem 2.4. For integers m > n > 1,
a) a pair [m,n] is an FP if and only ifd,, = B+ ',
b) a pair [m,n] is an FP if and only if dy = o + o'.
Proof. a) First we assume that [m,n] is an FP.
Then f'n = f'd.f = (m —1)8.
Hence if m > 2, then

B
n = E(m— 1). (1)
From Theorem 2.2,

"dpdy, = m+n-—1. (2)
Substituting from (1) into (2), we obtain

dnd, = m+§(m—l)—1 = %-'ﬂm-—l).
Then dnd.f' = (B+8)(m-1).

Substituting from d,3' = m — 1, we obtain
dm(m—1) = (B+8")(m-1).

Since m > 2, we obtain d,, = 8+ £'.
IIm=1,thenn=1,d, =d, =f=1and f' =0.
Therefore d,, = 8+ 8. '

For the converse, we assume that d,, = 8 + 3'.
By multiplying by d, both sides of the equation, we obtain

dmdn = da(B+B') = n+(m—-1) = m+n—1

Hence (m +n — 1) | mn.
b) Similarly proved. O
Corollary 2.5. For any integers m > n > 1,



a) a pair [m,n] is an FP if and only if (B+ B') | m,

b) a pair [m,n] is an FP if and only if (@ +o')|n. O

Theorem 2.6. For any integers m,n suchthatm>n>1lorm=n=1,
a) a pair [m,n] is an FP if and only if af — a'f' =1,

b) @ pair [m,n] is an FP if and only if af' —a'B=m — n.

Proof. a) Let us assume that [m, n] is an FP.

From the definition of o, o, 8 and §',

(m=1)(n-1) = dpd,a'B'.

Then mn—(m+n—1) = dpd,o'f'.
Substituting m and » from m = d,@ and n = d, 3, we obtain

dpdoaf —dpd,a'f = m+n—1.

Then dmdn(af—a'f') = m+n-1.
By Theorem 2.2, of —o'f' = 1.

For the converse, by multiplying by d,,d, both sides of af-a'f =1,
we obtain

dmdn(af - &'B') = dmdy.

Then mn—(m—1)(n—1) = dpd,.
Then m+n—1 = dndy.

By Theorem 2.2, (m+n —1) | mn.

b) Let us assume that [m,n] is an FP.

m(m—1)=—n(n—1) = dpdpaf' —dnd.a’'p

Then (m=-n)m+n-1) = dy d,,(ozﬂ -a'p)
If m > n, by Theorem 2.2, m —n = of' — a'p.
IHm=n=1thena=8=1and o' =8 =0.
Hence m — n = af8' — o'p.

For the converse, we consider two cases.
i) m > n > 1. By multiplying by dp,d, both sides of af' — o' = m.— n,
we obtain

dmdn(af' —o'B) = dpda(m —n).

Then m(m —1)—a(n—1) = dpd.(m —n).

Then (m—n)m+n-1) = dpdna(m —n).

Since m > n, we obtain m +n — 1 =d, d,.

Hence (m+n —1)| mn.

)m=n=1. In thiscase,dp, =a=1,0'=0,d, =F=1and §' =0.
Therefore af' — o' = 0 = m — n, and we have (m +n — 1) | mn.
Theorem 2.7. For any integersm, n > 1,

a) a pair [m,n] is an FP if and only if

B+B) +1 = 0(mod @ +0'),



) a pair [m,n] is an FP if and only if

(a+a")8'+1 = 0 (mod B+ B'),
¢) a pair [m,n] is an FP if and only if

(B+B)Yx—1 = 0(mod o+ a'),
d) a pair [m,n] is an FP if and only if

(e +a')8-1 = 0 (mod B+ ')

Proof. a) Let us assume that [m,n] is an FP.
From Theorem 2.6,
(@+a)B+8) = aB+af +a'f+d'p
_— (alﬁl + 1)+aﬁ' +a'ﬂ+a'ﬂ'
= (e+) +(B+ ) +1.
Therefore, (B + ')’ +1 =0 (mod a +a').
For the converse, let us assume that

(B+pBY +1 = 0(mod a+a').

Then there exists an integer s such that

B+pB) +1 = (a+a')s. (1)

From definition,
m = dpa = d.fB' +1, (2)
n = dma'+1 = dup. (3)

Adding (2) to (3) yields
dn(a+a') = do(B+5).

Since (dm,ds) = 1, we obtain

dm | (B+ ') and dp | (a + ).

Let
= B+B _ a+a
T odm dy
Then
B+pB = tdn and a+a' = td,. (4)

Substituting from (4) into (1), we obtain

tdpo' +1 = td,s.



Therefore
H(dps —dme') = 1. (5)

Since t > 0, we obtain t = 1 and dy, s — dypo’ = 1.

Then from (4) we obtain B+ ' = dm and o + o' =d,.
By Theorem 2.4, [m,n] is an FP.

b), ¢) and d) are similarly proved. O

3. Classification of factor pairs

In this section, we investigate the structure of the set of factor pairs
and classify factor pairs.

Let S be the set of factor pairs of positive integers. Let =, and =g be
binary relations on S defined by

[m1,m1] =a [m 'n.]—‘—ml = 22 .nd m-1l _m—l
1, 1] =a 2y 2 dm1 dmz dnu dm; ’
n ng my — 1 mog — 1
mi,n1 = ma,ng] = —— = — and =
[ 1 ] ﬂ [ ] dn1 dn; dnl dng

Then =, (resp. =g) is an equivalence relation on S and S is partitioned
into equivalence classes with respect to =, (resp. =g). We denote those
equivalence classes as follows.

S(a,0') = {[m,n] € Sldi = o and 2 = a'},

$6.0) = {mnl € 51 = p ana 272 = g,
For [mi,n;] € S, we write
dm.‘ = (mi’ni—l)’ dn; = (mi_17ni)1

m; = dp,ai, ni—1 = dm‘.a:-,
n; = dy,f;i and m; —1 = dn‘ﬁ:

Lemma 3.1. If FP’s [m1,n1] and [m2,nq] are members of S(a, '), then
dmy = dm, (mod a+c').

If FP’s [my,n1] and [m2, ny] are members of S'(B3, '), then
dp, = dg, (mod B+ p).

Proof. First suppose that o’ > 0. By Theorem 2.7,

(Br+ B +1 = 0 (mod @+ '), (1)



B2+ B5)a’'+1 = 0 (mod o+ o).
By subtracting (2) from (1), we have

(Br+ B = (B2+B3)d (mod a+a).

Since (o', a + ') = 1, we obtain

(Br+B1) = (B2+ ;) (mod a+a).

By Theorem 2.4, dyp, = dm, (mod a + o).

If o/ = 0, then we have @ = 1. Therefore a + o'
dm, (mod o+ a').

The remaining half is similarly proved. O

Lemma 3.2. For FP’s [my,n1], [m2,n2] € S(a,0’),
there is an integer k such that

B2 = Pr+ ko' and By = By + ko

Similarly, for FP’s [my, ny], [m2,n2] € S'(8,8'),
there is an integer k' such that

as = ay+k'f and oy = o] +K'B.

Proof. By Lemma 3.1,

(B +B8)) = (B24P2) (moda+of).

Then there exists an integer k such that

Ba+ By = (Br+B)+k(e+c').
By Theorem 2.6,

o1f1 — By = afi—d'f =1

azfy — ayfly = afz—a'fy

From (1),(2) and (3), we obtain

I
-

afy—a'By = afy —o'{(f1+ )+ k(a+ ') - o}

= af - 'B.
Then (a+0')82 = (a+a')p1+ ka'(a+ o).
Since a + a' > 0, we have f; = (1 + ko'.
Hence by (1), 85 = B + ko.
The remaining half is similarly proved. 0O

(2)

1 and dp, =

(1)

(2)
©)



Now we will introduce an order relation in S(a,a').
Suppose that an FP [m,n] is a member of S(a, a').
Thenlet oy =@, 0} =o', /1 =8+, 81 =0 +a,
Ay =P1+ B =a+a' +B+0,ds, =ar1 +0] =a+0,
my =dp,01 =o(a+a' +f+p')and ny =dg, b1 = (a+')(f+).
Since [m,n]) € S(a,a'),m=dna=a(f+0')=d.f'+1=F'(a+a')+1
andn=d,f=P(a+a')=dna'+1=0a'(B+8')+1
Therefore m; +n1 —1=a(a+a’'+ B8+ 8 )+ (a+a')B+a') -1
zala+od +B+p0)+a'(e+a')+B(a+a') -1
=ola+a +B+p)+ ' (a+a')+'(B+5)
=(e+a)a+o' +B+8") | min,.
Therefore, [m;,n,] is an FP.
Similarly, let a2 = a, a4 =0/, fo=8—-d', 5= -0,
dm, =ﬁ2+ﬂ£ =f+p -a-d, dn, =a2+alz=a+a"
mo =dp,as =a(f+0' —a—a')and ng =ds, 02 = (a+a')(B - ).
If ma,ny > 1, then [mo,no] is also an FP.
Therefore, elements in S(e, ') are linearly ordered with respect to the
natural order of 8 + .

Similarly, elements in $'(8, 3') are linearly ordered with respect to the
natural order of o + o'."

Since, @, 8 > 0 and o', ' > 0, every equivalence class has the least element.

Lemma 3.3. An FP [m,n] is the least element of S(a, a') if and only if

(B+ B') is the least solution of the equation o'z +1 =0 (mod o + o').

Proof. Let us assume that [m,n] is the least element of S(e,a'). From

the assumption f; = f—a' <0orf;=p' —-a <0.

Ifi=B—0'<0,then B =p'—a<0,sincea(f—-a')-a'(B-—0a)=1

and &'(f' —a)=a(f-a')-1<0.

Therefore f + ' < a + a'. From Theorem 2.7,

B+ 8" +1=0(mod a+a'). Since [m,n] is an FP, 8+ ' > 0 and

(o, a+0a')=1,(B+p') is the least solution of &'z +1 = 0 (mod o + o).
If B{ =B’ — @ <0, then two cases arise.

i) &' > 0. In this case, the same result is obtained.

il) @' = 0. In thiscase, a=f=1and o' =f' = 0.

Then any integer is a solution of o'z + 1 = 0 (mod a + o'). In this
case f+ ' = 1 and this mean B + B’ is the least solution of o'z + 1 =
0 (mod o + o).

For the converse, suppose that (8+/0') is the least solution of o’z +1 =
0 (mod a + ').

Then 0 < B+ B < a + o, and therefore [m,n] is the least element of
S(e,a'). O ‘

A similar result is valid for S'(8,8').

Lemma 3.4. An FP [m,n] is the least element of both S(a,a') and
S5'(B,8') if and only if m =n = 1.

Proof. Hm=n=1,thena=8=1,0' = =0and a+a' = f+8' = 1.
Therefore (B + (') is the least solution of o'z + 1 = 0 (mod a + o') and
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(a + ') is the least solution of B'y + 1 = 0 (mod B + f').
Therefore [m,n] is the least element of S(,a’) and S'(B, 8').

For the converse, let us assume that [m,n] is the least element of both
S(a,a') and S'(B,B').
Then a + o' = B+ . Since (B+ B')a' +1 = 0 (mod o + ') and
a+a' =f+p', we have 1 = 0 (mod a+a'). Therefore @ +o' = 1. Since
a>0and o' >0, =1 and o = 0. By the same reason, § = 1 and
B =0. Thend, =f+pf =landd, =a+o'=1.
Hence m =dpa=1landn=d,f=1. O
Lemma 3.5. The equivalence classes S(a,0') and S'(B, B') have at most
one element in common.
Proof. omitted.
Lemma 3.6. Every FP [m,n] is the least element of S(a,a') or of
S'(B,B"), or of both.
Proof. From Theorem 2.7, o, o', B and B satisfly the following equations,

B+B) +1=0 (mod a +0'),

(@+e")8'+1=0 (mod B+ f').

Therefore, B+ 8' <a+o' ora+o' <f+p ora+a' =+p.

Hence (6+0') is the least solution of the equation o'z +1 = 0 (mod ¢ +<')
or (a4 ') is the least solution of the equation B'y +1 = 0 (mod B + f')
or both. Therefore, the statement is proved. 0O

By Lemma 3.4, if an FP [m, n] is the least element of both S(a, ') and
S'(B,B"), then m = n = 1. Therefore, any other FP is the least element
of exactly one of S(a, ') and S'(8, 8').

With the preparation up to here, we define a graph on S. Let G(S)
be a directed graph with vertex set S and there is a directed edge from v
to ¥’ if v' is a next element of v in S(a, ') or in $'(B, B') with respect to
the order introduced above.

Theorem 3.7. G(S) is an infinite binary tree with the root [1,1].
Proof. From the definition, every vertex of G(S) is of outdegree 2. From
Lemma 3.4 and 3.6, every vertex other than [1,1] is of indegree 1. There-
fore, if there is a directed edge from v to v’ and v’ is the next element of
v in S(a,o')(resp. S'(8,B")), then we call o' the left son (resp. right son)
of v, and v the father of +'.

Let [m,n] be any vertex of G(S). If [m,n] # [1,1], then either [m, n]
is the least element of S(@,a') or the least element of S'(8,8') for some
o, o', B and B'. Without loss of generality, we assume that [m,n] is
the least element of S(@,a'). Then we can trace to the least element of
S'(B,B'). Then it is an element of S(e1,a)) for some a;, o). Ifit is
the least element of S(a;, ), then by Lemma 3.4, it is the element [1, 1].
If it is not the least element of S(aj,}), then we can trace to the least
element of S(aj, a}). At each step, the value of a + o' or §+ ' decreases
keeping positivity. Therefore, we can arrive at the element which is the

11



least element of both S(e, o') and S'(B, #') for some a, o', B and #'. But
it has to be [1,1], Therefore, any element is joined from the element [1, 1]
by a unique directed path. Since [1,1] has not a father and S is an infinite
set, G(S) is an infinite binary tree with root [1,1]. O

A part of the left half of the binary tree G(S) on S is shown in Fig. 1.
Since G(S) is symmetric, the right half of G(S) is obtained from the left
half by reversing.
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4. Isomorphic tree factors of a complete bipartite
graph

In this section, we investigate the structure of isomorphic tree factors
of K(m,n) based on the results in Section 2. In many papers dealing
with isomorphic factorizations, specific permutations are adopted to realize
isomorphic factorizations and we follow this method.

Let the partite sets of the complete bipartite graph K(m,n) be U =
{uo,u1, **,Um-1} and V = {vo,v1,*+,vn—1}. Let ¢ and 7 be permu-
tations on U and V, respectively, such that o = y5y1+--74,,-1 and 7 =
bod1 - ba, -1, where 7; (0 < 1 < dm—1) and ¢; (0 < j < dy —1) are dis-
joint permutations of length o and B, respectively. Let I'; (0 <4 < dp—1)
and ®; (0 < j < d, — 1) be defined as follows;

Li={ueU|m(y)#u},

®; ={veV|¢;(v)#}
Then Linlj=¢ (i #7)

®:nd;=¢ (i#£7)
ITi|=a (0<i<dn—1),
Ile=ﬂ (OSden—l),

and U is partitioned into a disjoint union of I';’s and V is partitioned into
a disjoint union of @;’s.

Let G be a bipartite graph with partite sets U and V, and with edge set
E(G). Since we consider isomorphic factorizations under the permutations
o and 7, we define a graph G;; as follows. Gj; is a bipartite graph with
partite sets U and V, and with edge set

E(Gij) = {o'(u)r’(v) | w € E(G), we U, ve V}.

Then G = G,’j (0 <1<a-1,0 S] < ﬂ—l) and Ggo = G. IfU",j E(G,J)
is a partition of E(K(m,n)), then we say that G is an isomorphic factor
of K(m,n) under o and 7, or G divides K(m,n) under ¢ and 7.

Let E;; = {wv|uely, ve ®;},(0<i<dn—1,0<j<d, —1). Then
Ui ; Eij is a partition of E(K(m,n)).

Lemma 4.1. A bipartite graph G with partite sets U and V divides
K(m,n) under o and 7 if and only if | E(G)NE;; |= 1 for 0 < ¢ <
dm — 1, 0 < 5 < d, — 1. If G divides K(m,n) under ¢ and 7, then
| E(G)|=m+n-1.

Proof. First, assume that G divides K(m,n) under ¢ and 7. Then, G
has just one edge in every Ejj, since any edge in E;; is transformed to
any other edge in E;j under o and 7. The converse is also true. There
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are dy, [yis and dy ®jis, and this means that there are dpd, E;ji;. This
shows that | E(G) | = dmde=m+n-1. O
Corollary 4.2. If G divides K(m,n) under o and 7, then

Z deg(u)=d, (0<i<d, —1),
©€r;

Z deg(v)=d, (0<;j<d,—1). O
VEQJ'
Let Ng(v) be the set of vertices of G adjacent with v.
Corollary 4.3. If G divides K(m,n) under o and 7, then

Ne(u)NNg(v')=¢, u# v, v,u' €}, 0<i<d, —1,

Ng(v)NNg(v')=¢, v#v, v,v €®;, 0<j<d, - 1. O

If G divides K(m,n) under o and 7 and if G is a tree, then G is an
isomorphic tree factor of K(m,n). Hence our purpose in the remaining of
this paper is to construct such a tree.

Now, we investigate the structure of isomorphic tree factors of K(m, n).
We assume that m > n > 2 and m +n — 1 | mn. We give a labelling to
vertices of G as follows.

T; ’={u?au}:""u?-l}1 (OSiSdm" 1)’
®; = {v],v),-,u '} (05 <da-1),

where 7 = (v, o}, -, uf™") and ¢ = (o, 0}, -, uf ),
Definition 4.4. A graph G dividing K(m,n) under o and 7 is said to be

interlaced if
No(®;) = Uueo; No(v) = {1} |0<i<dpn -1}, 0<j<a—1). O
If G is an interlaced graph, then

Uo<j<a—1N6(®5) = Uo<i<dn—1Ti = UL

Let G = (U U V,E) be an interlaced tree. A bipartite graph G, is
defined from G as follows. Bipartition of V(G,)is U; = Uo<j<a—-1®; and
Vi = Uagj<d,—1®; (hU Vi isapartitionof V. |V |=| T+ | W |=
n). Vertices u € U; and v € V; are joined by an edge if and only if
NG(u) n NG('U) # ¢ in G.

Lemma 4.5. Let G be an interlaced tree, then Gy is a tree such that

Z degg,(v) =dm, (@ <j<d,—1).
vEd)j

18



Proof. Since G is interlaced, each v in V] is adjacent with some vertex u
inU;. If | Ng(v)NNg(u) |> 2, then G has a cycle and this contradicts the
assumption. Therefore, | Ng(v)N Ng(u) |= 1. Then degg(v) = degg, (v).
Therefore, E«eqy degg,(v) = dm, (@ <j <dp —1).

| E(G1) |=dm(dn — @) =a'dy =n —1.

[ V(G1) |=] U | + | W1 |= (Vogj<d, ~195) = n.

Then | E(G1) |=| V(Gy) | -1.

Finally, in order to show that G, is acyclic, let us assume contrary that
G, has a cycle. Let the cycle be C : uy, vy, ug, v9,- -+, ug, vk, 1.

Since | Ng(u1) N Ng(v1) |= | No(v1) N Ng(u2) |= -+ =| Ng(w)n
Ng(u1) |= 1, we can construct a cycle in G from C. This contradicts
the assumption. Hence G, is acyclic. Therefore G, is a tree. O

In the remaining, we construct an interlaced tree from a tree with
partite sets U; and V;, and satisfying Z,eq,’, degg,(v) = dm, (a £ 7 <
dy —1).

Let G, be a tree with partite sets U and V) such that Uy = Up<j<a-19;
and V; = Us<j<d,~1®j, and such that EvEQ,' dega,(v) = dpm, (a<i<
d, —1).

Let us define a graph G from G, as follows.

Let edges of Gy be e, €1, -, €atd, —1. Subdivide each edge of G; and let
w; be the added vertex on the edge e;. The resulting graph is G.
Next, we construct a graph K(G1) from G5 as follows.
Let K(G,) be a graph such that
V(K(G1)) ={wi|0<i< a'dn — 1} and
E(K(G1)) = {ww' | w,w' € Ng,(®5), a<j<d,—1.7)
or
w € Ng,(v), w' € Ng,(v'),
v,v €®;, v£V, 0<j<a~-1

Now we consider colorings of K(G}) such that adjacent vertices are
not colored by the same color. If the vertices of K(G;) are colored, then
the same coloring is possible for vertices wq, w1, -+, Wqtd, -1 of G2. Since
| N6, (®;) |= dm, @ < j < dy —1, chromatic number x(K(G1)) satisfies
X(K(G1)) > du.

Lemma 4.6. If the vertices wo, w1, **, Wa'd,,—1 0of G2 are colored with the
same colors as vertices in K(G,), then the coloring satisfies the following
properties;

i) for @ < j < dg — 1, dyp vertices of Ng,(®;) are colored with different
colors,

i) for 0 < 7 < a—1, and for v,v' € ®;, v £ V', each vertezx in Ng,(v)
is given a color different from the colors given to vertices in Ng,(v'), and
vice versa.

Proof. omitted.
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When x(K(G1)) = dm, we construct a graph G3 from G, as follows.

For a given dn-coloring of K(G,), give the same color to vertices
Wo, W1, Wa'd,,—1 Of Ga.

Let the set of d,, colors be C' = {co,c1,°*,Cd,,—1}-

For each vertex v € Up<j<a-1®j, let Si(v) be the set of vertices in Ng, (v)
with color ¢;.

If Si(v) # ¢, delete vertices in S;(v) and incident edges from G and add a
vertex s;(v) and edges joining s;(v) and vertices which were adjacent with
Si(v) in Go. Execute this operation for all vertices in Uo<j<a—-1®; and for
all colors ¢g,¢1,+++, ¢4, —1-

The resulting graph is G3.

Lemma 4.7. If x(K(G1)) = dm, then G5 is a tree such that

i) fora <j<d,—1,| Ng,(®;) |=dm and vertices in Ng,(®;) are given
different colors,

ii) for 0 <j <a-1, and for v,v' € ¥, v # 1/, each vertez in Ng,(v)
is given a color different from colors given to vertices in Ng,(v'), and vice
versa.

iii) for 0<j <a—1,| Ng, () |I< dpm-

Proof. From the construction method, G3 is connected.

i) Since d, vertices in Ng,(®;), @ < j < d, — 1, are given different col-
ors, we have | Ng,(®;) |= dm, @ < j < dy — 1, and vertices in Ng,(®;),
a <j <d, — 1, are given different colors.

ii) Fora < j < d, —1 and v,v' € ®; (v # v'), each vertex in Ng,(v) is
given a color different from colors given to each vertex in Ng, (v'). There-
fore each vertex in Ng,(v) is given a color different from colors given to
each vertex in Ng,(v'), and vice versa.

iii) From ii), | Ng,(®;) |[< dm for 0 < j < a —1.

Since the number of edges in G2 minus the number of edges in G is
equal to the number of vertices in G minus the number of vertices in G4,
and since G3 is connected, G3 is a tree.

When x(K(G1)) = dm, we have the following key theorem.

Theorem 4.8. If x(K(G1)) = dm, then G3 is extensible to an interlaced
iree.

Proof. Let the color class of dp, colors be C' = {cq,¢1,--+,¢q,,—1}. For
v € Upgj<a—19j, let CS(wv) be the set of colors given to vertices in Ng, (v).
Then {from Lemma 4.7, CS(v) N CS(v') = ¢ for v,v' € @, v # ', 0 <
j<a=1.

Since | Ng, (®;) |€ dm, 0 < j < a—1, the color class C is partitioned into
CPuCtu---UCF ! 50 that Ci 2 CS(+), 0<i < B — 1.

Foreach 1,j(0 < i < f -1, 0<j < a—1), add | C} — CS(v}) | vertices
to G4, join those vertices with v} and give different colors in C} — CS(vJ‘:)
to those vertices. )

For each 4,7(0 < i < dp — 1, 0 < j < dp — 1), give the label u! to the
vertex in Ng,(®;) with color ¢;.
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The resulting tree is G. Then G divides K(m,n) under ¢ and 7, and
satisfies

Ng(®;)={u} |0<i<dn—-1}, (0<j<a—1)
Therefore, G is an interlaced tree and this completes the proof. O

5. Existence of interlaced trees

In the previous section, we have shown that if there exists a tree G with
partite sets U; and V; satisfying Eué@_,' degg,(v) =dpm,a < j < dy—1and
x(K(G1)) = dm, then we can find an interlaced tree. Then, the remaining
task is to show the existence of such a tree G;.

Construction Algorithm of G,
Step 1. Determine ag, a;,a2,:-,@ap so that
(1) ag = 0,
(2) @, > 2 are integers, (1 <7 < a'f),
(3) Yooy tips; =dm =B+ F, (0< i<’ —1).
Step 2. Construct graphs H; (0 <i < a'f—1).
H; is a complete bipartite graph K(1, a;41) with partite sets U; = {vap4:}
and V; = {vj | Tjopar —i <5 < Cihpar — (i + 1)}
Step 3. G; = UOSiSa’ﬂ'—IH’i- u]

Note that existence of integers ao,a1,a2,: - ,a44 satisfying conditions
in Step 1 is shown as follows. If a, =2 (1 < r < o'fB), then Ef=l Gigyj =
26 < f+p' (0 <4 < a'—1). Therefore, we can determine a, (1 < 7 < o'f)
satisfying (2) and (3) in Step 1.

Lemma 5.1. The graph Gy obtained by the above algorithm satisfies
x(K(G1)) =dm.

Proof. Subdivide each edge of Gy and give a label u;4; for the vertex
added on the edge vap4iv;. The resulting graph is Gs.

Let q)J = {vjﬂ’vfﬂ+lr Ty vjﬂ+(ﬂ—1)}’ (0 <j<d. - 1)-

Then, for 0 < j < o' =1, NG, (Pats) = {%jdps Ujdmt1,"**» Ujd, 4(dp—1) }-

Let j be the residue of ¢ mod d,, and give the color ¢; to the vertex
%;. Then Ng,(®;), (o < j < d, — 1), consists of dy, vertices of different
colors.  Also, vertices in Ng,(®;), (0 < j < a — 1), are given different
colors. Therefore, x(K(G1)) = dp-

Now we should conclude this paper.

Starting from the above algorithm, we can construct an interlaced tree
for m,n such that m +n — 1 | mn. Therefore, this means the following
theorem. '

Theorem 5.2. A complete bipartite graph K(m,n) is divisible by a tree
tfand only if m+n—1|mn. O
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6. Example

In this section, we show an example to construct an isomorphic tree
factor of K(m, ) Here we use the FP [m,n] = [21,15]. Then, d =7,
dy, =5, a=3,a =2,8 =3, 8 =4. Graphs are constructed according

to the algorithm and resnlts in Sections 4 and 5.

1) Hi'S

AMAAL

Vi Vo Vo Vg Vg V4 V4 Vg Vg Vg Vq Ve Vg

H, H, H, H H, Hs
Fig. 2-1
2) G,
Vg Vis Vi Vi2 Viz Vi

22



3) G,

vy Vi Vo vy V4 Vs Ve Ve Vg

Fig. 2-3
4) Coloxring of G

Vg Vio Vi Vi2 Viz Vg

Vg Vi A\, V3 Vy Vs Vs Ve Vg
Fig. 2-4

5) Gj

Vg Vio Vi Vi2 Viz Vi

23



References

[1] J.-C.Bermond and D.Sotteau, Graph decomposition and G-designs,
Congr. Numer., 15(1976) 53-72.

[2] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, North-
Holland (1976).

[3] F.Harary and R.W.Robinson, Isomorphic factorizations X: unsolved
problems, J. Graph Theory, 9(1985) 67-86.

[4] F.Harary, R.W.Robinson and N.C.Wormald, Isomorphic factoriza-
tions I: Complete graphs, Trans. Amer. Math. Soc., 242(1978)

243-260.

[5] F.Harary, R.W.Robinson and N.C.Wormald, Isomorphic factoriza-
tions III: Complete multipartite graphs, In: Combinatorial Mathe-
matics (Springer Lecture Notes in Math. 686), (1978) 47-54, Springer,
Berlin.

[6] S.J.Quinn, Isomorphic factorizations of complete equipartite graphs,
J. Graph Theory, 7(1983) 285-310.

[7] H.N.Shapiro, Introduction to the Theory of Numbers, John Willey &
Sons, New York (1983). ,

[8] K.Ushio, S.Tazara and S.Yamamoto, On claw-decomposition of a
complete multi-partite graph, Hiroshima Math. J., 8(1978) 207-210.



[9] J.F.Wang, Isomorphic factorization of complete equipartite graph,
Scientia Sinica Ser. A, 25(1982) 1152-1164.

[10] S.Yamamoto, H.Ikeda, S.Shige-eda, K.Ushio and N.Hamada, On
claw-decomposition of complete graphs and complcte bigraphs, Hi-
roshima Math. J., 5(1975) 33-42.

Yukio Shibata

Department of Computer Science
Gunma University

1-5-1 Tenjin-cho, Kiryu, Gunma
376 Japan

Yasuo Seki
NTT Corporation
66-2 Horikawa-cho, Saiwaiku,

Kawasaki, Kanagawa,
210 Japan

25



