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Abstract. Using the permutation action of the group PSL2(2™) onits dihedral sub-
groups of order 2(2™ + 1) for the description of the class of designs W(2™) derived
from regular ovals in the desarguesian projective plane of order 2™, we construct a
2-design of ovals for W(2™) for m > 3, and thus determine certain properties of the
binary codes of these classes of designs.

1. Introduction

The class of designs that we consider were given originally through a general
construction of Bose and Shrikhande [4], and involves a finite projective plane
I1 of even order n with an oval O, i.e. an (n+ 2)-arc (also called a hyperoval
in the literature). Define an incidence structure, which we denote by w(I11,0),
as follows: the point set P is the set of cardinality %’n(n — 1) consisting of the
exterior lines of @, i.e. the lines of IT that do not meet O; the block set B is the set
of points of IT not on O; incidence is defined as in I . Then, if n > 2,W(I1,0)
isa2-(fn(n— 1), 5n,1) design, with b = |B| = n?2 — 1,7 = n+ 1 and order
r—1l=n

In particular, forn=2™,m > 2, W(II,0) isa2 —@2ml@2m-1),2™11)
design, withb = 22™—1,r = 2™+ 1,and order n = 2™, For Il = PG> (m), with
n= 2™, and O a regular oval (i.e. a conic together with its nucleus), we write
W(I1,0) = W(n), following Buekenhout et al. [5], since all regular ovals are
equivalent. Wertheimer [9, Prop. 5.2] and [10] found these designs in a new way
amongst a general class of elliptic quadric designs. For our purposes we need
yet another construction, which we take from Kantor [7,Lemma 6.3] but see also
Camina [6]. -

Let G = PSLy(n), where n= 2™ > 4, and let H be a subgroup of  that
is dihedral, of order 2(n+ 1). Now let G act in the usual way on the set of right
cosets of H, which we will denote by Q. Since G is simple, the representation is
faithful, and we have |Q| = (n+ 1)n(n— 1)/2(n+ 1) = $n(n— 1). For any
point & of Q, |Ga| = |H| = 2(n+ 1). The involutions of G fix exactly 2™
points of Q (see [7, p. 508]), and we take these sets of points as the blocks of the
design. Thus a point « is on a block ¢ if and only if ¢ fixes @, i.e. ¢ is in Gq. Since
each G, is dihedral of order 2(n+ 1), it contains n+ 1 involutions, so every point
aisonr = n+ 1 blocks. The number b of blocks is the number of involutions in
G,ie. (n+ 1)(n—1) = »* — 1. Since all involutions are conjugate, the number
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of points per block is a constant, k, where k is given by bk = vr, since we at least
have a 1-design. Thus k = 1n. To show that we have a 2-design, notice first that
if o and B are two distinct points of Q, then |G, N G| < 2, so there is at most
one involution fixing « and B, i.e. there is at most one block through « and 3.
Now, counting points on blocks through «, we have « on n+ 1 blocks, each with
i—n— 1 points other than «, and no point on more than one block through «.. This
gives the number of points on a block with az as (n+ 1)($n— 1) = v — 1. Thus

we have a 2-design with \ = 1.

For n = 8, only the desarguesian plane exists, and all ovals are regular. The de-
sign W(8) is then the familiar smallest Ree unital, with parameters 2-(28,4,1),
and a doubly transitive automorphism group, PI" L, (8). For n > 8, the auto-
morphism group of W (m) is only 14-transitive: see [5).

2. Ovals for W(n),n> 8

For a 2-(v, k, )\) design D of even order n = r — A, where r is the number of
blocks through a point, an oval is an arc of maximal size, viz (r + \) /A: see [1]
for discussion on this. There it was shown that if D has ovals, and if some of these
ovals form a 2-design, then the binary code C of D has minimum weight equal to
k, the block size of D. (By the code of a design D over a prime field F, we mean
the subspace of F;' spanned by the characteristic functions on the blocks of D: see
[1], for example.)

We show now how to find a set of ovals for W(n), for n > 8, and then how
these ovals form the blocks of a 2-design. Notice that the size of an oval for W (n)
isn+ 2 (since A = 1, and r = n+ 1), which is the same as the size of an oval
in the plane. Essentially, of course, we are simply looking for a particular class of
ovals in the dual plane of 1. '

First some notation: for a particular o in Q let T denote the set of involutions
(equivalently, blocks) in G,. So |T'| = n+ 1. Further, since |Gq 4| = 2 fora # B,
each orbit of G, on Q — {a} has length n+ 1. We denote these n — 1 orbits
by Oi(a), for1 < i < 3n— 1. We will show that {a} U O;(a) is an oval for
W (n) for each 1 and every o, whenn > 8.

Proposition 1. Forevery block £ with « not on £, there is a unique involution t
in T such that £* = £.

Proof: The number of blocks £ with a ¢ £is (n? —1) —(n+ 1) = 2($n—1)(n+
1). Each t in T fixes n points and has 3[n(n—1) — 3n] = in(in—1)
transpositions. If a block £ is fixed by ¢, and « ¢ £ then no point of £ can be fixed
by t, so each ¢ fixes 3n(4n— 1)/ n blocks other than its pointwise-fixed block,
i.e. each t fixes n — 2 blocks that do not contain a.

Now |Gy e| = 1 or 2, so at most one involution in T' can fix any given block.
Now count the members of the set S = {(£,t) |t € T, a ¢ £, £t = £} intwo ways:
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involutions first gives |S| = (n+ 1)(n+ 2); blocks first gives |S| = 3y, Te.
where z, is the number of involutions in 7" that fix £, i.e. z = 0 or 1. Since there
are (n— 2)(n+ 1) such blocks £, we must have z; = 1 forall £ ¢ «, proving the
assertion.

Proposition 2. If B and ~y are two points in O;(c), then a, B, ~y are not fogether
on a block of W(m).

Proof: Since B and ~ are together in an orbit of G, there is an element g € G
such that49 = B. Suppose «, 8, <y are together on a block. Then there existst € T
such that ¢ fixes «, 8 and 4. Then t? € T and also fixes « and 8, so t = 9. But
since H is dihedral of order 2(n + 1), with n = 2™, Cy(t), for any involution,
is (t). Thus g cannot centralize ¢, and we have a contradiction.

Proposition 3. Foreachi,1 <i< n—1, and eacha € Q, {a} U Oi(a) is
an oval for W(n),n> 8.

Proof: For any fixed « and 1, let us write A = {a} U O;(«). First notice that
|A] = n+ 2, which is the correct size for an oval for W(n).

Let B € O;(a). There are n+ 1 blocks through 3, one of which passes through
«. The other = do not pass through «, and hence, by Proposition 1, there is an
involution t € T for each of these n blocks that fixes the block. Since t is in T',
and O;( ) is fixed by T, B* € O;( ), and hence each of these n blocks must meet
0;( ) again. But there are exactly n other points on O;( ) and each is certainly
on a block with 8. Thus the blocks are all distinct, and so O;(«) is an (n+ 1) -arc.
By Proposition 2, A is an oval.

‘We now show that, with the set of ovals as constucted in Proposition 3 as blocks,
a new design can be defined on the point set Q. We need another observation:

Proposition 4. The design W (n) is resolvable, and the fixed blocks of any in-
volution form a parallel class of blocks.

Proof: A Sylow 2-subgroup of G is elementary abelian of order n, and thus con-
tains n — 1 involutions. Since Sylow 2-subgroups of G intersect trivially, the
involutions are partitioned in this way. Each involution ¢ fixes n— 1 blocks, and
these form a parallel class, these being the blocks that correspond to the involu-
tions in the Sylow 2-subgroup that contains ¢.

Theorem. With notation as defined above, and n > 8, the incidence structure
D(n) with point set Q and block set B={{a}UOi(a)[1 < i< n—1,a €
Q},isa2{3n(n—1),n+ 2,n+ 2) design.

Proof: Clearly the structure is a 1-design, with b = |B| = ;n(n— 1)(3n— 1),
k=n+2,andr=(in—1)+(In(n-1) -1) = 32 - 2.

Let B and « be any two points. Then certainly there is a block {B} U O(8)
with v € O(p) and a block {7} U O(y) with 8 € O(x) where O(p) and
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O(y) are orbits of G and G, respectively. These blocks cannot be the same: for
suppose {B} U O(B) = {7} UO(4) = A. Then G, is 2-transitive on A, so that
(n+ 2)(n+ 1) divides the order of G, which is not possible.

Now S and ~ will be in an orbit together for some G, if and only if there is a
t € T for which (B,+) is a transposition. Let £ be the block of W(n) through
B and 4. Then G, is a Sylow 2-subgroup of G, elementary abelian of order =,
and every involution in G, fixes a unique block pointwise. So there are n — 1
parallel blocks corresponding to these involutions, £ being one of them, and £ is
fixed by n — 2 involutions other than the one that fixes it pointwise. Also, Gy is
transitive on the points of 4, since [£] = 1n, and forany 8 € £, |Gp4| = 2, s0
|8%2] = 21Ge| = +n = |£]. Thus every transposition (3,) occurs, and there are
n—2 involutions available, and %—n— 1 transpositions, so each transposition occurs
twice, with different blocks fixed pointwise. So there are two blocks, which are
parallel, giving 2( ;—-n) points for which 8 and ~ are in the same orbit, i.e. giving
n new blocks. Thus the total number of blocks through both 8 and yis n+ 2,
giving A = n+ 2, and showing that D(n) is a 2-design.

Corollary. Each of the binary codes C,(W(n)) and C,(D(n)), for n > 8,
has minimum weight equal fo its block size, ie. %n for W(n) and n+ 2 for
D(n).

Proof: The result of Assmus [1] states that if an even order design D has a 2-
design of ovals, then D has minimum weight equal to its block size. Clearly D(n)
is such a design for D = W(n), proving the first assertion. Also the blocks of
W (n) form a 2-design of ovals for D(7), so the second assertion follows also.

3. Remarks

(1). Wertheimer [9, Theorem 4.8] and [10] constructed the 2-designs of ovals for
W(m) for n > 8 in the general context of designs arising from quadrics.

(2). Forn= 8, the design W(8) is the smallest Ree unital, which is well known
to have ovals. In [2] the larger Ree unitals were examined for the existence
of ovals, and, although none were found, a construction analogous to the
one we have given here yielded arcs of size 3¢ + 1 for the Ree unital of
block size g + 1, where g = 32™*1,

(3). No 2-design of ovals seems to be known for the designs W (II, O) in gen-
eral. Computations using Cayley in the desarguesian plane IT = PG, (16)
with O = H a Hall oval did yield the following fact: if K = PGL3(16),
then evidently K3, which has order 36, is an automorphism group of the de-
sign W = W(II, M), and, acting on the points P of W, it turns out that K3
has two orbits of length 18, and that each of these orbits is an oval for W. In
fact, many other ovals then appeared from a random look at the codewords
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of length 18 in the orthogonal code. It was not clear how a 2-design could be
extracted from these. Comparing the designs W and W (16), that they are
non-isomorphic follows from the nature of their automorphism groups, but
is also demonstrated by the properties of their binary codes: for although the
codes C(W) and C(W(16)) have the same dimension, viz 65 (see [8]),
the hulls of the two designs are vastly different, being of dimension 1and 33
respectively. (The hull is given by CN C*: see [3] for a general discussion
of this code for a design.)

(4). Computations (using Cayley) with n= 8,16 and 32 yielded that the binary
code C(W(n)), where n= 2™, has dimension 3™ — 2™ for each of these
cases. It was conjectured by E.F. Assmus (see [8, Chapter 3]) that this is
always the dimension of this code; in [8] it is shown to be an upper bound for
the dimension. It was also found computationally that the code C(D(n))
is the full orthogonal to the code of W (n) in each of these cases, and that
the dimension of the hull was givenby 3™ —2™(1+ %m) . It is not known
if either of these properties is generally satisfied.

(5). In[8], again through computational results, ovals for some of the translation
planes of order 16 were found, and the corresponding designs constructed.
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