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1. Introduction

It is well known [15] that every graph G has edge-chromatic number A(G) or
A(G) + 1. In the former (latter) case we say G is of class 1 (class 2).

Our goal in this paper is to investigate the edge coloring problem for three im-
portant classes of graphs. In Section 2, we consider outerplanar graphs and give
anew proof of a theorem, first proved by Fiorini [3], that every outerplanar block
other than an odd cycle is class 1. Fiorini’s proof used a major lemma of Vizing
[16] whereas our proof relies on two simple properties of outerplanar blocks. (An-
other proof of the theorem is reported in Fiorini and Wilson [4], but appears incom-
plete since the inductive assumption does not necessarily hold when A(G) = 3.)
In Section 3 we consider 2-degenerate graphs, and show in particular that every 2-
degenerate graph G with A(G) > 4 is class 1. We also suggest that determining
the class of 2-degenerate graphs with A < 3 is probably very difficult. In Section
4 we investigate the problem of edge coloring planar graphs. We give a rather
striking conjecture which states that there is an easy way to characterize the class
of any planar graph. This conjecture in turn implies a number of important results
about edge-coloring planar graphs (e.g., the Four Color Theorem, Vizing’s planar
graph conjecture, the critical graph conjecture for planar graphs and the existence
of a polynomial algorithm to determine the class of a planar graph.)

2. Outerplanar Graphs

An outerplanar graph is a graph which can be embedded in the plane with all
vertices on the border of the outer region. Clearly any outerplanar block except
K, and K contains a Hamiltonian cycle C. An outerpath in an outerplanar block
is a path on C such that the terminal vertices are adjacent vertices of degree larger
than 2 and all the interior vertices have degree 2. The length of a chord zy is the
length of a shortest zy path on C.
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Lemma 1. Let G bean outerplanar block with \(G) > 3. Ifall outerpaths have
length 2 and all endvertices of outerpaths have degree \(G), then /\(G) = 3
or4.

Proof: Suppose A(G) > 5. Then there exists a chord zy of length larger than 2
which is as small possible. Let z, vy, v2,...,v,y,t > 2, be a shortest zy path on
C. Then degv; < 4, for each 1, by the minimality of chord zy. Thus no v; is the
endvertex of an outerpath, which is impossible. |

Lemma 2. If G is an outerplanar block with all outerpaths of length 2 and
all endvertices of outerpaths have degree 4, then there is a vertex which is the
endvertex of two outerpaths.

Proof: Without loss of generality let vy, v5, v3, v4 be consecutive vertices of C
such that vy, vz, v3 is an outerpath and the fourth neighbor of v3 is v;. Further-
more, assume the vertices have been chosen so that the chord v3v; is as small

as possible. If j = 5, then v3 is the required vertex. So assume j > 5. Then
3, vg,.. .,v; contains an outerpath, which by hypothesis must have length 2.
Thenits endvertices have degree 4, and we have a chord smaller than vs, vj, which
is impossible. [ |

Theorem 3. If G is an outerplanar block and not an odd cycle, then G is class 1.

Proof: We use induction on the order n of G and observe the result is true for
small n and for even cycles. Let H be any outerplanar block of order n+ 1 with
A(H) > 3. If H has an outerpath P of length at least three, then remove the
interior vertices of P from H. By the induction assumption the result is edge
colorable with A( H) colors, and we easily extend that coloring to H. Thus we
assume that all outerpaths have length 2. If endvertex u of outerpath P: u,z,v
has degree less than A(H) = t, then we extend any t-edge-coloring of H — z by
coloring zv and then zu with available colors. Thus we assume that all endvertices
of outerpaths have degree A(H). By Lemna 1, A(H) = 3 or4.

If A(H) = 3, identify vertices u, =, and v of any outerpath. We 3-edge-color
the result and then extend that coloring to H.

If A(H) = 4, then by Lemma 2 there is a vertex v as shown in Figure 1. Then
4-edge-color H — y. If four colors are used on the edges incident with v and z, we
can easily extend the coloring to H. So suppose only colors 1,2, and 3 are used as
shown in Fig. 1. If edge uz is not colored 4, then recolor edge vz with 4 and we
are back in an earlier case. Thus assume uz is colored 4. Now interchange colors
2 and 4 at u, and we are again back in the previous case. 1

Since a connected graph with more than one block can easily be edge colored
by suitably using a minimum number of colors on each block we have

Corollary 4. A connected outerplanar graph is class 1 iff it is not an odd cycle.
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Figure 1

3. 2-Degenerate Graphs

The concept of k-degenerate graphs was introduced in [12] and has been investi-
gated in a number of papers including [11] and [13] Specifically a graph is called
k-degenerate if each subgraph has a vertex of degree at most k. Thus all outerpla-
nar graphs are 2-degenerate. However, many 2-degenerate graph are not outer-
planar. For example, the graph obtained by subdividing each edge of K,,,n > 4,
is 2-degenerate but not outerplanar. Since 2-degenerate graphs are a generaliza-
tion of outerplanar graphs, it is natural to attempt to determine which 2-degenerate
graphs are class 1.

Theorem 5. If G is 2 -degenerate with N(G) > 4, then G is class 1.

Proof: Suppose H is a counterexample of smallest order after observing that the
theorem is true for small graphs. It follows then that H has a vertex of degree 2.
Then we have the following two properties.

(1) Each vertex z of degree 2 has both neighbors of degree A. Otherwise, we
can easily extend any A\-edge-coloring of H — z to H.

(2) No two vertices of degree 2 have the same neighbors. In order to see this
suppose degree 2 vertices w; and wy have common neighbors z; and z;.
Then there are two colors available at each of z; and z, and these colors
can be used to color the edges w1, w1 Z3, wy T1, W Ty

Now remove all vertices of degree 2 from H. The result H' is a 2-degenerate
graph and thus has a vertex w of degree at most 2. We may assume w has degree
2, for otherwise, we put one or two of the removed vertices in H' to make w have
degree 2. However, by (1), w has degree A in H. Let wy,...,w;, t = A -2,
be vertices of H — H' which are adjacent to w. For1 < i < t,let z; # w be
a neighbor of w;. According to (2) all z; are distinct and from (1) we know each
has degree A in H.

Now let 1 and 2 be the colors used on the edges of H' incident with w. Each
edge w;z;, 1 < 1 < t, has an available color. Suppose that some z;w; has either
1 or 2 available, then without loss of generality assume 1 is available at z,w;.
Use the available colors on each z;w;. Then successively color wwy, ..., ww;
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with available colors. Since color 1 is used on edges incident with both w and
w,, there is a color available for ww,. Thus we have A-edge-colored H, which is
impossible. Thus we assume 1 and 2 are unavailable at each x;w;.

If the set of colors available at the various z;w; has order at least 2, let these
available colors be G4, ..., C,, r > 2. Without loss of generality we may assume
that C; is available at z;w;, 1 < 1 < r. Color each w;z;, 1 < i < t with the
available color. Color ww; with C;;1 for 1 < i < r and ww, with C;. Now there
are available colors for (consecutively) wwys1, ..., ww. Thus we can A-edge-
color H in this case which is impossible. Thus only one color, say 3, is available
for each z;w;, 1 < 1 < t. Find the maximum 1-3 path P from w. Such a path
contains at most one of the x;. Howevert > 1, so there is a vertex z;, j # 1.
Interchange colors 1 and 3 on P. The result is an edge coloring of H' with colors
2 and 3 used at w and colors 1 and 3 or just color 3 available for the various z;w;.
Either way this returns us to an earlier case and completes the proof. 1

In order to see that the above theorem cannot be improved we observe that any
cubic connected graph with one edge subdivided is 2-degenerate and class 2. In
order to see this let G be the graph which results when one edge of a cubic graph
is subdivided. Clearly G is 2-degenerate with 2k + 1 vertices and 3k + 1 edges.
If G were class 1, then one of its color classes would contain k£ + 1 edges. But
then one of the 2 k + 1 vertices would be incident with 2 edges in the same color
class which would be impossible.

We have seen that 2-degenerate graphs G with A(G) > 4 are class 1, but
that 2-degenerate graphs with one vertex of degree 2 and all others of degree 3
are class 2. In the next section we will give evidence that characterizing the class
of 2-degeneraté graphs G with A(G) < 3 is probably not easy even when G is
planar.

4, Planar Graphs

We begin with the following definition.
Definition A graph G is called overfull if |E(G) |/ |1 IV(G)|] > A(G).

It is clear that an overfull graph G must be class 2, since no color class can
contain more than [%-lV(G) |] edges. We saw in the previous section that a 2-
degenerate graph with degree sequence 322 (i.e., 2k vertices of degree 3 and
one of degree 2) is class 2. It is easily checked that a graph with this degree
sequence is overfull.

On the other hand, there exist class 2 planar graphs which are not themselves
overfull. To form such a graph, let H denote the graph K4 with one edge subdi-
vided. Form G by taking two copies of H and then joining the degree two vertex
in each by an edge. Then G is planar, class 2 but not overfull. Of course G con-
tains a subgraph H with A(H) = A(G) which is overfull. This suggests our
next definition.

122



Definition. A subgraph H of G is called A(G)-overfull if A(H) = N(G) and
H is overfull.

It is apparent that any graph G containing a /A( G) -overfull subgraph is certainly
class 2. On the other hand, there are graphs G with no A(G)-overfull subgraph
which are nonetheless class 2 (e.g., the Petersen graph.) However every example
of a class 2 graph G with no A(G)-overfull subgraph of which we are aware is
nonplanar. This leads us to make the following conjecture, though we must admit
that the only evidence for the conjecture is that neither we nor anyone to whom
we have mentioned the question knows of a counterexample.

Conjecture 1. A planar graph G is class 1 if and only if G does not contain a
N\(QG) -overfilll subgraph.

It is interesting to note that there are class 2 graphs G with crossing number one
which do not contain a A(G) -overfull subgraph (e.g., the Petersen graph with a
vertex deleted).

Conjecture 1 would have a number of important corollaries. Before giving these
however, we require the following fact.

Theorem 6. The degree sequence of any overfull planar graph has one of the
following forms 22k+1,32k2 42k 42k+132 A2k+1 52k) 52k+143 52k43 of
52k4,

Proof: It is easy to verify that each degree sequence above belongs to an overfull
graph.

To show that there are no other degree sequences of overfull planar graphs, we
observe first that an overfull graph must have odd order. Consider the possible
maximum degree of an overfull planar graph. First, since | E(G)| < 3(|[V(G)|—
2) for any planar graph G, it is readily seen that if a planar graph G satisfies
A(G) > 6, it cannot be overfull.

Suppose next that G is a planar graph with A(G) = 5. If G has 2 k vertices of
degree 5and 2t + 1 other vertices, then we find

|E| Sk+4t+2
5,
BT

unless ¢t = 0 or 1. Thus G has either one or three vertices of degree < 5. It is easy
to verify that G must have one of the degree sequences 522, 52k43 or 52¢4,
If G has 2k + 1 vertices of degree 5 and 2¢ other vertices, then again (1) holds
unless t = 0 or 1. Itis readily checked that G must have a degree sequence of the
form 52%+143,

If A(G) < 4, analogous arguments show that the degree sequence of G is one
of those listed in the theorem. I

‘We now turn to some important implications of Conjecture 1.
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Implication 1 of Conjecture 1. (Four Color Theorem—Edge Coloring Version)
Every cubic planar block is class 1.

Proof: Let G be a cubic planar block. If G were not class 1, then by Conjecture 1

G contains a 3-overfull subgraph H which, by Theorem 6, has a degree sequence

of the form 32#2 . The edge belonging to E(G) — E(H) incident to the degree 2

vertex of H would be a cut edge in G, contradicting the fact that G was a block.
|

Since Conjecture 1 implies the Four Color Theorem, it almost certainly will
be difficult to prove. On the other hand, one might hope to use the Four Color
Theorem to give a proof of Conjecture 1.

Vizing [16] and later Melnikov [14] proved that any planar graph G with A(G) >
8 isclass 1, and Vizing conjectured that this was true for all planar G with A (G) >
6. This conjecture would be an easy corollary of Conjecture 1 and Theorem 6.

Implication 2 of Conjecture 1. (Vizing’s Planar Graph Conjecture [16)) If G is
a planar graph with A\(G) > 6, then G isclass 1.

Proof: By Theorem 6, there are no 6-overfull planar graphs. So by Conjecture 1,
Gisclass 1. |

Another conjecture which has received a good deal of attention is the Critical
Graph Conjecture. It was first stated by Jacobsen [9] and, in a slightly different
form, by Beineke and Wilson [1]. Jacobson called a connected graph critical if
it is class 2 and the removal of any edge lowers the edge chromatic number. The
Critical Graph Conjecture states that every critical graph is off odd order. This
conjecture turned out to be false; the first counterexample was given by Goldberg
[5). A brief history of the rise and fall of the conjecture is given by Chetwynd and
Wilson in [2]. However, all of the counterexamples to the conjecture which have
appeared in the literature are nonplanar. Thus it is interesting to ask if there are
any planar counterexamples. An implication of Conjecture 1 is that there are not.

Implication 3 of Conjecture 1. Every critical planar graph has odd order.

Proof: Suppose G is a critical planar graph of even order. Since G is class 2,
Conjecture 1 implies that G contains a A(G) -overfull subgraph H. By Theorem
6, H has odd order, and hence H is a proper subgraph of G. So if e is any edge
incidenttoavertexin V(G) —V ( H), then G—e still contains H. Hence x'(G—e)
is still A(G) + 1, contrary to the assumption that G is critical. |

The algorithmic difficulty of determining the class of an arbitrary graph was
open for some time. Finally Holyer [7] showed that it is NP-hard to determine the
edge-chromatic number even of cubic graphs. However Holyer’s work left open
the algorithmic difficulty of determining the class of an arbitrary planar graph. We
now show that if Conjecture 1 is true, then there exists a polynornial algorithm for
this problem.
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Implication 4 of Conjecture 1. There exists apolynomial algorithm to determine
the class of any planar graph.

Proof: By Conjecture 1, the class of any planar graph G depends on the existence
of a A(Q)-overfull subgraph in G. By Theorem 6, there are only a finite num-
ber of possible types of degree sequences for A(G)-overfull subgraphs of G. In
the sequel we will assume A(G) = 5, and indicate how one might determine if
there is a 5-overfull subgraph with degree sequence 52%43 in polynomial time; a
similar algorithm will easily be seen to exist for each of the other types of degree
sequences of overfull planar graphs. Thus the desired polynomial algorithm will -
exist.

To determine if G contains a subgraph with degree sequence 52%43, we first
selectaset {z1, T2, z3 } of vertices with dg(z;) > 4 fori = 1,2, 3 as candidates
for the degree 4 vertices in the subgraph H. Clearly the only vertices which could
then be in the subgraph are those in the set S = {z1, 2,23} U {v; | degv = 5}.
For i = 1,2, 3 select (if possible) a set N; of four neighbors of z; in S. Once
the choice of Ny, N3, N3 is made, the remainder of the construction is forced:
Remove from S any neighbors of z;, z; or zz which do not belong to U?=1 N; U
{z1,72,73}. Clearly each vertex in $1 = [ N; — {z1, 22,73} belongs to S.
Assuming S; is contained in S, check whether S;,1 = SjUNg(S;)—{z1,22,23}
is contained in S for j = 1,2, .... One of two things must happen: Either Sj,1 C
S; for some j > 1, in which case the subgraph induced by S; U {x1, 72, 73 } will
have degree sequence 52%4 3, or else Sj41,Z S for some j > 1, in which case the
choice of N1, N, , N3 was no good. We proceed to another choice of Ny, N, , N3
or, once these choices are exhausted, to another choice of {z;,z2, z3}. Thus we
can either find a subgraph H with degree sequence 5243, or establish that none
exists, in polynomial time. |

Our final implication of Conjecture 1 states that if a planar graph has sufficiently
large edge-connectivity, then its class depends only on whether G itself is overfull.

Implication 5 of Conjecture 1. Let G be a (A(G) — 1) -edge-connected planar
graph. Then G is class 1 if and only if G itself is not overfull,

Proof: Suppose G is a (A(G) — 1) -edge-connected planar graph which is class 2
but is not itself overfull. Since G is class 2, Conjecture 1 implies that G contains
a nonspanning \(G)-overfull subgraph H, which must have one of the degree
sequences given in Theorem 6. But it is easily checked that there are at most
A(G)-2 edges possible between V(H) and V(G) — V(H), contradicting the
fact that G is (A(G) — 1)-edge-connected. 1

We note that Implication 5 would immediately imply the following result, which
seems an important conjecture in its own right, though apparently weaker than
Conjecture 1.
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Conjecture 2. Let G be a planar block with AN(G) = 3. If G contains s > 2
vertices of degree 2, then G isclass 1.

Theorem 7. Conjecture 1 implies Conjecture 2.

Proof: Since G is 2-edge-connected and A(G) = 3 it follows by Implication 5
that G is class 1 unless G is itself a 3-overfull graph. This means, by Theorem 6,
that the degree sequence of G has the form 32#2 . This contradicts the fact that G
contains s > 2 vertices of degree 2. |

Remarkably, however, even Conjecture 2 with s = 2 is strong enough to imply
the Four Color Theorem! The following theorems will be useful for establishing
this.

Halin’s Theorem [6]). Every cubic block contains an edge e such that G — e is
a block.

Izbicki’s Theorem [8]. Let G beaclass 1 graph in which each vertex has degree
1 or A(G). Given any /\(G)-edge-coloring of G, let f; denote the number of
terminal edges of color i,1 < i < A(G). Then all the f;’s have the same parity.

Theorem 8. Conjecture 2 with s = 2 implies the Four Color Theorem (i.e., that
every cubic planar block has class 1).

Proof: Let G be a cubic planar block. By Halin’s Theorem, G contains an edge
e = (z,y) such that G — e is a block. Conjecture 2 with s = 2 assures us G — e
is 3-edge-colorable. In any such 3-edge-coloring, Izbicki’s Theorem tells us that
the same color is missing at both z and y. This color is available for e to complete
a 3-edge-coloring of G. |

We observe that exactly the same argument yields the following theorem of
Jaeger [10]: Every cubic block with crossing number one is class 1. (Since the
Petersen graph is a class 2 cubic block with crossing number two, Jaeger’s result
is in some sense best possible.)

Another implication of Conjecture 2 with s = 2 is that if we begin with a cubic,
planar block G (which must be class 1 by the Four-Color-Theorem), and subdivide
any pair of edges in G, the resulting planar block is class 1. Itis interesting to note
that there exist class 1 cubic nonplanar blocks with crossing number 2 for which
this is false. We note that the cubic block with crossing number 2 and two edges
subdivided shown in Figure 2 has class 2, although the underlying cubic block
is easily seen to be class 1. To see that the graph G in Fig. 2 is class 2, note
that in any 3-edge-coloring of G, e1, ez, e3 must be colored differently, say with
1,2,3 respectively. Then e4 must be colored 1 or 3; by symmetry assume 3. Then
(es,e¢) must be colored (1,2) or (2,1). In either case, the rest of the coloring is
forced until we reach an edge with no available color.
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Figure 2

Finally, on the evidence that a simple proof of the Four Color Theorem is un-
likely, it appears that Conjecture 2, if true, will be very difficult to prove unless
the Four Color Theorem is used in the proof.

We conclude with one final conjecture which, although a special case of Con-
Jjecture 2, nonetheless suffices to prove Conjecture 2.

Conjecture 2’. Let G be a planar bock with N(G) > 3 containing s > 2
vertices of degree 2 . If for any degree 2 vertex v, the neighbors u;,uy ofv are
nonadjacent of degree 3, then G is class 1.

Theorem 8. Conjecture 2’ implies Conjecture 2,

Proof: Suppose Conjecture 2 is true but Conjecture 2 is false. Let G be a planar
block with A(G) = 3 and s > 2 vertices of degree 2 which is a smallest coun-
terexample to Conjecture 2. By Conjecture 2°, it must be the case that for some
degree 2 vertex v in G, either u1, uy are adjacent or at least one of u;, uy have
degree 2.

Case 1. uy, uy are adjacent.

Contract {v,u1,u2} to a single vertex of degree 2. The resulting graph H
is class 1 by the minimality assumption on G. We can easily extend a 3-edge-
coloring of H to a 3-edge-coloring of G.

Case 2. u; has degree 2.

If s > 3, contract v and u;; by the minimality of G, the resulting graph H can
be 3-edge-colored and then so can G. If s = 2, then v and u; are the only vertices
of degree 2 in G. Let x be the other vertex adjacent to u; . If z and u; are adjacent,
then H = G — v — u; has two vertices of degree 2, and by the minimality of G
can be 3-edge-colored. If z, uy are not adjacent, contract {v, u;, u2 } to obtain a
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cubic planar block H, which can be 3-edge-colored by the Four Color Theorem.
Either way, the 3-edge-coloring of H can easily be extended to G.

In either case, G is 3-edge-colorable. This contradiction then completes the
proof. |
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