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ABSTRACT

The edge-toughness 1, (G) of a graph G is defined as

7 (G) = min{w(G lle() — } X ts an edge-cutset of G},

where w(G — X) denotes the number of components of G — X.
Call a graph G balanced if 1, (G) = |E(G )/ (w(G-E(G)) -1).
It 1s known that for any graph G with edge-connectivity A\(G),
AMG)/2 < 11 (G) < A(G). In this paper we prove that for any
integer r, r > 2 and any rational number s withr/2 < s<r,

there always ezists a balanced graph G such that A\(G) =r “and
7 (G) = s.

1980 Mathematical Subject Classsfication: Primary 05C99; Sec-
ondary 05C70

ARS COMBINATORIA 33(1992), pp. 129-143



1. Introduction.

Let G be a simple graph with vertex set V(G) and edge set
E(G). Denote by w(G) the number of (connected) components
of G. A subset S of V(G) is called a vertez-cutset of G if
w(G — S) > 1. The vertez-toughness of a graph G, denoted by
7(G), is defined as: ,

= mi 151 ;
7(Q) = mm{w(G —3) l S is a vertex-cutset of G’},

with the convention that min@® = +oco. The notion of 7(G),
which was first introduced by Chvatal (2], has received much
attention recently (see, for instance [3,4]).

A subset X of E(G) is called an edge-cutset of G if w(G —
X) > 1. Chvétal [2] also defined the “edge-toughness” of G,
considered as the dual concept of 7(G), as

: 1 X| l :
mm{w( G- X) X isan edge—cutsetr of G}.

This parameter is, however, not of much interest as he showed
that it is exactly one half of A\(G), the edge-connectivity of G.

Tutte [8] and Nash-Williams [5] obtained independently
the following result:

Theorem A. A connected graph G has s edge-disjoint
spanning trees if and only if | X| > s(w(G — X) — 1) for all
X C E(G).

This suggests that one may alter the above definition of
edge-toughness by replacing w(G — X) with w(G — X) — 1.
Thus, as introduced in [6], the edge-toughness of G, denoted
by 71 (G), is defined as:

|X]
w(G-X)-1

7 (GQ) = min{ X is an edge-cutset of G }

We note that the edge-toughness of a graph will remain
fixed if any of its vertices is blown up to a highly connected
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graph. In order to avoid such triviality, we define below a graph
called balanced graph, whose edge-toughness may change by
simply blowing any of its vertices to a highly connected graph.
Also, the edge-toughness of a balanced graph can be easily
determined. (Note that the edge-toughness of a graph is not
easily calculated and it is not clear whether it can be computed
in polynomial time.)

A graph is said to be balanced if 7, (G) = |E(G)|/(w(G —
E(G)) —1). Note that a graph G is balanced if and only if
n(G) = |E(@)|/(V(G)| - 1).

Following an argument given by Chvétal [2], the following
result was shown in [6].

" Theorem B. Let G be a connected graph of order p, p > 2.

Then ‘
MG) _ pA(©)

2 " 2(p-1)

<1 (G) < A(G).

By definition and Theorem A, it follows that a graph G

has s edge-disjoint spanning trees if and only if 7, (G) > s. In
connection with Theorems A and B, the following résult was

also proved in [6].

Theorem C. For any two positive integers r and s with
r/2 < s <r, there ezists a balanced graph G such that A\(G) =

;’, 71(G) = s and G can be factored into ezactly s spanning
rees.

The following problem arises naturally. “Given an integer
r, r > 2, and a rational number s with r/2 < s < r, does
there always exist a balanced graph G such that A(G) = r and
71(G) = s?” The objective of this paper is to give an affirma-
tive answer to this question. (Note that without imposing the
condition of balance, such a graph exists trivially.)

Let A and B be any two subsets of V(G). Denote by
ec (A4, Bz the number of edges of G joining a vertex of A to a
vertex of B. For other terminology and notation not explained
here, we refer to [1].
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2. Terminology and basic results.

For a real z, we shall denote by |z| (resp. [z]) the largest
(resp. least) integer less than (resp. greater than) or equal to

z. As usual, let £(G) and 6(G) denote reépectlvely the vertez-
connecthty and the minimum degree of G. We begin with the

following two known results on vertex- and edge-connectivity
of a graph.

Theorem D (Whitney [9]). For any graph G of order p
and size q,

K(6) < X(@) < 8(e) < |2

I.

The following necessary and sufficient condition for a
graph to be balanced will be used to prove our main result.

Theorem E (Peng and Tay [7]). Let G be a nontrivial
graph of order p and size q. Then G 1s balanced if and only if,
for every subgraph H of G,

p

[E(H)| < = (V(H)] - 1).

For regular graphs, we have:

Lemma 1. Let G be a k-regular graph of order p and size
q. If A\(G) = k, then G is balanced.

Proof. By Theorem B, ; (G) > pk/(2(p—1)) = ¢/(p—1).

O
Given any two graphs G, and Gy, the join of G, and
denoted b + G, is the graph whose vertex set is
VtG1 U V(Gz)yané whose edge set is

E(G,)UE(G;)U{uv |veV(G,) and veV(G:)}

We shall write G, + v for G, + G, if V(G:) = {v}.

The following lemma and its corollary will be needed to
prove our main result.

Lemma 2. Let G be a nontrivial graph of order p and
stze q. If G is balanced, then G + v is also balanced.
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Proof. Let H = G + v. Suppose that H is not balanced.
Since (¢+p)/p = IE( )|/(IV (H)| —1), there exists a subgraph
F of H such that |E(F)|/(|V(F)| - 1) (¢ + p)/p by Theo-
rem E. Note that v € F. Otherwise, F is a subgraph of G and
|E(F)|/(IV(F)| - 1) > (¢+ p)/p > ¢/(p — 1), which contra-
dicts the assumption that 7, (G) = ¢/(p — 1). We now write
F = F* + v for some subgraph F* of G. Observe that

[E(F)|  _ |EF)|[+ V)| atp
V(F)| -1 |V (F*)] P
or
[E(F) | a
vE) e
Since |E(F*)| < ¢ and both |V(F*)| and p are greater than

one, we have:
|E(F*)] q
V(F)-1" p-1’

which is a contradiction. [

Corollary. Let G be a nontrivial balanced graph. Then
for any complete graph K, , K, + G ts also balanced.

To end this section, we include the following simple result
in arithmetic which will be found useful in obtaining some
inequalities.

Lemma 3. Let a,b,z and y be positive integers. Then

atz g<=>g'. ?..
b+y — b b~y

3. Circulant wheels.

In this section, we shall introduce a class of graphs called cir-
culant wheels, which will play an important role in the proof
of our main result.

For any two integers.a and d with ¢« > d > 2, we denote
by S(a,d) the following set of integers:

S(a,d) = {z‘ [%l] < [@—J’;!)ii], i=0,1,...,a——1}.
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Thus, $(15,9) = {0,1,3,5,6,8,10,11,13} and S$(8,5) =
{0,1,3,4,6).
Note that (i) 0 € S(a,d),
(i1) S(a,a) ={0,1,...,a — 1},
and (iii) @ — 1 € S(a,d) if and only if a = d.
Now, assume that @ > 3 and a > d, and let b be an even

integer such that b < d. Denote by W (a, d,b) the graph, called
circulant wheel, obtained in the following ways:

(i) Draw an a-gon and label its vertices by the integers
0,1,...,a—1.

(ii) Join two vertices ¢ and j of the a-gon by an edge if

and only if i—5 = h(mod a) where h € {2,3,...,b/2}.

(iii) Add a new vertex v adjacent to each vertex in S(a, d).

The circulant wheel W (8,5,4) is shown in Figure 1. Our
aim in the remainder of this section is to determine the edge-
connectivity and edge-toughness of the graph W (a, d, ).

Two distinct integers = and y are consecutive in the residue
class modulo a if 7,y € {0,1,...,a—1} and [z—y| € {1,a—1}.
Thus 7,8,0, 1,2 are five consecutive integers in the residue class
modulo 9.

Figure 1. The graph W (8,5,4)

Two useful properties of the set S(a,d) are given below.
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Lemma 4. (1) |S(a,d)| = d.

(2) For any set T of n consecutive integers in the residue
class modulo a (n < a),

|T N S(a,d)| < %d + 1.

Proof. (1) First we note that [¢d/a] < [(:+1)d/a] if and
only if there exists an integer ¢ such that id/a <t < (¢ +1)d/a.

Since d < a, the number of such an integer ¢ in the interval
is at most one. Thus there is a one to one correspondence

between the integers ¢ and the elements of S(a,d). Since the
number of the integers ¢ satisfying 0xd/a <t < (a—1+1)d/a
is d, we conclude that |S(a,d)| = d.

(2) Let T={h+1i|i=1,2,...,n}. If 0 ¢ T, then by
an argument similar to that given in (1) above, the number of
elements of T in S(a,d) is equal to the number of integers ¢
satisfying (h + 1)d/a <t < (h + n + 1)d/a, which is less than
ndfa+1. If0€ T, then h + r = 0 for some r € {1,2,...,n}.
Let T, ={h+1,h+2,...,.h+r—1}and T; = {h+r,h+r+
1,...,h+n}. Note that T} may be empty. Again, by note (iii),
we have :

T, S(ed) < (r-1)
and
d d
.0 S@d) < [(r-r+ D7 <(-r+nS+1.
Thus

70 5(a,d)] = [T, N S(a,d)| + [T: 1 S(ad)] < 2 +1,

as required.

We now have:

Theorem 1. The graph W(a,d,b) is balanced with edge-
connectivity b.
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Proof. For convenience, we write G for W(a,d,b). We
first prove that A(G) = b. It is clear from the construction that
G — v is a b-regular graph. Thus A(G — v) < b by Theorem D.
On the other hand, in order to disconnect G — v, it is necessary
to remove two suitable disjoint subsets with b/ 2 consecutive
vertices each from the a-gon. Thus A(G —v) > k(G —v) > b
by Theorem D, and we have A(G —v) = b. Note that deg(v) =
d > b by Lemma 4(1). Thus A(G) > b. On the other hand,
as a > d, there is at least one vertex on the a-gon of degree b.
Thus A(G) < 6(G) = b by Theorem D, and we conclude that

A(G) =

."2
n

N
NS

Figure 2.

To prove that G is balanced, we first note that p =
[V(G) =a+1and g = |E(G)| = ab/2 + d. Now let H be
any subgraph of G with p’ vertices and ¢' edges. Since G — v
is b-regular and A(G —v) = b, we have by Lemma 1, G — v is
a balanced graph. Thus if v ¢ V(H), then by Theorem E,

q < |E(G—-v)] _ ab
P—-1-|V(G-v)|-1 2-1)
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Since ab/2(a — 1) < b < d, we have by Lemma 3,

q ab ab/2 + d q
< < = .
P—1"2a-1) " ae-1+41 p-1

Suppose now that v € V(H). If H —v contains the a-gon, it is
obvious that ¢'/(p' — 1) < ¢/(p — 1). Otherwise, let H — v be
the union of k (> 1) paths of order n;,n,,...,n; respectively

(see Figure 2). Then p' = Y r_, n; + 1 and by Lemma 4(2),

1=1

k k

k
, (b—2) d
< . — A S— A L
q _Z;(n, 1)+§n, 7 + =1(n,a'-i-l)

%

Thus

F-i-2"a p-1
By Theorem E, G is a balanced graph. [

q<bdq

4. Main results

We shall prove in this section the following main result of this
paper.

Theorem 2. For any integer r, r > 2, and for any ra-
tional number s satisfying r/2 < s < r, there ezists a balanced
graph G such that A\(G) =r and 7, (G) = s.

The case when s is an integer is contained in Theorem C.
It remains to prove the result in Theorem 2 for noninteger s.
To get to this, we first consider in what follows two special
cases. ,

Theorem 3. Let t be an even positive integer, and let s be
any rational number satisfying t/2 < s < t/2+ 1. Then there

ezist infinitely many balanced graphs G of different orders and
sizes such that A\(G) =t and 7, (G) = s.

Proof. Let s = m/n where m,n are integers and let o
be any natural number satisfying a > 2t/(2m — tn). Denote
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d = a(m —tn/2). Note that an > d > t > 2 because a >
2t/(2m — tn) and s < t/2 + 1. Therefore we can construct
the circulant wheel G = W (an,d,t) and by Theorem 1, G is
a balanced graph with A(G) = t and 7,(G) = s. Note that
if oy # ay, then G, = W an,a;(m —tn/2),t) and G, =
W (azn, o (m—tn/2),t) are balanced graphs of different orders
and sizes, but A(G,) = A(G;) =t and 7,(G,) = 7,(G,) = s.
il

Theorem 4. Let r be an odd integer, r > 3, and let s be
any rational number satisfying r/2 < s < }r+1) /2. Then there
exist infinitely many balanced graphs G of different orders and
sizes such that A(G) =r and 1, (G) = s.

Proof. Let us write s = m/n where m and n are integers,
and let a be any natural number such that an is even and « >
2r/(2m—rn). Denote d = a(m—rn/2). Since @ > 2r/(2m—rn)
and s < (r+1)/2, we have an > d > r. Thus we can construct
the circulant wheel W (an,d,r — 1).

Let G be a graph obtained from W (an,d,r —1) by joining
an/2 pairs of vertices which are diametrically opposite in the
an-gon of W(an,d,r—1). We claim that G is a balanced graph
with A(G) =r and 1, (G) = s.

We first show that A(G) = r. It is clear from the con-
struction that G — v is an r-regular graph. Thus A(G —v) < r

bﬁ" Theorem D. We now show that A(G' — v) > r. Note that
this follows from Theorem D if we can show that at least r
vertices must be removed to disconnect the graph G — v. We

observe that in order to disconnect this graph, it is necessary

to remove two suitable disg’oint subsets, each with (r — 1)/2
consecutive vertices, along the an-gon to break the circumfer-
ential connection, and at least one more vertex to break the

diameteric connection. Thus at least r vertices must be re-
moved to disconnect G —v. Hence A(G — v) > r and therefore

A(G —v) =r. Since an > deg(v) > r, §(G) = r. We thus have
the desired result.

Next we show that G is a balanced graph with 7, G) =s.
Note that |[V(G)| =p=an+1and |[E(G)|=q¢=oanr/2+d =
am. Let H be any subgraph of G with p' vertices and ¢’ edges.
If v ¢ V(H), then by Theorem E, Lemmas 1 and 3 together
with the inequality anr/2(an — 1) < r < d, we have

q < |E(G —v)| _anr/2<anr/2+d_ q
P-1"|V(G-v)|-1 an-1"an—-1+41 p-1
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Suppose now that v € V(H). If H—v contains the an-gon, it is
clear that ¢'/(p' — 1) < q/(p — 1). Otherw1se, we let H — v be
the union of k (> 1) paths of order n,,n,,...,n, respectively

see Figure 3). Then p' = ¥ n;+1,and by Lemma 4(2),
1

k
Zn—+1

ko

Thus

< —
pP—17"2 p—1

By Theorem E, G is a balanced graph with U (G) = s as re-
quired. Note that different values of o give rise to balanced
graphs G of different orders and sizes with A(G) = r and
71(G) = s. The proof is now complete.
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Theorem 5. Let r be an integer, r > 2, and let s be any
noninteger rational number satisfying r/2 < s < r. Then there
ezist infinitely many balanced graphs G of different orders and
sizes such that A\(G) =r and 7, (G) = s.

Proof. We need only to consider the case where there
exists an integer B > r/2 such that 8 < s < 8 + 1; for other-
wise, r is odd and r/2 < s < (r + 1)/2, and in this case it is
equivalent to Theorem 4.

The case § = r/2 has been proved in Theorem 3. We may
now assume that » > 3 and note that r > (8. Let us write
s = m/n where m,n are integers, and let « be any natural
number satisfying

28 -1 r—1 (2ﬂ—r)(r+1)}'

a>ma.x{ n ’2(m—np)’ 2(fn+n—m)

With this value of a, we let
pP=an+r—20

and
(26 = r)(r — 1)
5 .
Note that p* > 3 since a« > (28 —1)/n and r > 3.
Claim. p* > d* > 2(r — f).

We first prove the left inequality.
Observe that

d =a(m-—np)+

(28-r)(r - 1)

pP>d <= an+r—-28>a(lm—nB)+ 2
= affn+n—-—m)>20—r+ (2ﬂ—r2)(r——1)
(28 —r)(r+1)
MR/ mern

The last inequalify holds by our choice of a. Thus we have
p* > d*.
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Now we show the right inequality. Observe that

d* > 2(r — f) <= a(m—nf) + (2,B—r2)(r—1) >2(r—8)

3r— 26 —20r+1r*
2
(28 —r)(r —1) — 4(r = ﬂ)]
2(m — np) ’

Note that in the last inequality above, if 8 = (r +1)/2, then
o> (r —1)/2(m — npB); and if B > (r + 2)/2, then the quotient
in the square bracket is always positive. Thus by the choice of
a, we have d* > 2(r — ) as desired.

The above claim enables us to construct the circulant
wheel W (p*,d*,2(r — f)). Define the join

G = K2ﬁ-—r +W(p*,d*,2(r —'ﬂ)).

We shall show that the graph G is balanced with A(G) = r and
1, (G) = s. We first prove that G is balanced with 7,(G) = s.

If 28 = r, then 7, (G) = n(W(p*,d*,2(r - B)) =
2(r — B)/2 + d*/p* = am/an = s. If 28 > r, then by the
Corollary to Lemma 2, 1 (G) = |E(G)|/([V(G)| —1). But
V(@) = 28—-1) + (p +1) = an + 1 and |E(G)| =
(26 = r)(28 —r —1)/2+(26—r)(p" +1)+2(r - f)p* [2+d" =
am. Thus G is a balanced graph with 7, (G) = s, as required.

To prove that A(G) = r, we proceed as follows. Since
a > (28 —1)/n, we have p* > r. Let S be any non-empty
proper subset of V(G). Write G* for W (p*,d*,2(r — 8)). If
S nV(Kgp_,) =V Kgp_,-), then

< a(m —np) >

4=>a2—[

pr+1>r if SNV(G*) =0,
eG(S)V(G) -85) > {
28 —r+ A(G*) =r otherwise.

SNV (Kyp-,)#V(Kzp-,) and SNV (Kzp_,) # 0, then we
letue SNV (K,p-,) and v € V(Kzp_,) — S. Thus

ec(S,V(G) — 8) > ec(v,SNV(G")) + ec (v, V(G") — 5)
=p"+1>r.
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SNV (Kz-,) =0, then

pH1>r if S =V(G*),
ec(S,V(G) - S) 2{

28 —r+ A(G*) =r otherwise.

Since eg (S, V(G) — S) > r for any non-empty proper subset S
of V(G), we have A(G) > r. On the other hand, by Theorem D,
AMG) < 6(G) = r because p* > d* implies the existence of a
vertex in G* of degree 2(r — ). Hence A\(G) = r, as desired.

Observe that different values of a give rise to balanced
graphs G of different orders and sizes with A(G) = r and
71(G) = s. The proof is now complete. [

Finally, we note that our main result (i.e., Theorem 2)
now follows from Theorems 5 and C.
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