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Abstract. In this paper we give anecessary condition for the Steiner system §(3, 4, 16)
obtained from a one point extension of the points and lines of PG(3,2) to be further
extendable to a Steiner system §(4,5,17).

1. Introduction.
It is not yet known whether a Steiner system S(4, 5, 17) exists. One possible way
of constructing such a Steiner system would be by twice extending the Steiner
system S(2,3,15) formed by the points and lines of PG(3,2). A one point
extension of this Steiner system S(2, 3, 15) is easily obtained by adding a new
point, say oo; to the point set of PG(3,2) and taking as blocks all sets of the
form {£U {o01} | £is aline in PG(3,2)} and all sets of the form {m\¢ | 7 is a
plane in PG(3,2),£is aline in PG(3,2),and £ C w}. We will denote this one
point extension of PG(3,2) by PG1(3,2). Itis a Steiner system S(3,4, 16).
The main purpose of this paper is to study the existence of a one point extension
of PG1(3,2).
Section 2 is preliminary in nature and lists several propositions on PG(3,2)
needed in Section 3. The first few are certainly well known in the folklore. In
- Section 3 we show that no one point extension of PG (3,2) with a certain unifor-
mity property (stated before Lemma 3.5) exists, see Theorem 3.12. The problem
in general, however, remains unsettled.

2. Preliminaries.
By an oval of PG(3,2) we will mean a collection of four points in a plane of
PG(3,2) no three of which are colinear. '
Proposition 2.1. Let O = {a1,02,a3,a4} beanoval of PG(3,2).

(i) (i) There is a unique plane = of PG(3,2) containing O and w\O is a line

in .

(i) ) + ay + o3 + ag = 0 (vector addition in PG(3,2)).
Proof: {a1,a2,as3,as} is a collection of four points in a plane 7 of PG(3,2)
no three of which are colinear. Since two planes of PG(3,2) intersect in three

points we see that  is the unique plane containing O. Further, since o, a2, and
a3 are not colinear, x is spanned by o1, o2 , and a3 . Consequently, as € {on+a3,
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aj+a3,az + a3, a1+ az+ a3} since ag € . This implies ay = a1 +az + a3
for otherwise we contradict the fact that no three of a, &y, a3, a4 are colinear.
Finally, notice that ‘ll’\O = {a1 +ay,01 +03,00 + a;} is a line in . [ ]
Anowoid of PG(3,2) will beacollection of 4 non-coplanar pointof PG(3,2).

Proposition 2.2. Let O = {a1, a2, 3,04} be anovoid of PG(3,2). There is
a unique plane w of PG(3,2) with O C 7, the complement of w in PG(3,2).

Proof: Let p;, 0 < ¢ < 3, be the number of planes of PG(3,2) intersecting O
in 1 points. We must show pp = 1. Since PG(3,2) has 15 planes it suffices to
show thatp; + p2 + p3 = 14. Since a1, a3, @3, and a4 are non-coplanar, there are
exactly 4 planes intersecting O in 3 points. They are the spans of {a;,a2,03},
{a1,02,04}, {@1,a3,04}, and {a2,a3,04}. Hence, p3 = 4. Every pair of
points o, @, 1 < 1,7 < 4, occurs in two of the above planes. Since every pair of
points occurs in three planes, every pair o, o; must occur in one additional plane.
Consequently, there are (;) = 6 planes that contain exactly two points of O, that
is, p = 6. Finally, every point a;, 1 < 1 < 4, occurs three times in the planes
intersecting O in three points and three times in the planes intersecting O in two
points. Since every point occurs in seven planes there is a unique plane which
intersects O at ;. Consequently,p; =4 andpy + p2 + p3 =4+ 6+4=14. |

A triangle of PG(3,2) will be a set of three linearly independent points of
PG(3,2).

Proposition 2.3. Let w be a plane in PG(3,2). A four point set in T is either
an oval or an ovoid of PG(3,2). Moreover, ™ contains 14 ovals and 56 ovoids.

Proof: Suppose O = {a1,a3,03,a4} C 7. Since the sum of any three of these
«; is in 7 we see that no three of the o; are colinear. If oy + g + a3 + a4 = 0
then O is anoval. If &y + a3 + a3 + a4 # 0 then a4 is not in the span of o, a2,
and a3 hence, o, a3, a3, and a4 are non-coplanar and O is an ovoid. Now, the
number of triangles in 7 is (§) = 56 and so there are 56 /4 = 14 sets of the
form {1, a2, 3,01 + a2 + a3} in 7. These are the ovals in 7. Since there are
() = 70 four point subsets of 7 there mustbe 70 — 14 = 56 ovoidsin%. W

Corollary 2.4. Let m; and w, be planes of PG(3,2). ™ N7, is an oval of
PG(3,2).

Proof: Since |m N 2| = 3, |71 N 72| = 4. By Proposition 2.3, 7, N7, is an
oval or an ovoid. But 7; N7, is not an ovoid by Proposition 2.2. [ |

Proposition 2.5. Let n be a plane of PG(3,2).

(i) The ovals in 7 form a (v,b,r,k,\;) = (8,14,7,4,3) 3-design with
A3 =1.
(ii) The ovoids in 7 form an (8,56,28,4,12) 3-design with A3 = 4.
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Proof: If a1, o, a3 are three points in 7 then they determine a unique oval in
7, namely, {a;,a;, a3, + az + a3 }. Hence, A3 = 1 and (i) follows. For (ii),
notice that the collection of all 4-subsets of 7 forms a 3-design with A3 = 5. Since
a 4 element subset of 7 is either an oval or an ovoid and the collection of ovals in
7 forms a 3-design with A3 = 1, (ii) must follow. 1

Proposition 2.6. Let w be a plane of PG(3,2) andlet T = {a1,02,a3} bea
triangle in w. There are exactly two (7,3,1) designs of triangles of = conlaining
the block T'. They are

(1) o1 o a3 (1) a1 a3
a artay oy toas a art+ay ataytas
o ar+a3 o +ayt+as o) ort+ay axt+as
a)y ort+ay oar+aytas ay art+a a+as
ay oaptoay oy +a3 ay o +a; a)tay+as
a; o) tay o +as a3 ayt+a; o t+as
a3 aytaz3 o +oa+as a3 aytay atayt+oas

Proof: If {1, 2,3} isablockina (7,3, 1) design then oy must appear in two
more blocks. Also, the pair {1, a1 + a2 } must appear once in some block, thus,
{a1, a; + a3, B8} and {a;, y, 6} must be blocks in the design for some 3,4, 8 € 7.
Clearly, 8,7,6 ¢ {a1,02,03,a1 + a2} 50 B8,7,6 € {a1 + a3,02 + 03,01 +
az+a3}. If B=a;+as thenq,8 € {az +a3,a1 + a2 + as }. But{on, 3 + a3,
a1 + ap + a3} is not a triangle, hence, B € {az + a3, a1 + a2 + a3 }.

Case 1. ﬂ= a) + a3.

Here the three blocks containing oy must be {@;,az,a3}, {1, 01 + a3, a5 +
a3} and {1, o + a3, a1 + a; + a3 }. There must be two other blocks containing
a; and one of them must contain the pair a2, + az. Hence, {a2,01 + a2,}
and {az, £, n} are blocks in the design for some ¢,£,n7 € w. Clearly, ¢,{,n ¢
{a1,02,03, 01+ a2} and s0¢,€, 7 € {a1 + a3, a2 + a3, a1 + a2 + a3 }. Notice
that {a2, 1 + 03, 1 + a2 + a3 } isnot a triangle so ¢ € {a + a3, a1 + oz + a3 }.
Ift = g+ a3 then {ay, 0+, 0y + oz } and {a, 0 + 3, 1 + ay + 3 } are the
other two sets containing a; besides {a1, a2, a3 }. The other two sets containing
a3 must be of the form {a3, a1 + az,p} and {as,0, 7} for some p,o,7 € .
Notice that p # a3 + a3 and p # a1 + a3 for the pairs a; + a2, a2 + a3 and
a1 + oy, a; + a3 already occur in previous blocks. Hence, p = a; + a2 + a3, but
{a3,a) + a2, a; + o + a3 } is not a triangle. Consequently, ¢ # a; + a3 and so
¢ = a1 + a3 + a3. The blocks containing a; are {a1, a2, a3}, {02, a1 + a2, a1 +
az + a3} and {az, @1 + a3, oz + a3 }. The remaining two blocks containing as
are then forced to be {a3, 1 + a2, a1 + a3} and {a3,a2 + a3,01 + a3 + a3}
and we have the (7, 3, 1) design in (i).

Case 2. ,B=a1 + ay + a3.
Here a similar argument works forcing the (7, 3, 1) design containing {a, o, a3 }
to be the design in (ii). 1
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Proposition 2.7. Let n beaplaneof PG(3,2). Thereareexactly eight (7,3,1)
designs of triangles of w and each triangle in = occurs as a block in exactly two
of them.

Proof: Let {a1, a2, a3} be a triangle in 7. Applying Proposition 2.6 to the trian-
gles {a1,,03}, {a1,02,01 + a3}, {1, 2,00 + ez } and {1, 02,01 + @2 +
a3 }, respectively, and writing 1,2,3,12,13, etc., for ay, a2, 03,01 + @2, 01 +
a3}, etc., we obtain the following eight (7,3, 1) designs of triangles:

1. (1) 1 2 3 (i) 1 2 3
1 12 23 1 12 123
1 13 123 1 13 23
2 12 123 2 12 13
2 13 23 2 23 123
3 12 13 3 12 23
3 23 123 3 13 123
2. () 1 2 13 () 1 2 13
1 12 123 1 12 23
1 3 23 1 3 123
2 12 23 2 12 3
2 3 123 2 123 23
13 12 3 13 12 123
13 123 23 13 3 23
3. (9) 1 2 23 (#) 1 2 23
1 12 3 1 12 13
1 123 13 1 123 3
2 12 13 2 12 123
2 123 3 2 3 13
23 12 123 23 12 3
23 3 13 23 123 13
4. (1) 1 2 123 (i) 1 2 123
1 12 13 1 12 3
1 23 3 1 23 13
2 12 3 2 12 23
2 23 13 2 13 3
123 12 23 123 12 13
123 13 3 123 23 3

Notice that each of the 28 triangles in 7 occurs as a block in exactly two of
these eight designs. Further, by Proposition 2.6, a triangle occurs in exactly two

148



(7,3, 1) designs of triangles, hence, the above eight are the only (7, 3, 1) designs
of triangles of . |

3. The existence condition.

PG, (3,2) has asits point set the fifteen points of PG(3, 2) together with the new

point co;. A set of points is a block in this extension if it is a line of PG(3,2)
together with ooy or if it is an oval in PG(3,2). This one point extension has
sixteen points in blocks of size four with any three points occurring exactly once,
that is, this one point extension is a Steiner system S(3,4, 16).

Assuming that a one point extension of PG (3, 2) exists, itwouldbeanS(4,5,
17) with an additional point, say coz, added to the point set of PG;(3,2). The
blocks containing oo, would be all lines of PG(3, 2) together with co; and oo,
and all complements of lines in planes of PG(3,2) together with co,. Now, in
this one point extension of PG;(3,2) every point must occur 140 times. Notice
that oo, is already accounted for in 35 blocks since there are 35 lines in PG(3,2).
Consequently, there must be 105 additional blocks in this one point extension of
PG1(3,2) which contain oo; . Let A; be the collection of these 105 blocks con-
taining oo; and set A = {S C PG(3,2) | SU{o0o1} € A1}.

Proposition 3.1. If S C A then S is an ovoid and, hence, is a four element
linearly independent subset of PG(3,2).

Proof: No three of the four points of S are colinear for then we would have a four
point set (a line with ooy ) occurring in two blocks of our one point extension of
PG1(3,2). If no three of the four points of S are colinear but S is contained in
some plane w then S must be the complement of some line in #. But then SU{0c0; }
and S U {00 } are two blocks of our one point extension of PG1(3,2), again a
contradiction. ]

Proposition 3.2. The elements of A form the blocks of a (15,105,28,4,6)
design,
Proof: Recall that our one point extension of PG (3, 2) is a 4-design with \4 =
1. Three points occur in (} ) /(373) = 7 blocks and two point occur in (12
/(G2) = 35 blocks of this one point extension of PGy (3,2). Let C; be the
collection of all blocks of this one point extension of PG, (3,2) containing oo,
and let C = {B\{o01} | B € C\}. Then C forms the blocks of a 3-design with
parameters (16,140,35,4,7) and A3 = 1. Let L = {£U {002} | £is a line of
PG(3,2)}. ThenC = AUL and AN L = @ so we can count the occurrences of a
point, or of two points of PG(3, 2), in the blocks of A by counting the occurrences
in L and C. A pointof PG(3, 2) occurs on seven lines and, hence, occurs in seven
blocks of L. Consequently, a point of PG(3, 2) must occur in 35 —7 = 28 blocks
of A. Similarly, two points determine a unique line in PG(3, 2). Since they must
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occur in seven blocks of C, the two points of PG(3, 2) must occur in six blocks
of A. The result now follows. 1

Notice that if T is a triangle in PG(3,2) then the four point set T U {oo; }
must occur exactly once as a subset of some block of our one point extension of
PGy(3,2). Since T is not a line, this block containing T' U {oo; } must be in A.
Hence, given a triangle of PG(3,2) there is a unique block in A containing it.

Let 7 be a plane of PG(3,2) and let S € A. Notice that [S N 7| < 3. Let A;
be the collection of sets S € A satisfying [SN«| =1, i=0,1,2,3.

Proposition 3.3.. |Ao| =7, |A1]| =28, |Az| =42 and |As| = 28.

Proof: There are 28 triangles in w. As remarked above, each triangle occurs ex-
actly once as a subset of a block of A, hence, |A3]| = 28. Now, a pair of points
of 7 occurs in four triangles of  so every pair of points of & occurs in four sets
of As. Since every pair of points occurs six times we see that every pair of points
of w occurs in two sets of A,. There are 21 distinct pairs of points of s, hence,
- |A;| = 42. Every point of 7 occurs in 12 triangles of «, hence, every point of =
occurs in 12 sets of As;. Similarly, every point of 7 occurs in 6-2 = 12 sets of
A . Since every point must occur 28 times, every point of 7 occurs in four sets
of A;. Consequently, |A;| = 7-4 = 28. The remaining sets of A must be in Ay.
There are 150 — 28 — 42 — 28 = 7 of them. B
Let B, be the sets of A whose elements belong to 7.

Proposition 3.4. {B, | m a plane of PG(3,2)} is a partition of A into fifteen
families each of size seven.

Proof: By Proposition 3.1 each set in A is an ovoid and, hence, is in 7 for some
unique plane 7 by Proposition 2.2. By Proposition 3.3, |B,| = 7 for each plan
. 1
We now make a basic assumption that if 7 is a plane and «, 8 are points of
PG(3,2) then {a, B} does not occur as a subset of a unique set S € By.

Lemma 3.5. Let w be a plane of PG(3,2) and suppose «,f are points of
PG(3,2). If {a, 8} C S € By then {«a, B} occurs exactly twice as a subset of
asetin By.

Proof: Suppose S = {«, 8, 61,62} € By. Since any two sets in B, can intersect
in at most two points the pair {«, 8} can occur at most three times as a subset of
a set in B,. Notice that the pairs {c, 6}, {a, 62}, {B8,61}, {8, 62}, and {6;,82},
must occur again by our basic assumption and none of these pairs can occur again
together or again with « or 8. Consequently, the pair {a, 8} cannot occur three
times for then |Bx| > 8. |

Proposition 3.6. For each plane n of PG(3,2) the sets in B, are the blocks
ofa(7,7,4,4,2) design.
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Proof: We first show that if @, 8 € 7 and if « is in a set of B, and if B is in
a set of B, then {a, B} is a subset of a set of B,. Suppose the contrary, that o
occurs, B occurs but {a, 8} does not. Let S = {a, 81,852,683} € By. Since {a, 81 },
{a, 82}, and {«, 63} must occur again we see that there are three additional blocks
which contain . Similarly there are four blocks containing 8. If « and g8 do
not occur together then |B4| > 8, a contradiction. Now let P, be the point set
corresponding to the blocks in B,. Suppose |P,| = m. We show m = 7. Let
X = {({a,8},B) |0, € B, B€ By}. |X| = (3)-2= (3)-7, hence, m? —
m—-—42=0andm=17. B

The unique point of PG(3,2) in & which is not used in B, will be called the
translation point of w and denoted ~y,.

Recall that an arbitrary point « of PG(3,2) must occur 28 times in the blocks
of A. Since a occurs four times in the blocks of B, for those planes s for which
a € 7 and « is not a translation point for « and since « is in eight complemented
planes we see that o must be the translation point of some plane. Hence, a point
of PG(3,2) is a translation point of one and only one plane.

The following Corollary follows immediately from Proposition 3.6.

Corollary 3.7. For each plane « of PG(3,2), the sets v, + B, B € By, are
the blocks ofa (7,7,4,4,2) designin .

Corollary 3.8. Let n be a plane of PG(3,2). {n\(yx+ B) | B € By} isa
collection of triangles of m which are the blocks ofa (7,7,3,3,1) designin =.

Proof: First notice that v, + B, B € By, is a set of four points in 7 and, hence,
are linearly dependent. Since B is not an oval, 4, + B must contain a line and thus
w\(7x+ B) isatriangle. Let D = {y,+ B | B € By} and leta € 7. aoccurs in
four of the seven blocks of D, hence, « occurs in three of their complements in 7.
Also a pair a, 8 € 7 occurs in two blocks of D with a occurring four times and
B occurring four times. Hence, there is one block of D in which neither & nor 8
occurs. That is, the pair «, 8 occurs in one complement of a block in D. |

Proposition 3.9. Let n be a plane of PG(3,2) with translation point ~y,. Sup-
pose w' is another plane of PG(3,2) with~, € . There is a block {x,a1,
o, a3} in By, such that n is spanned by oy, iy and 3.

Proof: w N ' is an oval. Say 7 N &' = {74,61,8,,8} withy, + & + & +
83 = 0. The triangles {'71‘:81:52}9 {'7#) 81 ’ 83} and {’7#)82153} must occur as
subsets of some sets of A. Since «, is the translation point for  and since no other
complemented plane contains three of 74, 81, 82, and &3, there must be three sets
of A say {'71!‘)81)821 al}, {'Ym 81,83,&2} and {'7!'62)53’%} in BI’° Notice that
o), az, a3 are distinct for otherwise a triangle would be appearing more than once.
ai, az, and a3 are points in 7 and are not in {~yy, §1,82,83} s0 a;, 2,3 € 7.
Now the pairs {~x, a1}, {7x, @2}, and {7x, @3} must appear again as subsets of
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sets in By, and since -y, already appears three times {~y, a1, a2, a3 } must be in

B,,:‘. |
Notice that in the above proof, the four blocks in B, containing ~, are {51,

82, a1}, {1s61,83,02}, {1x62,83, 3} and {ysa1,2,3}. Now,  intersects

{61,62,1},{61,83,2} and {5;, 83, a3 } each in exactly one point.

Example 3.10. The above remark enables us to find the plane for which an arbi-

trary point « is the translation point. For example, suppose

1. "y+82 61 + 62 51-!-53 61+82+83
2. v S1+6 61 +8 +6 &

3. b 81 51+53 'y+52
4. y+ 62 + 83 &1 51+ 6 61+ 6
5. 6 - N+ 1 +&H+8 4+ 8H+ 8
6. +&H+sH m+EH s+&h+6 v

7. T+ 8 + 8 5 v+ 8 6 + 62

are the seven blocks of B, for some plane 7 and consider the point «y. -y appears in
thefourblocksBl = {'1,51 + 52, 51 + 52 + 53, 51},32 = {’1,81,51 + 83,'1+ 52},
Bi={7,7+8 + 8,61+ 63,61+ 8,61+ 86 + 83}, and By = {,7+ 8, + &3,
7+ 8,6, +8}. Let m; be the plane spanned by X; = B;\{y}. Notice that
XaNm = {81,61+63},X4n7r2 = {'y+52+63,'y+82},andX3ﬂ1r4 = {y+8+63,
81 + 8 + &} but|X;Nms| = 1fori=1,2,4. By the remark above, y must be
the translation point for 5. I

Proposition 3.11. A does not exist.

Proof: Let 7 be a plane of PG(3,2). Recall that B, isa (7,7,4,4,2) design
which arises from a (7,7,3,3, 1) design of triangles of «. Fix a triangle in this
design, say {a1, a2, a3} and let as = 7, the translation point of 7. By Proposi-
tion 2.6 we have two cases to consider:

Case 1. Suppose the (7,7,3, 3, 1) design of triangles of « is derived using con-
struction (i) of Proposition 2.6. This design of triangles is then

1 2 3
1 12 23
1 13 123
2 12 123
2 13 23
3 12 13
3 23 123

where we are again writing 1,2, 3 for oy, o, a3, and 12, 13, etc., for a; + as,
a) + a3, etc. Recall then that B, is constructed from this (7,7,3,3, 1) design
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by first complementing in # and then translating by a4 . It is

234 1234

124 134
24 34 134 1234
24 34 124 234
14 34 134 234
14 34 124 1234
14 24 234 1234
14 24 124 134.

Let ' be the plane whose translation point is a; + ai4. a; + a4 appears four times
in the blocks of B, and, thus, by Proposition 3.9, 7' must be the span of one of

1) 34 134 234

i) 34 124 1234
i) 24 234 1234
i) 24 124 134

By the same procedure as in Example 3.10 we see that 7' = {34,124, 1234 123,
12,3,4} and thus T N7 = {14,24,134,234}. Now, by Proposition 2.7 there
are eight possibilities for B,s. Using the triangles {3,4,12}, {3,4,123},{3,4,
124} and {3,4, 1234} and constructions (i) and (ii) of Proposition 2.6, as in
Proposition 2.7, we can list these eight possibilities as follows:

1. 13 234 2 23 2. 13 234 2 23 .

1 24 234 23 1 24 234 2
1 24 13 2 1 24 13 23
134 24 234 2 134 24 2 23
134 24 13 23 134 24 13 234
134 1 2 23 134 1 234 23
134 1 13 234 134 1 13 2

3. 24 13 2 23 4. 24 13 2 23

1 24 234 2 1 24 234 23
1 13 234 23 1 13 234 2
134 24 234 23 134 234 2 23
134 13 234 2 134 24 13 234
134 1 2 23 134 1 24 2
134 1 24 13 134 1 13 23
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5. 24 13 234 23 6. 24 13 234 23

1 234 2 23 1 24 2 23

1 24 13 2 1 13 234 2
134 24 2 23 134 24 234 2
134 13 234 2 134 13 2 23
134 1 24 234 134 1 234 23
134 1 13 23 134 1 24 13
7. 24 13 234 2 8. 24 13 234 2
1 24 13 23 1 234 2 23

1 13 234 23 1 24 13 23
134 234 2 23 134 24 234 23
134 24 13 23 134 13 2 23
134 1 24 234 134 1 24 2
134 1 13 2 134 1 13 234

Now, as in Example 3.10 we can list the planes corresponding to the translation
points a; + a4, a1 + a3 + a4 and a; + a3 + ay (the remaining points in 7N 7).
Using B, and the eight possibilities for By, we obtain:

(7,7,4,4,2) Translation Plane corresponding to the

design point translation point
B, 24 14 234 1234 123 23 1 4
By(1) 24 1 234 23 1234 123 4 14
By(2) 24 134 2 23 1234 124 3 14
By(3) 24 134 1 13 34 4 3 14
By (4) 24 1 234 23 1234 123 4 14
By(5) 24 134 2 23 1234 124 3 14
B (6) 24 134 1 13 34 4 3 14
B (7) 24 13 234 2 124 123 34 14
By (8) 24 13 234 2 124 123 34 14
B, 134 14 24 124 12 2 1 4
By(1) 134 24 13 23 1234 34 12 14
Br(4) 134 1 24 2 124 12 4 14
B, 234 14 34 134 13 3 1 4
By (4) 234 134 2 23 1234 124 3 14

Notice that using B, and then By(2) to find the plane with translation point
oy + as we obtain two different planes, a contradiction. Hence, By # By(2).
Similarly, we can eliminate possibilities 3,5,6,7 and 8 using the point oz + a4 .
Finally, using o) + a3 + a4 We can eliminate possibility 1 and using a; + a3 +
we can eliminate possibility 4. Consequently, A cannot exist.
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Case 2. Suppose this (7,7,3,3, 1) design of triangles of w is derived using con-
struction (ii) of Proposition 2.6. Here the argument is similar to that as in Case 1
and, thus, we just list the results of our computation. B, is

124 134 234 1234

24 34 134 234
24 34 124 1234
14 34 234 1234
14 34 124 134
14 24 134 1234
14 24 124 234

w = {24,134,1234,123,13,2,4} and TNT = {14,34,124,234}. Using
the four triangles {2,4,13}, {2,4,134},{2,4,1234} and {2,4, 123} to con-
struct the eight possibilities for B, and then checking planes corresponding to
translation points in 7 N 7 we obtain:

(7,7,4,4,2) Translation Plane corresponding to the

design point translation point
B, 34 14 234 1234 123 23 1 4
Bn(1) 34 1 234 23 1234 123 4 14
Bn(2) 34 124 3 23 1234 134 2 14
Bx(3) 34 124 3 23 1234 134 2 14
Bx(4) 34 124 1 12 24 4 2 14
By (5) 34 12 234 3 134 123 24 14
By (6) 34 12 234 3 134 123 24 14
Bx(7) 34 124 1 12 24 4 214
B(8) 34 1 234 23 1234 123 4 14
B, 124 14 34 134 13 3 1 4
Br(1) 124 34 12 23 1234 24 13 14
Bx(8) 124 1 34 3 134 13 4 14
B, 234 14 24 124 12 2 1 4
Br(8) 234 124 3 23 1234 134 2 14

In summary, we have

Theorem 3.12. Ifa one point extension of PG1(3,2) exists then there is a plane
« and points «, B in PG(3,2) such that {«, B} occurs as a subset of a unique
block of By.
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