ON THE EXISTENCE OF A DOUBLE EXTENSION OF PG(3,2)

Alphonse Baartmans
Department of Mathematics
Michigan Technological University
Houghton, MI U.S.A. 49931-1295

Joseph Yucas
Department of Mathematics
Southern Illinois University-Carbondale
U.S.A. 62901-4408

Abstract. In this paper we give a necessary condition for the Steiner system S(3,4,16) obtained from a one point extension of the points and lines of PG(3,2) to be further extendable to a Steiner system S(4,5,17).

1. Introduction.

It is not yet known whether a Steiner system S(4,5,17) exists. One possible way of constructing such a Steiner system would be by twice extending the Steiner system S(2,3,15) formed by the points and lines of PG(3,2). A one point extension of this Steiner system S(2,3,15) is easily obtained by adding a new point, say ∞_1 to the point set of PG(3,2) and taking as blocks all sets of the form $\{\ell \cup \{\infty_1\} \mid \ell \text{ is a line in } PG(3,2)\}$ and all sets of the form $\{\pi \setminus \ell \mid \pi \text{ is a plane in } PG(3,2), \ell \text{ is a line in } PG(3,2), \text{ and } \ell \subset \pi\}$. We will denote this one point extension of PG(3,2) by $PG_1(3,2)$. It is a Steiner system S(3,4,16). The main purpose of this paper is to study the existence of a one point extension of $PG_1(3,2)$.

Section 2 is preliminary in nature and lists several propositions on PG(3,2) needed in Section 3. The first few are certainly well known in the folklore. In Section 3 we show that no one point extension of $PG_1(3,2)$ with a certain uniformity property (stated before Lemma 3.5) exists, see Theorem 3.12. The problem in general, however, remains unsettled.

2. Preliminaries.

By an *oval* of PG(3,2) we will mean a collection of four points in a plane of PG(3,2) no three of which are colinear.

Proposition 2.1. Let $O = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be an oval of PG(3, 2).

- (i) (i) There is a unique plane π of PG(3,2) containing O and $\pi \setminus O$ is a line in π .
- (ii) $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$ (vector addition in PG(3,2)).

Proof: $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ is a collection of four points in a plane π of PG(3,2) no three of which are colinear. Since two planes of PG(3,2) intersect in three points we see that π is the unique plane containing O. Further, since α_1, α_2 , and α_3 are not colinear, π is spanned by α_1, α_2 , and α_3 . Consequently, $\alpha_4 \in \{\alpha_1 + \alpha_2, \alpha_3 + \alpha_3\}$

 $\alpha_1 + \alpha_3$, $\alpha_2 + \alpha_3$, $\alpha_1 + \alpha_2 + \alpha_3$ since $\alpha_4 \in \pi$. This implies $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$ for otherwise we contradict the fact that no three of α_1 , α_2 , α_3 , α_4 are colinear. Finally, notice that $\pi \setminus O = \{\alpha_1 + \alpha_2, \alpha_1 + \alpha_3, \alpha_2 + \alpha_3\}$ is a line in π .

An *ovoid* of PG(3,2) will be a collection of 4 non-coplanar point of PG(3,2).

Proposition 2.2. Let $O = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be an ovoid of PG(3,2). There is a unique plane π of PG(3,2) with $O \subset \overline{\pi}$, the complement of π in PG(3,2).

Proof: Let p_i , $0 \le i \le 3$, be the number of planes of PG(3,2) intersecting O in i points. We must show $p_0 = 1$. Since PG(3,2) has 15 planes it suffices to show that $p_1 + p_2 + p_3 = 14$. Since $\alpha_1, \alpha_2, \alpha_3$, and α_4 are non-coplanar, there are exactly 4 planes intersecting O in 3 points. They are the spans of $\{\alpha_1, \alpha_2, \alpha_3\}$, $\{\alpha_1, \alpha_2, \alpha_4\}$, $\{\alpha_1, \alpha_3, \alpha_4\}$, and $\{\alpha_2, \alpha_3, \alpha_4\}$. Hence, $p_3 = 4$. Every pair of points α_i , α_j , $1 \le i$, $j \le 4$, occurs in two of the above planes. Since every pair of points occurs in three planes, every pair α_i , α_j must occur in one additional plane. Consequently, there are $\binom{4}{2} = 6$ planes that contain exactly two points of O, that is, $p_2 = 6$. Finally, every point α_i , $1 \le i \le 4$, occurs three times in the planes intersecting O in three points and three times in the planes intersecting O in two points. Since every point occurs in seven planes there is a unique plane which intersects O at α_i . Consequently, $p_1 = 4$ and $p_1 + p_2 + p_3 = 4 + 6 + 4 = 14$. A triangle of PG(3,2) will be a set of three linearly independent points of PG(3,2).

Proposition 2.3. Let π be a plane in PG(3,2). A four point set in $\overline{\pi}$ is either an oval or an ovoid of PG(3,2). Moreover, $\overline{\pi}$ contains 14 ovals and 56 ovoids.

Proof: Suppose $O = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \subset \overline{\pi}$. Since the sum of any three of these α_i is in $\overline{\pi}$ we see that no three of the α_i are colinear. If $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$ then O is an oval. If $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \neq 0$ then α_4 is not in the span of α_1, α_2 , and α_3 hence, $\alpha_1, \alpha_2, \alpha_3$, and α_4 are non-coplanar and O is an ovoid. Now, the number of triangles in $\overline{\pi}$ is $\binom{8}{3} = 56$ and so there are 56/4 = 14 sets of the form $\{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ in $\overline{\pi}$. These are the ovals in $\overline{\pi}$. Since there are $\binom{8}{4} = 70$ four point subsets of $\overline{\pi}$ there must be 70 - 14 = 56 ovoids in $\overline{\pi}$.

Corollary 2.4. Let π_1 and π_2 be planes of PG(3,2). $\overline{\pi}_1 \cap \overline{\pi}_2$ is an oval of PG(3,2).

Proof: Since $|\pi_1 \cap \pi_2| = 3$, $|\overline{\pi}_1 \cap \overline{\pi}_2| = 4$. By Proposition 2.3, $\overline{\pi}_1 \cap \overline{\pi}_2$ is an oval or an ovoid. But $\overline{\pi}_1 \cap \overline{\pi}_2$ is not an ovoid by Proposition 2.2.

Proposition 2.5. Let π be a plane of PG(3,2).

- (i) The ovals in $\overline{\pi}$ form a $(v, b, r, k, \lambda_2) = (8, 14, 7, 4, 3)$ 3-design with $\lambda_3 = 1$.
- (ii) The ovoids in $\overline{\pi}$ form an (8, 56, 28, 4, 12) 3-design with $\lambda_3 = 4$.

Proof: If $\alpha_1, \alpha_2, \alpha_3$ are three points in $\overline{\pi}$ then they determine a unique oval in $\overline{\pi}$, namely, $\{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. Hence, $\lambda_3 = 1$ and (i) follows. For (ii), notice that the collection of all 4-subsets of $\overline{\pi}$ forms a 3-design with $\lambda_3 = 5$. Since a 4 element subset of $\overline{\pi}$ is either an oval or an ovoid and the collection of ovals in $\overline{\pi}$ forms a 3-design with $\lambda_3 = 1$, (ii) must follow.

Proposition 2.6. Let π be a plane of PG(3,2) and let $T = \{\alpha_1, \alpha_2, \alpha_3\}$ be a triangle in π . There are exactly two (7,3,1) designs of triangles of π containing the block T. They are

Proof: If $\{\alpha_1, \alpha_2, \alpha_3\}$ is a block in a (7, 3, 1) design then α_1 must appear in two more blocks. Also, the pair $\{\alpha_1, \alpha_1 + \alpha_2\}$ must appear once in some block, thus, $\{\alpha_1, \alpha_1 + \alpha_2, \beta\}$ and $\{\alpha_1, \gamma, \delta\}$ must be blocks in the design for some $\beta, \gamma, \delta \in \pi$. Clearly, $\beta, \gamma, \delta \notin \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2\}$ so $\beta, \gamma, \delta \in \{\alpha_1 + \alpha_3, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. If $\beta = \alpha_1 + \alpha_3$ then $\gamma, \delta \in \{\alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. But $\{\alpha_1, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ is not a triangle, hence, $\beta \in \{\alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. Case 1. $\beta = \alpha_2 + \alpha_3$.

Here the three blocks containing α_1 must be $\{\alpha_1, \alpha_2, \alpha_3\}, \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3\}$ α_3 and $\{\alpha_1, \alpha_1 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. There must be two other blocks containing α_2 and one of them must contain the pair α_2 , $\alpha_1 + \alpha_2$. Hence, $\{\alpha_2, \alpha_1 + \alpha_2, \iota\}$ and $\{\alpha_2, \xi, \eta\}$ are blocks in the design for some $\iota, \xi, \eta \in \pi$. Clearly, $\iota, \xi, \eta \notin$ $\{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2\}$ and so $\iota, \xi, \eta \in \{\alpha_1 + \alpha_3, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. Notice that $\{\alpha_2, \alpha_1 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ is not a triangle so $\iota \in \{\alpha_1 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$. If $\iota = \alpha_1 + \alpha_3$ then $\{\alpha_2, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3\}$ and $\{\alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ are the other two sets containing α_2 besides $\{\alpha_1, \alpha_2, \alpha_3\}$. The other two sets containing α_3 must be of the form $\{\alpha_3, \alpha_1 + \alpha_2, \rho\}$ and $\{\alpha_3, \sigma, \tau\}$ for some $\rho, \sigma, \tau \in \pi$. Notice that $\rho \neq \alpha_2 + \alpha_3$ and $\rho \neq \alpha_1 + \alpha_3$ for the pairs $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3$ and $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_3$ already occur in previous blocks. Hence, $\rho = \alpha_1 + \alpha_2 + \alpha_3$, but $\{\alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$ is not a triangle. Consequently, $\iota \neq \alpha_1 + \alpha_3$ and so $\iota = \alpha_1 + \alpha_2 + \alpha_3$. The blocks containing α_2 are $\{\alpha_1, \alpha_2, \alpha_3\}, \{\alpha_2, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_3\}$ $\alpha_2 + \alpha_3$ and $\{\alpha_2, \alpha_1 + \alpha_3, \alpha_2 + \alpha_3\}$. The remaining two blocks containing α_3 are then forced to be $\{\alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3\}$ and $\{\alpha_3, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ and we have the (7,3,1) design in (i).

Case 2. $\beta = \alpha_1 + \alpha_2 + \alpha_3$.

Here a similar argument works forcing the (7,3,1) design containing $\{\alpha_1,\alpha_2,\alpha_3\}$ to be the design in (ii).

Proposition 2.7. Let π be a plane of PG(3,2). There are exactly eight (7,3,1) designs of triangles of π and each triangle in π occurs as a block in exactly two of them.

Proof: Let $\{\alpha_1, \alpha_2, \alpha_3\}$ be a triangle in π . Applying Proposition 2.6 to the triangles $\{\alpha_1, \alpha_2, \alpha_3\}$, $\{\alpha_1, \alpha_2, \alpha_1 + \alpha_3\}$, $\{\alpha_1, \alpha_2, \alpha_2 + \alpha_3\}$ and $\{\alpha_1, \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$, respectively, and writing 1, 2, 3, 12, 13, etc., for $\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3\}$, etc., we obtain the following eight (7, 3, 1) designs of triangles:

1.	(i)	1	2	3	(ii)	1	2	3
		1	12	23		1	12	123
		1	13	123		1	13	23
		2	12	123		2	12	13
		2	13	23		2	23	123
		3	12	13		3	12	23
		3	23	123		3	13	123
2.	(i)	1	2	13	(ii)	1	2	13
		1	12	123		1	12	23
		1	3	23		1	3	123
		2	12	23		2	12	3
		2	3	123		2	123	23
		13	12	3		13	12	123
		13	123	23		13	3	23
3.	(i)	1	2	23	(ii)	1	2	23
		1	12	3		1	12	13
		1	123	13		1	123	3
		2	12	13		2	12	123
		2	123	3		2	3	13
		23	12	123		23	12	3
		23	3	13		23	123	13
4.	(i)	1	2	123	(ii)	1	2	123
		1	12	13		1	12	3
		1	23	3		1	23	13
		2	12	3		2	12	23
		2	23	13		2	13	3
		123	12	23		123	12	13
		123	13	3		123	23	3

Notice that each of the 28 triangles in π occurs as a block in exactly two of these eight designs. Further, by Proposition 2.6, a triangle occurs in exactly two

(7,3,1) designs of triangles, hence, the above eight are the only (7,3,1) designs of triangles of π .

3. The existence condition.

 $PG_1(3,2)$ has as its point set the fifteen points of PG(3,2) together with the new point ∞_1 . A set of points is a block in this extension if it is a line of PG(3,2) together with ∞_1 or if it is an oval in PG(3,2). This one point extension has sixteen points in blocks of size four with any three points occurring exactly once, that is, this one point extension is a Steiner system S(3,4,16).

Assuming that a one point extension of $PG_1(3,2)$ exists, it would be an S(4,5,17) with an additional point, say ∞_2 , added to the point set of $PG_1(3,2)$. The blocks containing ∞_2 would be all lines of PG(3,2) together with ∞_1 and ∞_2 and all complements of lines in planes of PG(3,2) together with ∞_2 . Now, in this one point extension of $PG_1(3,2)$ every point must occur 140 times. Notice that ∞_1 is already accounted for in 35 blocks since there are 35 lines in PG(3,2). Consequently, there must be 105 additional blocks in this one point extension of $PG_1(3,2)$ which contain ∞_1 . Let A_1 be the collection of these 105 blocks containing ∞_1 and set $A = \{S \subset PG(3,2) \mid S \cup \{\infty_1\} \in A_1\}$.

Proposition 3.1. If $S \subseteq A$ then S is an ovoid and, hence, is a four element linearly independent subset of PG(3,2).

Proof: No three of the four points of S are colinear for then we would have a four point set (a line with ∞_1) occurring in two blocks of our one point extension of $PG_1(3,2)$. If no three of the four points of S are colinear but S is contained in some plane π then S must be the complement of some line in π . But then $S \cup \{\infty_1\}$ and $S \cup \{\infty_2\}$ are two blocks of our one point extension of $PG_1(3,2)$, again a contradiction.

Proposition 3.2. The elements of A form the blocks of a (15, 105, 28, 4, 6) design.

Proof: Recall that our one point extension of $PG_1(3,2)$ is a 4-design with $\lambda_4 = 1$. Three points occur in $\binom{17-3}{4-3} / \binom{5-3}{4-3} = 7$ blocks and two point occur in $\binom{17-2}{4-2} / \binom{5-2}{4-2} = 35$ blocks of this one point extension of $PG_1(3,2)$. Let C_1 be the collection of all blocks of this one point extension of $PG_1(3,2)$. Containing ∞_1 and let $C = \{B \setminus \{\infty_1\} \mid B \in C_1\}$. Then C forms the blocks of a 3-design with parameters (16,140,35,4,7) and $\lambda_3 = 1$. Let $L = \{\ell \cup \{\infty_2\} \mid \ell \text{ is a line of } PG(3,2)\}$. Then $C = A \cup L$ and $A \cap L = \emptyset$ so we can count the occurrences of a point, or of two points of PG(3,2), in the blocks of A by counting the occurrences in L and C. A point of PG(3,2) occurs on seven lines and, hence, occurs in seven blocks of C. Consequently, a point of C of C must occur in C of C. Similarly, two points determine a unique line in C of C of C since they must

occur in seven blocks of C, the two points of PG(3,2) must occur in six blocks of A. The result now follows.

Notice that if T is a triangle in PG(3,2) then the four point set $T \cup \{\infty_1\}$ must occur exactly once as a subset of some block of our one point extension of $PG_1(3,2)$. Since T is not a line, this block containing $T \cup \{\infty_1\}$ must be in A. Hence, given a triangle of PG(3,2) there is a unique block in A containing it.

Let π be a plane of PG(3,2) and let $S \in A$. Notice that $|S \cap \pi| \leq 3$. Let A_i be the collection of sets $S \in A$ satisfying $|S \cap \pi| = i$, i = 0, 1, 2, 3.

Proposition 3.3.. $|A_0| = 7$, $|A_1| = 28$, $|A_2| = 42$ and $|A_3| = 28$.

Proof: There are 28 triangles in π . As remarked above, each triangle occurs exactly once as a subset of a block of A, hence, $|A_3| = 28$. Now, a pair of points of π occurs in four triangles of π so every pair of points of π occurs in four sets of A_3 . Since every pair of points occurs six times we see that every pair of points of π occurs in two sets of A_2 . There are 21 distinct pairs of points of π , hence, $|A_2| = 42$. Every point of π occurs in 12 triangles of π , hence, every point of π occurs in 12 sets of A_3 . Similarly, every point of π occurs in $6 \cdot 2 = 12$ sets of A_2 . Since every point must occur 28 times, every point of π occurs in four sets of A_1 . Consequently, $|A_1| = 7 \cdot 4 = 28$. The remaining sets of A must be in A_0 . There are 150 - 28 - 42 - 28 = 7 of them.

Let $B_{\overline{n}}$ be the sets of A whose elements belong to \overline{n} .

Proposition 3.4. $\{B_{\pi} \mid \pi \text{ a plane of } PG(3,2)\}$ is a partition of A into fifteen families each of size seven.

Proof: By Proposition 3.1 each set in A is an ovoid and, hence, is in $\overline{\pi}$ for some unique plane π by Proposition 2.2. By Proposition 3.3, $|B_{\pi}| = 7$ for each plane π .

We now make a basic assumption that if π is a plane and α , β are points of PG(3,2) then $\{\alpha,\beta\}$ does not occur as a subset of a unique set $S \in B_{\pi}$.

Lemma 3.5. Let π be a plane of PG(3,2) and suppose α, β are points of PG(3,2). If $\{\alpha,\beta\} \subseteq S \in B_{\pi}$ then $\{\alpha,\beta\}$ occurs exactly twice as a subset of a set in B_{π} .

Proof: Suppose $S = \{\alpha, \beta, \delta_1, \delta_2\} \in B_{\pi}$. Since any two sets in B_{π} can intersect in at most two points the pair $\{\alpha, \beta\}$ can occur at most three times as a subset of a set in B_{π} . Notice that the pairs $\{\alpha, \delta_1\}$, $\{\alpha, \delta_2\}$, $\{\beta, \delta_1\}$, $\{\beta, \delta_2\}$, and $\{\delta_1, \delta_2\}$, must occur again by our basic assumption and none of these pairs can occur again together or again with α or β . Consequently, the pair $\{\alpha, \beta\}$ cannot occur three times for then $|B_{\pi}| \geq 8$.

Proposition 3.6. For each plane π of PG(3,2) the sets in B_{π} are the blocks of a (7,7,4,4,2) design.

Proof: We first show that if $\alpha, \beta \in \overline{\pi}$ and if α is in a set of B_{π} and if β is in a set of B_{π} then $\{\alpha, \beta\}$ is a subset of a set of B_{π} . Suppose the contrary, that α occurs, β occurs but $\{\alpha, \beta\}$ does not. Let $S = \{\alpha, \delta_1, \delta_2, \delta_3\} \in B_{\pi}$. Since $\{\alpha, \delta_1\}$, $\{\alpha, \delta_2\}$, and $\{\alpha, \delta_3\}$ must occur again we see that there are three additional blocks which contain α . Similarly there are four blocks containing β . If α and β do not occur together then $|B_{\pi}| \geq 8$, a contradiction. Now let P_{π} be the point set corresponding to the blocks in B_{π} . Suppose $|P_{\pi}| = m$. We show m = 7. Let $X = \{(\{\alpha, \beta\}, B) \mid \alpha, \beta \in B, B \in B_{\pi}\}$. $|X| = {m \choose 2} \cdot 2 = {4 \choose 2} \cdot 7$, hence, $m^2 - m - 42 = 0$ and m = 7.

The unique point of PG(3,2) in $\overline{\pi}$ which is not used in B_{π} will be called the translation point of π and denoted γ_{π} .

Recall that an arbitrary point α of PG(3,2) must occur 28 times in the blocks of A. Since α occurs four times in the blocks of B_{π} for those planes π for which $\alpha \in \overline{\pi}$ and α is not a translation point for π and since α is in eight complemented planes we see that α must be the translation point of some plane. Hence, a point of PG(3,2) is a translation point of one and only one plane.

The following Corollary follows immediately from Proposition 3.6.

Corollary 3.7. For each plane π of PG(3,2), the sets $\gamma_{\pi} + B$, $B \in B_{\pi}$, are the blocks of a (7,7,4,4,2) design in π .

Corollary 3.8. Let π be a plane of PG(3,2). $\{\pi \setminus (\gamma_{\pi} + B) \mid B \in B_{\pi}\}$ is a collection of triangles of π which are the blocks of a (7,7,3,3,1) design in π .

Proof: First notice that $\gamma_{\pi} + B$, $B \in B_{\pi}$, is a set of four points in π and, hence, are linearly dependent. Since B is not an oval, $\gamma_{\pi} + B$ must contain a line and thus $\pi \setminus (\gamma_{\pi} + B)$ is a triangle. Let $D = \{\gamma_{\pi} + B \mid B \in B_{\pi}\}$ and let $\alpha \in \pi$. α occurs in four of the seven blocks of D, hence, α occurs in three of their complements in π . Also a pair $\alpha, \beta \in \pi$ occurs in two blocks of D with α occurring four times and β occurring four times. Hence, there is one block of D in which neither α nor β occurs. That is, the pair α, β occurs in one complement of a block in D.

Proposition 3.9. Let π be a plane of PG(3,2) with translation point γ_{π} . Suppose π' is another plane of PG(3,2) with $\gamma_{\pi} \in \overline{\pi}'$. There is a block $\{\gamma_{\pi}, \alpha_1, \alpha_2, \alpha_3\}$ in $B_{\pi'}$, such that π is spanned by α_1, α_2 and α_3 .

Proof: $\pi \cap \pi'$ is an oval. Say $\pi \cap \pi' = \{\gamma_{\pi}, \delta_{1}, \delta_{2}, \delta_{3}\}$ with $\gamma_{\pi} + \delta_{1} + \delta_{2} + \delta_{3} = 0$. The triangles $\{\gamma_{\pi}, \delta_{1}, \delta_{2}\}$, $\{\gamma_{\pi}, \delta_{1}, \delta_{3}\}$ and $\{\gamma_{\pi}, \delta_{2}, \delta_{3}\}$ must occur as subsets of some sets of A. Since γ_{π} is the translation point for π and since no other complemented plane contains three of $\gamma_{\pi}, \delta_{1}, \delta_{2}$, and δ_{3} , there must be three sets of A say $\{\gamma_{\pi}, \delta_{1}, \delta_{2}, \alpha_{1}\}$, $\{\gamma_{\pi}, \delta_{1}, \delta_{3}, \alpha_{2}\}$ and $\{\gamma_{\pi'}\delta_{2}, \delta_{3}, \alpha_{3}\}$ in $B_{\pi'}$. Notice that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are distinct for otherwise a triangle would be appearing more than once. α_{1}, α_{2} , and α_{3} are points in $\overline{\pi}'_{1}$ and are not in $\{\gamma_{\pi}, \delta_{1}, \delta_{2}, \delta_{3}\}$ so $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \pi$. Now the pairs $\{\gamma_{\pi}, \alpha_{1}\}$, $\{\gamma_{\pi}, \alpha_{2}\}$, and $\{\gamma_{\pi}, \alpha_{3}\}$ must appear again as subsets of

sets in $B_{\pi'}$, and since γ_{π} already appears three times $\{\gamma_{\pi}, \alpha_1, \alpha_2, \alpha_3\}$ must be in $B_{\pi'}$.

Notice that in the above proof, the four blocks in $B_{\pi'}$ containing γ_{π} are $\{\gamma_{\pi}\delta_1, \delta_2, \alpha_1\}$, $\{\gamma_{\pi}\delta_1, \delta_3, \alpha_2\}$, $\{\gamma_{\pi}\delta_2, \delta_3, \alpha_3\}$ and $\{\gamma_{\pi}\alpha_1, \alpha_2, \alpha_3\}$. Now, π intersects $\{\delta_1, \delta_2, \alpha_1\}$, $\{\delta_1, \delta_3, \alpha_2\}$ and $\{\delta_2, \delta_3, \alpha_3\}$ each in exactly one point.

Example 3.10. The above remark enables us to find the plane for which an arbitrary point γ is the translation point. For example, suppose

are the seven blocks of B_{π} for some plane π and consider the point γ . γ appears in the four blocks $B_1 = \{\gamma, \delta_1 + \delta_2, \delta_1 + \delta_2 + \delta_3, \delta_1\}$, $B_2 = \{\gamma, \delta_1, \delta_1 + \delta_3, \gamma + \delta_2\}$, $B_3 = \{\gamma, \gamma + \delta_2 + \delta_3, \delta_1 + \delta_3, \delta_1 + \delta_3, \delta_1 + \delta_2 + \delta_3\}$, and $B_4 = \{\gamma, \gamma + \delta_2 + \delta_3, \gamma + \delta_2, \delta_1 + \delta_2\}$. Let π_i be the plane spanned by $X_i = B_i \setminus \{\gamma\}$. Notice that $X_2 \cap \pi_1 = \{\delta_1, \delta_1 + \delta_3\}$, $X_4 \cap \pi_2 = \{\gamma + \delta_2 + \delta_3, \gamma + \delta_2\}$, and $X_3 \cap \pi_4 = \{\gamma + \delta_2 + \delta_3, \delta_1 + \delta_2 + \delta_3\}$ but $|X_i \cap \pi_3| = 1$ for i = 1, 2, 4. By the remark above, γ must be the translation point for π_3 .

Proposition 3.11. A does not exist.

Proof: Let π be a plane of PG(3,2). Recall that B_{π} is a (7,7,4,4,2) design which arises from a (7,7,3,3,1) design of triangles of π . Fix a triangle in this design, say $\{\alpha_1,\alpha_2,\alpha_3\}$ and let $\alpha_4 = \gamma_{\pi}$, the translation point of π . By Proposition 2.6 we have two cases to consider:

Case 1. Suppose the (7,7,3,3,1) design of triangles of π is derived using construction (i) of Proposition 2.6. This design of triangles is then

where we are again writing 1,2,3 for α_1 , α_2 , α_3 , and 12,13, etc., for $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_3$, etc. Recall then that B_{π} is constructed from this (7,7,3,3,1) design

by first complementing in π and then translating by α_4 . It is

Let π' be the plane whose translation point is $\alpha_1 + \alpha_4$. $\alpha_1 + \alpha_4$ appears four times in the blocks of B_{π} and, thus, by Proposition 3.9, π' must be the span of one of

By the same procedure as in Example 3.10 we see that $\pi' = \{34, 124, 1234, 123, 12, 3, 4\}$ and thus $\pi \cap \pi' = \{14, 24, 134, 234\}$. Now, by Proposition 2.7 there are eight possibilities for $B_{\pi'}$. Using the triangles $\{3, 4, 12\}, \{3, 4, 123\}, \{3, 4, 124\}$ and $\{3, 4, 1234\}$ and constructions (i) and (ii) of Proposition 2.6, as in Proposition 2.7, we can list these eight possibilities as follows:

1.	13	234	2	23	2.	13	234	2	23 .
	1	24	234	23		1	24	234	2
	1	24	13	2		1	24	13	23
	134	24	234	2		134	24	2	23
	134	24	13	23		134	24	13	234
	134	1	2	23		134	1	234	23
	134	1	13	234		134	1	13	2
3.	24	13	2	23	4.	24	13	2	23
	1	24	234	2		1	24	234	23
	1	13	234	23		1	13	234	2
	134	24	234	23		134	234	2	23
	134	13	234	2		134	24	13	234
	134	1	2	23		134	1	24	2
	134	1	24	13		134	1	13	23

5.	24	13	234	23	6.	24	13	234	23
	1	234	2	23		1	24	2	23
	1	24	13	2 ·		1	13	234	2
	134	24	2	23		134	24	234	2
	134	13	234	2		134	13	2	23
	134	1	24	234		134	1	234	23
	134	1	13	23		134	1	24	13
7.	24	13	234	2	8.	24	13	234	2
	1	24	13	23		1	234	2	23
	1	13	234	23		1	24	13	23
•	134	234	2	23		134	24	234	23
	134	24	13	23		134	13	2	23
	134	1	24	234		134	1	24	2
	134	1	13	2		134	1	13	234

Now, as in Example 3.10 we can list the planes corresponding to the translation points $\alpha_2 + \alpha_4$, $\alpha_1 + \alpha_3 + \alpha_4$ and $\alpha_2 + \alpha_3 + \alpha_4$ (the remaining points in $\overline{\pi} \cap \overline{\pi}'$). Using $B_{\overline{\pi}}$ and the eight possibilities for $B_{\overline{\pi}'}$, we obtain:

(7,7,4,4,2) Translation			Plane corresponding to the						
design	point		translation point						
B_{π}	24	14	234	1234	123	23	1	4	
$B_{\pi'}(1)$	24	1	234	23	1234	123	4	14	
$B_{\pi'}(2)$	24	134	2	23	1234	124	3	14	
$B_{\pi'}(3)$	24	134	1	13	34	4	3	14	
$B_{\pi'}(4)$	24	1	234	23	1234	123	4	14	
$B_{\pi'}(5)$	24	134	2	23	1234	124	3	14	
$B_{\pi'}(6)$	24	134	1	13	34	4	3	14	
$B_{\pi'}(7)$	24	13	234	2	124	123	34	14	
$B_{\pi'}(8)$	24	13	234	2	124	123	34	14	
B_{π}	134	14	24	124	12	2	1	4	
$B_{\pi'}(1)$	134	24	13	23	1234	34	12	14	
$B_{\pi'}(4)$	134	1	24	2	124	12	4	14	
B_{π}	234	14	34	134	13	3	1	4	
$B_{\pi'}(4)$	234	134	2	23	1234	124	3	14	

Notice that using B_{π} and then $B_{\pi'}(2)$ to find the plane with translation point $\alpha_2 + \alpha_4$ we obtain two different planes, a contradiction. Hence, $B_{\pi'} \neq B_{\pi'}(2)$. Similarly, we can eliminate possibilities 3,5,6,7 and 8 using the point $\alpha_2 + \alpha_4$. Finally, using $\alpha_1 + \alpha_3 + \alpha_4$ we can eliminate possibility 1 and using $\alpha_2 + \alpha_3 + \alpha_4$ we can eliminate possibility 4. Consequently, A cannot exist.

Case 2. Suppose this (7,7,3,3,1) design of triangles of π is derived using construction (ii) of Proposition 2.6. Here the argument is similar to that as in Case 1 and, thus, we just list the results of our computation. B_{π} is

124	134	234	1234
24	34	134	234
24	34	124	1234
14	34	234	1234
14	34	124	134
14	24	134	1234
14	24	124	234

 $\pi'=\{24,134,1234,123,13,2,4\}$ and $\overline{\pi}\cap\overline{\pi}'=\{14,34,124,234\}$. Using the four triangles $\{2,4,13\},\{2,4,134\},\{2,4,1234\}$ and $\{2,4,123\}$ to construct the eight possibilities for $B_{\pi'}$, and then checking planes corresponding to translation points in $\overline{\pi}\cap\overline{\pi}'$ we obtain:

(7,7,4,4,2) Translation			Plane	correspo	onding t	o the			
design point			translation point						
B_{π}	34	14	234	1234	123	23	1	4	
$B_{\pi'}(1)$	34	1	234	23	1234	123	4	14	
$B_{\pi'}(2)$	34	124	3	23	1234	134	2	14	
$B_{\pi'}(3)$	34	124	3	23	1234	134	2	14	
$B_{\pi'}(4)$	34	124	1	12	24	4	2	14	
$B_{\pi'}(5)$	34	12	234	3	134	123	24	14	
$B_{\pi'}(6)$	34	12	234	3	134	123	24	14	
$B_{\pi'}(7)$	34	124	- 1	12	24	4	2	14	
$B_{\pi'}(8)$	34	1	234	23	1234	123	4	14	
B_{π}	124	14	34	134	13	3	1	4	
$B_{\pi'}(1)$	124	34	12	23	1234	24	13	14	
$B_{\pi'}(8)$	124	1	34	3	134	13	4	14	
B_{π}	234	14	24	124	12	2	1	4	
$B_{\pi'}(8)$	234	124	3	23	1234	134	2	14	

In summary, we have

Theorem 3.12. If a one point extension of $PG_1(3,2)$ exists then there is a plane π and points α, β in PG(3,2) such that $\{\alpha, \beta\}$ occurs as a subset of a unique block of B_{π} .

References

- 1. T. Beth, D. Jungnickel, and H. Lenz, "Design Theory", Cambridge University Press, Zurich, 1986.
- 2. J.W.P. Hirschfield, "Finite Projective Spaces of Three Dimensions", Clarendon Press, Oxford, 1985.