A SHIFTING PROPERTY OF SOME COSTAS SEQUENCES

Oscar Moreno¹

Department of Mathematics University of Puerto Rico Río Piedras PUERTO RICO 00931

Abstract. There is a conjecture of Golomb and Taylor that asserts that the Welch construction for Costas sequences with length p-1, p prime, is the only one with the property of single periodicity.

In the present paper we present and prove a weaker conjecture: the Welch construction is the only one with the property that its differences are a shift of the original sequence.

Introduction.

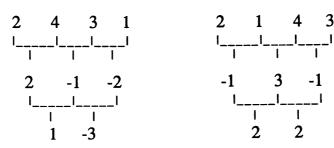
We would like to give a short introduction and define our terms. For more details see [2, 3, 4].

Costas Arrays or Costas Sequences. A Costas sequence a_0, \ldots, a_{n-1} is a sequence which is a permutation of the integers 1, ..., n satisfying the property

$$a_{s+k}-a_s\neq a_{t+k}-a_t$$

for every s, t and k, such that $0 \le s < t < t + k \le n - 1$.

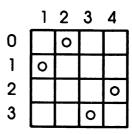
- Example: a) Costas sequence:
- b) not a Costas sequence:



¹Oscar Moreno was supported in part by the Office of on Naval Research under grant number N00014-90-J-1301, the NSF-EPSCOR of Puerto Rico Project, and the NSF grant number DCI-8601555.

We can put these sequences in an array form as follows:

	1	2	3	4
0		0		
1				0
2			0	
3	0			



and the property of the differences can be put as follows: if we form all the vectors joining any two dots, no two vectors have the same length and magnitude. An array which results from Costas sequence in this way is called a Costas array.

The problem of finding a Costas array or sequence is equivalent to a problem of Costas [1], who encountered it in constructing sonar signal patterns.

Welch Exponential Construction. Let p prime and α a primitive element in GF(p). Then Welch, [3, 4] showed that $\alpha^1, \alpha^2, \ldots, \alpha^{p-1} = 1$ is a Costas sequence.

We refer to this construction as the Welch construction, and call such a sequence a Welch sequence.

The Welch construction is singly periodical. This is to say α^i , α^{i+1} ,..., α^{i+p-2} is also a Costas sequence, that is, any circular shift of the sequence is also a Costas sequence.

Example: If p = 7 and n = 6, $\alpha = 3$ is primitive in GF(7). The sequences $\{3, 2, 6, 4, 5, 1\}$, $\{2, 6, 4, 5, 1, 3\}$, $\{6, 4, 5, 1, 3, 2\}$, $\{4, 5, 1, 3, 2, 6\}$, $\{5, 1, 3, 2, 6, 4\}$, and $\{1, 3, 2, 6, 4, 5\}$ are all Costas sequences.

Conjecture (Golomb and Taylor). Single periodicity characterizes the Welch Construction.

The above conjecture was given in [3]. We will now prove our main result.

Section 1. A shifting property of some Costas sequences.

Let us consider the circular differences $a_{0+h}-a_0$, $a_{1+h}-a_1$, $a_{2+h}-a_2$, ..., $a_{n-1+h}-a_{n-1}$ (i+h is considered modulo n). We do this for $h=1,2,\ldots,n-1$. We say that the circular differences have the *shifting property*, if these differences considered modulo n+1 are always a circular shift of the original sequence, and circular shifts are considered as in the above example where all the circular shifts of $\{3,2,6,4,5,1\}$ are given.

Example: Notice that in the Welch sequence 2,4,3,1: the circular (index sums modulo 4) differences modulo 5 are $\{2,4,3,1\}$, $\{1,2,4,3\}$, and $\{4,3,1,2\}$, for h = 1,2,3 respectively. Therefore, they have the shifting property.

Our main result is as follows:

Theorem. The Shifting property characterizes the Welch construction.

Proof: We assume first that the sequence a_0, \ldots, a_{n-1} has the shifting property, and we prove it is a Welch sequence. To do this we will prove first that n+1 is a prime.

We know $a_1 - a_0$, $a_2 - a_0$, ..., $a_{n-1} - a_0$ gives all the elements of Z_{n+1} excluding only 0 and $-a_0$. Also, $a_i - a_0$, $a_{i+1} - a_1$, ..., $a_{i+n-1} - a_{n-1}$ (i = 1, 2, ..., n-1) is a shift of $a_0, ..., a_{n-1}$ and, therefore, it gives all the possible shifts of $a_0, ..., a_{n-1}$ except the one beginning with $-a_0$.

Since a shift of a sequence with the shifting property also has the shifting property, we can assume that $a_0=1$. Since in the differences we can get all the possible shifts of a_0,\ldots,a_{n-1} excluding the one beginning with $-a_0$ or in other words n, we can get the one beginning with a_0 unless $a_0=-a_0$, that is, $2a_0=0$ in \mathbf{Z}_{n+1} , but $a_0=1$ implies n=1 and n+1=2, a prime. Therefore, there exist k such that $a_k-a_0=a_0$, $a_{k+1}-a_1=a_1,\ldots,a_{k+n-1}-a_{n-1}=a_{n-1}$. This implies $a_k=2a_0$, $a_{k+1}=2a_1,\ldots,a_{k+n-1}=2a_{n-1}$. Notice that we can continue doing this exactly n-1 times as follows: now there is one beginning with $a_k=2$, unless $a_n=1$. That is, $a_n=1$. That is, there exist $a_n=1$ such that:

$$a_m - a_0 = a_k = 2 a_0$$
 $a_m = 3 a_0$ then
$$a_{m+1} - a_1 = a_{k+1} = 2 a_1$$
 $a_{m+1} = 3 a_1$ \vdots \vdots

it is the original 3 times and $a_m = 3$. It is clear we can continue multiplying the original by $2, 3, 4, \ldots$, up to n - 1 (excluding only n = -1) and get a shift of the original sequence containing all the nonzero elements of \mathbb{Z}_{n+1} .

This implies that for every nonzero element a of Z_{n+1} if we multiply the set $\{1,2,\ldots,n\}$ by any a we get again the same set. In particular 1 is always in $\{1,2,\ldots,n\}$ and for $a=2,3,\ldots,n$ we have that a is, therefore, invertible in Z_{n+1} and we have, therefore, a field and n+1 must be a prime.

In order to finish our proof consider now M the circulant $n \times n$ matrix over Z_{n+1} (n+1 a prime):

$$M = \begin{bmatrix} -1 & 1 & \dots & 0 & 0 \\ 0 & -1 & \dots & 0 & 0 \\ & & \vdots & & \\ 0 & 0 & \dots & -1 & 1 \\ 1 & 0 & \dots & 0 & -1 \end{bmatrix}$$

But we just proved that:

$$M\begin{bmatrix} a_0 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a_1 - a_0 \\ a_2 - a_1 \\ \vdots \\ a_0 - a_{n-1} \end{bmatrix} = c \begin{bmatrix} a_0 \\ \vdots \\ a_{n-1} \end{bmatrix}$$
 for some c

Therefore, c is an eigenvalue and $x=(a_0,\ldots,a_{n-1})^t$ is an eigenvector of M. We will finish our proof if we obtain that any eigenvector of M must be as in the Welch construction. Let τ be a primitive root in GF(p). For any $f\in GF(p)$ $f\neq 0$ then $f=\tau^i$. Then the characteristic equation of M is $(x+1)^n-1=0$. So the eigenvalues are $1+\tau^i$ $(i=0,1,\ldots,n-1)$ and are simple. Thus, each eigenvalue has a unique eigenvector up to scalar multiples.

Since
$$y_i = \begin{bmatrix} 1 \\ \tau^i \\ (\tau^i)^2 \\ \vdots \\ (\tau^i)^{p-2} \end{bmatrix}$$
 is an eigenvector for $-1 + \tau^i$,

we can conclude that $x = ay_i$, for some i, and $a \in GF(p)$. Since the coordinates of x are distinct, it follows that τ^i must be primitive. Since $a_0 = 1$, $x = y_i$ and x is as in the Welch construction. The converse, that a Welch sequence, has the shifting property is easily checked.

References

- 1. J.P. Costas, Medium constraints on solar design and performance, EASCON Conv. Rec. (1975), 68A-68L.
- 2. S.W. Golomb and H. Taylor, Two dimensional synchronization patterns for minimum ambiguity, IEEE Trans. on. Inf. Th. II-28, No. 4 (July 1982).
- 3. S.W. Golomb and H. Taylor, *Construction and properties of Costas arrays*, Proceedings of the IEEE, no. 9 72 (September 1984).
- 4. S.W. Golomb, *Algebraic constructions for Costas arrays*, Journal of Combinatorial Theory, Series A 37, No. 1 (July 1984).