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Abstract. There is a conjecture of Golomb and Taylor that asserts that the Welch
construction for Costas sequences with length p — 1, p prime, is the only one with the

property of single periodicity.

In the present paper we present and prove a weaker conjecture: the Welch con-
struction is the only one with the property that its differences are a shift of the original
sequence.

Introduction.

We would like to give a short introduction and define our terms. For more details
see [2, 3, 4].

Costas Arrays or Costas Sequences. A Costas sequence ag,... ,aq-1 iS aSe-
quence which is a permutation of the integers 1,... ,n satisfying the property
4

Qs+k — Gs F Otek — Ot

forevery s,t and k,suchthat 0 < s<t<t+k<n—1.

Example: a) Costas sequence: b) not a Costas sequence:
2 4 3 1 2 1 4 3
I | | | | | | |
| I | | | |
2 -1 -2 -1 3 -1
| | o o |
| | | |
1 -3 2 2
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We can put these sequences in an array form as follows:

12 3 4 123 4
0 o 0 0
1 o 1 |o
2 o 2 o
3 o 3 0

and the property of the differences can be put as follows: if we form all the vectors
joining any two dots, no two vectors have the same length and magnitude. An
array which results from Costas sequence in this way is called a Costas array.

The problem of finding a Costas array or sequence is equivalent to a-problem
of Costas [1], who encountered it in constructing sonar signal patterns.

Welch Exponential Construction. Let p prime and o a primitive element in
GF(p). Then Welch, [3, 4] showed that o' ,0?,... ,aP~! = 1 is a Costas se-
quence.

We refer to this construction as the Welch construction, and call such a sequence
a Welch sequence.

The Welch construction is singly periodical . This is to say o, o'*! ... , a*P-2
is also a Costas sequence, that is, any circular shift of the sequence is also a Costas
sequence.

Example: If p =7 andn = 6, o = 3 is primitive in GF(7). The sequences
{3)2!6)4)5! 1}’{2’6)41 )1!3}’ {6!4,5) 113I2}’ {4’5’ 1!3)2!6}’ {5! l)
3,2,6,4},and {1,3,2,6,4,5} are all Costas sequences.

Conjecture (Golomb and Taylor). Single periodicity characterizes the Welch
Construction.

The above conjecture was given in [3]. We will now prove our main result.

Section 1. A shifting property of some Costas sequences.

Let us consider the circular differences ao: h— 0, 8145—0Q1, 824 5—82, ... , Gn_14h —
an-1 (1 + h is considered modulo n). We do this forh = 1,2,... ,n— 1. We
say that the circular differences have the shifting property, if these differences
considered modulo n+ 1 are always a circular shift of the original sequence, and
circular shifts are considered as in the above example where all the circular shifts
of {3,2,6,4,5,1} are given.
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Example: Notice that in the Welch sequence 2,4 ,3, 1: the circular (index sums
modulo 4) differences modulo 5 are {2,4,3,1}, {1,2,4,3}, and {4,3,1,2},
for h = 1,2, 3 respectively. Therefore, they have the shifting property.

Our main result is as follows:

Theorem. The Shifting property characterizes the Welch construction.

Proof: We assume first that the sequence ao, ... ,a,-1 has the shifting property,
and we prove it is a Welch sequence. To do this we will prove first that n+ 1 is a
prime.

We know a; — ag, a2 — ag, ... ,an-1 — ao gives all the elements of Z,., -
excluding only 0 and —ag. Also, a; — @0, Gi+1 — G1, ... ,Gi4n-1 — Gp-1 (3 =
1,2,...,n—1) isashiftof ag, ... ,as-1 and, therefore, it gives all the possible
shifts of ag, ... ,a,_1 €xcept the one beginning with —a,.

Since a shift of a sequence with the shifting property also has the shifting prop-
erty, we can assume that ap = 1. Since in the differences we can get all the
possible shifts of ag, ... , a,—1 excluding the one beginning with —ao or in other
words n, we can get the one beginning with ag unless ag = —ao, thatis,2a¢ = 0
inZ,1,butao = 1 implies n= 1 and n+ 1 = 2, a prime. Therefore, there exist k
suchthatay —ag = ag, Gg+1 — 81 = A1, , Gk+n-1 —BGyn-1 = Gn_1. This implies
ar = 2a9,8k+1 = 2a1,... ,Qk+n-1 = 2a4-1. Notice that we can continue doing
this exactly n — 1 times as follows: now there is one beginning with a; = 2,
unless 2 = —1, that is, n = 2. That is, there exist a,, such that:

Gm — Q0 = af = 209 am = 3ap
then

Gmil — Q1 = Qg1 =281 Gpe1 = 301

it is the original 3 times and a,, = 3. It is clear we can continue multiplying the
original by 2,3,4,..., up to n— 1 (excluding only n = —1) and get a shift of
the original sequence containing all the nonzero elements of Z 1 . '

This implies that for every nonzero element a of Z,,; if we multiply the set
{1,2,...,n} by any a we get again the same set. In particular 1 is always in
{1,2,...,n} and fore = 2,3,...,n we have that a is, therefore, invertible in
Z+1 and we have, therefore, a field and n+ 1 must be a prime.

In order to finish our proof consider now M the circulant n x n matrix over
Zuw1 (n+ 1 aprime):

-1 1 ... O 0
0 -1 0 O
M=
0o o0 -1 1
1 0 0 -1
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But we just proved that:

ag a1 —aop ag
a2 —ag
M . = . =c . for some ¢
Gn-1 G0 — Gp-1 Gp1
Therefore, ¢ is an eigenvalue and z = (ao, ... ,aq,-1)* is an eigenvector of M.

We will finish our proof if we obtain that any eigenvector of M must be as in the
Welch construction. Let 7 be a primitive root in GF(p). For any f € GF(p)
f # 0 then f = 7°. Then the characteristic equation of M is (z + 1)» — 1 = 0.
So the eigenvalues are 1 + 7* (i = 0,1,... ,n— 1) and are simple. Thus, each
eigenvalue has a unique eigenvector up to scalar multiples.

1
A
Since y; = (m? is an eigenvector for —1 + 7°,
(v
we can conclude that = = ay;, for‘some i,and a € GF(p). Since the coordinates
of z are distinct, it follows that 7* must be primitive. Since ap = 1, z = y; and

z is as in the Welch construction. The converse, that a Welch sequence, has the
shifting property is easily checked. [ ]
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