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Abstract. We investigate collections H = {H1, H2,..., Ha} of pairwise disjoint w-
subsets H; of an r-dimensional vector space V over GF(q) that arise in the construction
of byte error control codes. The main problem is to maximize m for fixed w, r, and ¢
when H is required to satisfy a subset of the following properties: (i) each H; is linearly
independent; (i) H; N (Hy) = ¢ if § # 7; (i) (H;) N (Hy) = {0} if ¢ # j; (iv) any
two elements of H; U H, U- - - U Hy, are linearly independent; (v) any three elements
of Hy U Ha U -U Hy, are linearly independent. Here (z) denotes the subspace of V
spanned by X . Solutions to these problems yield linear block codes which are useful in
controlling various combinations of byte and single bit errors in computer memories.
For r = w+ 1 and for small values of w the problem is solved or nearly solved. We list
a variety of methods for constructing such partial partitions and give several bounds on
m.

1. Introduction

In recent years a number of researchers have investigated the structure of error-
correcting codes for byte organized computer memories. We mention for example
the papers [4], [15], [24]. Problems analogous to those we raise here have been
studied in the theory of matroids and in the theory of finite geometries; some con-
nections to those topics will be discussed below.

We will be concerned with collections

H={H\,Hs,..., Hp} )

of pairwise disjoint w-subsets H; of an r-dimensional vector space V' over a finite
field F = GF(q). H will be called a partial w-partition of V of length m.
With a few exceptions F' will be GF(2). The partitions of concern to us will be
required to satisfy one or more of the following properties:

(i) Each H; is linearly independent.
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(i) Hin(H;)=¢ifi#j.
(i) (H:)N(H;)={0}ifi#j.

(iv) Any two elements of H; U H, U - - -U H,, are linearly independent.
(v) Any three elements of H; U Ha U - -- U Hy, are linearly independent.

Here (X) denotes the subspace of V spanned by X .

Let Q be a subset of the four properties listed above. We always assume that
Q contains property (i). The principal question we discuss is the following:

A. For fixed r and w what is the largest partial partition (1) satisfying the con-
junction of the properties in Q? We call such a partial partition optimal
with respect to Q2 and we call this the optimality problem for Q.

In a few cases we consider problems of the following type:

B. Given a particular subset S of V find the largest partial partition (1) satis-
fying the properties in 2 such that every component H; of H is contained
in the set S.

In Section 2 we discuss the relationship between various types of partial parti-
tions and byte error control codes which motivate them.

In Section 3 we discuss the optimality problem for partial partitions which sat-
isfy conditions (i) and (iii). Partial partitions satisfying these two properties are
called partial w-spreads. As pointed out to us by Jack Hayden, in the special case
r = 2w, such partial partitions have been extensively investigated in the theory
of translation planes [20]. Investigation of the general case, r > w and r not di-
visible by w, was apparently initiated indeperidently by Hong and Patel [15] for
the binary case only and by Beutelspacher [1] for arbitrary finite field size . Both
of these papers obtained the same lower bound for the size of optimal partial w-
spreads. The best known upperbounds are due to Drake and Freeman [10]. We
state these bounds in Section 3. Additional results are obtained concerning the
optimality of partial spreads satisfying condition (v).

Section 4 is devoted to the optimality problem for partial partitions satisfying
conditions (i) and (ii). We call such partial partitions quilts. In this section we con-
sider only the case F' = GF(2). We present a number of methods for constructing
quilts that have appeared in the literature. The known construction methods for
quilts are facilitated by the study of quilts that satisfy property (v) and quilts that
have the property that all vectors in each H; have odd (Hamming) weight. We
study both of these types of quilts. For r = w + 1 or w = 2 the optimality prob-
lem is completely solved for all three types of quilts. For w = 3 and 4 we come
very close to a complete solution using some new bounds that we establish for
quilt sizes. However, the general optimality problem for quilts remains open.

In Section 5 we solve completely the optimality problem for partial partitions
satisfying condition (i) only and solve problem B above in case S is the set of
columns of the parity check matrix for a cyclic or extended cyclic code.
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2. Connections with Byte Error Control Codes

We assume familiarity in this section with the basic ideas of linear error correct-
ing/detecting codes [21]. An (=,k,d) code, or simply (n, k) code, over F =
GF(q) is a k-dimensional subspace C of F* with minimum (Hamming) weight
d. We are interested in the case where each codeword x in C is partitioned into m
bytes with w bits per byte, i.e.,

X= (211,012, -1 T1w, T2,1, -+, T2 0y« +y Tm,15 -+ +  Tm,w)
= (xlox2)'°')xm)-

An error pattern confined to ¢ of the m bytes is called a t-byte error, whereas an
error pattern involving ¢ of the n = mw bits x;; is called a ¢t-bit error. The code C
is said to be

single error correcting (SEC), if it can be used to correct any 1-bit error;

double error detecting (DED), if it can detect any 2-bit error;

byte error correcting (BEC),  if it can correct any 1-byte error;

byte error detecting (BED), if it can detect any 1-byte error.

Analogously we shall use triple error detecting (TED), and 2-byte error detecting
(2-BED).

The (n, k, d) code C may be described as the null space of a parity check matrix
H which is an r by n matrix of rank r where n= mw and r = n— k. Let H be
partitioned in the form

H=[HHy...Hp] )

where each submatrix H; is r by w. If the columns of H are distinct we may view
(2) as a partial w-partition of the vector space F'" of all column vectors of length r.
Table I below gives the relationship between the various subsets of the proper-
ties (i)=(v) and the error control abilities of a code with parity check matrix (2).
Since we shall always assume condition (i) and because of obvious implications
between the conditions we have only seven distinct cases. Table I also gives the
minimum distance profile as defined in [23] and [25]. This is an analogue of the
minimum distance for codes providing byte as well as bit error protection.

Partial Partition Error Control Min. Distance- References

Properties Properties Profile
1. (D) BED 2,1)
2. (i), (i) SEC-BED 3.2) 4,11, 12]
3. (i), (iii) BED (3,2,1) [15]
4. (i), (iv) DED-BED 3.0
5. (@, () TED-BED @4,1)
6. (i), (ii), (V) SEC-DED-BED (4,2) [7,13,14,17,18,24]
7. (), (iii), (v) (2-BED)-TED (4,2,1)

Table 1
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In each instance save one the partial partition properties listed in Table 1 are
necessary and sufficient for the code defined by the parity check matrix (2) to be
able to perform all of the error control properties listed. The exception is line 1
where for BED codes the H; need not be disjoint. These equivalences are quite
easy to verify and are well-known.

3. Partial Spreads
In this section we discuss partial w-partitions H satising the two properties:

(i) Each H; is linearly independent.
(i) (H:) N (Hy) = {0}ifi # ;.
Let W; = (H;). In this way we obtain m w-dimensional subspaces

Wi, Wa, .., W satistying W; \W; = {0} if i # j. 3)

Such a collection of subspaces of V' will be said to be a partial w-spread in V
with components W;. If also

WiuwL,Uu.-.UW,,=V

then (3) is called a w-spread or a full w-spread, for emphasis. It is clear that if
we have a partial w-spread (3) and we chose a basis H; for W, for each 1, then (i)
and (iii) will hold.

The term spread was coined by Bruck and Bose [5]. If the dimension of V
is 2w such a w-spread determines a translation plane and conversely. The case
dim (V) = 2w has been studied extensively (see, e.g., [20]). With regard to the
case r > 2w see [[1],[3],[10],[15]].

We say that a partial w-spread in V' is maximal if it cannot be extended to a
larger partial w-spread and is optimal if no larger partial w-spread exists. Let V
be r-dimensional over F = GF(g). Since V contains q" — 1 non-zero elements
and each W; contains ¢ — 1 non-zero elements it is clear that a partial w-spread
in V has at most

f(rw,q) = [""1]
gv—1

components where [.] denotes the greatest integer function. It is convenient to
note that

a—1

—Eq'w+°1fr—aw+co<c<w @)
1=0

f(’r)wlq) =

We now present a class of partial w-spreads which have size

m=L(r,w,q) = f(r,w,q) —(¢° = 1) )
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The Hong-Patel Partial w-Spreads. The spreads defined here for F = GF(q)
are a straightforward generalization of those defined for G F'(2) by Hong and Patel
in [15)]. Partial spreads with the same parameters for prime fields may also be
constructed by recursively applying Lemma 2 of Linstrom [19] and reducing the
dimension of the last subspace produced by that construction.

Letr = aw+¢,0 < ¢ < w. We assume a > 2, otherwise there is no non-trivial
spread. The Hong-Patel partial w-spread is the union

H=H'UH*U---UH*'UH"® ©)

of a partial w-spreads H*. We define H*,1 < t < a — 1, as follows. Write each
vector in FT in the form (z,y, 2), = in F(**-D% ¢ in F¥, and 2z in F*v*c. If
t = a — 1, this reduces to (y, z). Identify F***¢ with K = GF(¢"*°) and leta
be a primitive element of K. Let m(?) = gtv*e. Since w < tw + c the sets

{ef,a*},..., a1}, 1<i<m(t) -1,
are linearly independent. Let
H{ = {(0,€1,0),(0,e2,0),...,(0,64,0)}
where ej, €3, ..., ey is the standard basis for F*. For 1 < 1 < m(?) — 1 set
H!={(0,e1;,0"),(0,e2,0™"),...,(0,e4,a** 1)}

These m(t) sets form a w-spread H*. Finally, we define H® t0 be the w-partial
spread with just one subset

Hf= {(0,61,0),(0,62,0),...,(0,8,,,,0)},

where in this case (z,y, z) indicates z in F(®~D¥ y in F¥, 2 in F°. Now one
easily verifies that the union (6) of these a partial w-spreads is a partial w-spread
with

m=m()+m(2+---+m(a—1) +1=L(r,w,q)
components. It is easy to check that these spreads are maximal. It is an open
question whether or not they are optimal.

Hong and Patel showed that in the binary case the above partial spreads are
optimal if r = 0 or 1 (mod w). Beutelspacher [1] independently showed the exis-
tence of partial w-spreads with these same parameters and proved that they are in
fact optimal for any ¢ when r = 0 or 1 (mod w). It follows that an optimal partial
w-spread in an r-dimensional vector space over GF'(q) has size m satisfying:

L(T)ws q) S m (7)
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Furthermore if r = 0 or 1 (mod w) then we have equality.
Let @ be defined by

20=11+4¢"(q" —¢°) — (2¢" —2¢°+ 1),
where c is as in (4); and set

U(rian) = f(r’wrQ) —([0] + l)°

Drake and Freeman [10] showed that this is an upper bound for optimal partial
w-spreads. We summarize these results in the following theorem.

Theorem 1. (Hong, Patel, Beutelspacher, Drake, Freeman). If H is an optimal
Dpartial w-spread of size m, then

L(r,w,q) <m < U(r,w,q),

and equality holds if r = 0 or 1(mod w).

Hong and Patel conjectured that their spreads are optimal in the binary case.
However, the upperbound in the above theorem is not trivial. The smallest case
of this conjecture that is unresolved is the case ¢ = 2, w = 3 and r = 8. Hours
of computer search have failed to reveal a counter-example even in this case. The
Hong-Patel partial spread with these parameters has length m = 33. From Theo-
rem 1 we deduce that the optimal size in this case is at most 34.

Remarks on Maximal Partial Spreads.

It is easy to see that the Hong-Patel partial spreads are maximal. For the case
r = 2w, Mesner [22] notes the existence of maximal partial spreads that are not
full spreads. In the case r = 2w, full spreads always exist and correspond to
translation planes. Some additional results on this topic may be found in Bruen’s
article in [6].

Partial Spreads Satisfying Condition (v).
Here we consider only the case F = GF(2). Let

H={H1sH2)°°'sHm} (8)

be a partial w-spread and let S = H; UH, U- - -U H,,. We are interested in finding
the largest spread (8) subject to condition (v): every set of three vectors in S is
linearly independent. We call such a spread a four spread, since it corresponds to a
linear code with minimum distance d > 4. One way to guarantee this is to choose
the spread so that all vectors in S have odd Hamming weight. Let us call such a
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spread an odd spread. Let W; be the space spanned by H;. If each H; consists
of odd (weight) vectors only then W; contains 2v-1 odd vectors. Since there are
271 odd vectors in F" we must have

m<L2TY ©)

This bound can be attained by using the spreads H -1 described in the construction
of the Hong-Patel spread. While the spread H -1 need not be an odd spread if we
apply the linear automorphism

(1,22, ..+, Ty) = (T1 + Tusl + Tusa + -+ Tr, T2, .., Tr)

we obtain an odd spread. Thus we have
Theorem 2. An optimal odd spread has size m = 2"~", whereas an optimal four
spread has size m > 277V,
The next theorem will be used several times in what follows:
Theorem 3. (Clark, Dunning and Rogers [8]). Let S be a set of vectors in

GF(2)" such that every subset of three or less vectors in S is linearly independent.
If either

@ |S|>5-2"%,0r

() 1<r<3,
then, there is a linear automorphism of GF(2)" which carries S into the set of
all odd weight vectors. :
Theorem 4. If w= 2 or 3, then optimal four spreads have size m = 27",

Proof: If w = 2 or 3 and an optimal four spread has size m > 27~", then the
union of the components of the spread contains mw vectors and we have

mw > w2 S 5. 2r—4

But this implies by Theorem 3 that there is an odd spread of this size which con-
tradicts Theorem 2.

This leaves open the question of existence for four spreads with w > 4 exceed-
ing the bound (9).

4. Quilts
In this section we shall always assume that F = GF(2).
A partial w-partition H = {H1, Ha,..., Hn} in F" will be called a quilt with
parameters (w, r, m) when it satisfies the two properties:
(i) Each H; is linearly independent;
(i) HiN(H;)=¢if1 # .
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As with spreads we call m the size or length of H. Similarly,if § = HyU---UH,,
consists entirely of odd (weight) vectors we call H an odd quilt and if every 3-
subset of S is linearly independent we call H a four quilt. The existence of a
quilt with parameters (w,r, m) is equivalent to the existence of a collection of
w-dimensional subspaces W;,Wa,..., Wy, such that for each i there is a basis
for W; that does not intersect any other subspace in the collection. The following
notation will be useful. v

quilt (w, r, m) < there is a quilt with parameters (w, r, m)

fourquilt (w,r,m) < there is a four quilt with parameters (w, r, m)

oddquilt (w,r,m) < there is an odd quilt with parameters (w, r, m)

spread (w, r, m) < there is a partial spread with parameters (w, r, m)

4.1 Constructions

We now list several known methods for constructing new quilts from given quilts.
Let H = {H1,H3,..., Hy,} be a given quilt with parameters (w, r, m).

The Doubling Construction (Chen [7]).
quilt (w,r,m) =quilt (w,r+ 1,2m)
fourquilt (w,r, m)=>fourquilt (w,r+ 1,2m)
oddquilt (w,r, m)=>oddquilt (w,r+ 1,2m)

The Widening Construction (Chen [7]).
quilt (w,r,m) =>quilt (w+ 1,7+ 1,m)
fourquilt (w,r, m)=>fourquilt (w+ 1,7+ 1,m)
oddquilt (w,r,m)=>oddquilt (w+ 1,7+ 1,m)

0dd Quilt — Quilt Construction (Dunning and Varanasi [13]).
oddquilt (w,r,m)=>quilt (w,r + a,(2°*! — 1)m)

We now record a few methods of constructing quilts from scratch.

Trivial Quilts.
quilt(1,7r,m=2" -1

oddquilt (1,7,m = 2™1)
fourquilt (1,7,m = 27"1)

If w = 1, an optimal quilt of size m can be obtained by taking the m = 27 — 1
singleton sets {v} where v is any non-zero element of F*. An optimal odd quilt
of size m = 27! can be obtained by taking the m = 27! singleton sets {v}
where v is any odd (weight) vector of F'"; this is also optimal as a four quilt. If
r = w, then the quilt H = {H,}, with m = 1, where H, is the standard basis for
FT is optimal as a quilt, an odd quilt and as a four quilt.

By applying the above constructions to these trivial quilts many examples of
quilts may be obtained, some of which are even optimal.
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The Coset Construction (Bossen, Chang, Chen [4] and Reddy [24]).

quilt (w,r,m =2""""1 - 1),
fourquilt (w,r,m = 2"""*1 — 1), ifw >5.
We note that quilts with the same parameters may be obtained by use of the

0dd Quilt — Quilt Construction given above. [This methods extends easily to the
non-binary case F = GF(q) to obtain a quilt with m = (¢"**! —1)/(¢g—1).]

The Partial Steiner System Construction (Even w [9]).
oddquilt (w,r, m = A((r,2w),4,w)), forevenw.
Here n = n(r, d) is the maximum possible length of a binary linear code with
redundancy r, minimum distance d and having codewords of even weight only,

and A(n,4,w) is the maximum possible number of codewords in a binary code
of length n, constant weight w and minimum distance 4.

The r = m = w+2 Odd Quilt Construction (Dunning [14], Kaneda [17][18]).
oddquilt(w,r=w+2,m=w+2)
The Spread Construction of Odd Quilts (A generalization of Chen [7]). -
spread(w — 1,7 — 1, m) = oddquilt(w,r,m)

Letr > w > 3 andlet H = {H,,Ha,..., Hy} be a partial (w — 1)-spread in
Fr=! Foreachi=1,...,m given that H. {vl,vz, ., U1}, set

H!={(v1,1),(v2,1),...,(Vu_1,1),(v1 + 2, D}.

Using the fact that H is a spread, one easily sees that these sets form a quilt with
parameters (w, r, m). Applying the linear automorphism

(21,1‘2,...,1,) = (T1,00e,Ty1,T1 + T2 + ceet 1T,)

one obtains an odd quilt with the same parameters.
We record here a useful implication that follows directly from Theorem 3.

Four Quils to Odd Quilts.

fourquilt (w,r,m) andmw > 5 -2"~* = oddquilt (w, r, m)
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4.2 Upper Bounds

Theorem 5 If a quilt H has parameters (w,r, m), we have the following upper
bounds on m.

wm<2"—1,w>2, (10)
wm<2"—1-3-2" 1 2w—1),w>3, (11)
(2v! —w)wm < (2 - 12_ wm)’w > 3. (12)

If in addition H is an odd quilt (or a four quilt with w > 3,r > w+ 2), we
have the following:

wm S 21—1,w 2 2 (13)
wmgzr—l_(zlw—l_w.'.l)’ if w=4, (14)
wm <27 — (2% —w+2v2 _w), if w> 4, (15)
2r—1
r-1 _

Proof: Welet S = Hi U H U---U Hy, and let W; denote the subspace of F”
generated by H;. (10) is clear since mw = |S| and F" contains exactly 27 — 1
non-zero vectors. Let X denote the set of all non-zero vectors in F'™ that are not
in S. Let W* denote the set of non-zero vectors in any set W of vectors.

Proof of (11): Since H; N Wj = ¢ if i # j the vectors
Y = (Wi\H1) U(W;\H2) U---U (W \Hm)

are contained in X. It follows that mw < 2" — 1 — |Y'|. Alowerbound onY is
obtained by using the first two terms only and observing that

(Wi\H1) n(W3\Hz) = (W) N (W5)
which has at most 2¥~! — 1 elements:
Y|>QU—-w-1)+Q2¥—w-1) - (2% =1,

and (11) follows. .

Proof of (12): Note thatif w > 3 and H; = {v,v2,...,Vy}, then v; is a sum of
2%-1 _ w two element subsets {s, s, } where each s; lies in (W;*\ H1), namely,
Vi =8 +68; ifs; = 2,-61 vjands; = z:jel v; + v;, where I is any subset of
{1,2,...,w}\{i} with |I| > 1. Thus, each element of S is a sum of at least
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2w-1 _ o pairs of elements from X. Since |X| = 2" — 1 — mw elements (12)
follows.

Proof of (13)~(16) for four quilts: One easily checks that if w > 3 and r >
w + 2, then the bounds (13)—(16) are each greater than 5 - 27~* and it follows
from Theorem 3 that it suffices to establish these bounds for odd quilts.

Proof of (13) for odd quilts: This is obvious since there are in F" exactly 2r-1
odd vectors.

Proof of (14) for odd quilts: In the notation above, W; contains 2 w-1 odd vectors.
If w > 4 then W; is generated by the odd vectors in W;\ H; since given four odd
vectors h;, 1 < i < 4,in H; we may write any one of them, say, h; as the sum of
the three odd vectors h; + hy + hs, hy + ha + hg, hy + hs + hy which are not in
H;. It follows that at least one odd vector in W, \ H; is not contained in W) . This
shows that there are at least 2%~! — w + 1 odd vectors that are not in S and (14)
follows.

Proof of (15) for odd quilts: Continuing the argument in (14) let Y’ denote set of
odd vectors in

(WH\H1) U(Wr\H2) U---U(Wp\Hp)

Note that these vectors are not in S. A lower bound on Y is obtained by using the
first two terms only and observing that

(Wi\H1) N (W2\H2) = (W) N(W2)

which has at most 2 -2 odd vectors. Since each W;\ H; has 2w-1 _q odd vectors
we obtain:
[Y]>(2¥ ! —w) + (¥ —w) — 22

and (15) follows.

Proof of (16) for odd quilts: As in the proof of (12) each v in H; can be written as
a sum of 2%~ — w pairs in X . Since each such v is odd, one vector in each pair is
even and one is odd. Now in X there are 27! — 1 even vectors and 27! — wm
odd vectors. Hence there are (27! — 1) (27! — wm) pairs (s;,s2) withs; even
and s, odd. It follows that (mw) (2¥~! —w) < (27! —1)(2""! — wm) which
is equivalent to (16).

4.3 Optimal and Near Optimal Quilts
Theorem 6. Ifa quilt H has parameters (w,r = w+ 1,m) with w > 2, then
a) m =3 if H is an optimal quilt;
b) m = 3 if H is an optimal four quilt with w > 5;
¢) m =2 if H isan optimal four quilt with w = 2,3, or 4; and
d) m =2 if H isan optimal odd quilt.

17



Proof of (a) and (b): Parts (a) and (b) were established in [[12],[24]]. However the
proof we give here is conceptually simpler. Suppose H is a quilt with parameters
(w,r = w+ 1, m = 4). Let W; be the subspace generated by H;. Then each W;
is a hyperspace in V = F**!_ It follows that the intersection S = W; N W, has
dimension w — 1. Letu € H; and v € H,. Then by definition of quiltu ¢ S
and v ¢ W;. It follows that

Wi=SU(S+u),Ws=SU(S+v)andV = Wi U(W, + V)

and hence
V=SU(S+u)U(S+V)IU(S+u+v).

Now since H3 does notintersect Wy UW, , we must have H3 containedin S+u+v,
and it follows by comparison of dimensions that W3 = SU(S+ u+ v). It follows
that V = W) U W, U W3. This leaves no room for Hy which is disjoint from
W1 U W, U W3, Since the Coset Method gives quilts with m = 3 and when
w > 5 its improvement due to Reddy gives four quilts with m = 3, we have
established (a) and (b).

Proof of (d): The Doubling Construction applied to the odd quilt with w = r and
m = 1 and H; consisting of the standard basis for F* gives an odd quilt with
parameters w,r = w+ 1,and m = 2. So to establish d) it suffices to show that
there is no odd quilt with parameters (w,r = w+ 1,m = 3). Let H be such a
quilt. Continuing the above argument we have since H3 does not intersect S that
Hj is contained in S+ u + v. Since the sum of two odd vectors is odd, if all vectors
in S are even (weight) then S + u + v contains only even-vectors, but this cannot
be since H3 contains only odd vectors. Hence S contains a w — 2 dimensional
subspace U of even vectors and an odd vector x such that S = U U (U + x). It
follows that '

Wi=UUWU+x)U(U+uw)U(U+x+u).

Now, H; does not intersect S and U + x + u contains no odd vectors so H; is
contained in U + u. It follows that A, and hence W, is contained in UU (U + u),
which is a w — 1 dimensional subspace. This contradiction completes the proof
of (d).

Proof of (c): For w = 3 or 4, a four quilt. with r = w+ 1, m = 3 satisfies
mw > 5 - 274, implying by Theorem 3 the existence of odd quilts with these
parameters. This cannot be by (d) which we have just proved. For w = 2 and
r = 3 by Theorem 3 again every four quilt is an odd quilt so we must have m < 2
by (d). This completes the proof of (c) and the theorem.
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Theorem 7 (Dunning and Varanasi [11]). If w = 2 an optimal quilt has size
m = 2" — 1 and an optimal odd quilt or four quilt has m = 272,

Proof: The coset construction gives quilts with m = 27~! — 1 when w = 2. This
is best possible since the bound (10) gives m < [2571] =271 — 1.

In the case of odd quilts we have by (13) thatm < 272, So it suffices to show
that an odd quilt exists that attains this bound. To do this let e be any non-zero
even vector. Say that the odd vectors u and v are equivalent if their sum is e. The
reflexive closure of this relation is an equivalence relation on the 27~ odd vectors
with 272 two element equivalence classes. These equivalence classes form the
desired odd quilt.

For w = 2, if a four quilt satisfies m > 272, then wm > 5 - 274, It follows
from Theorem 3, that there is an odd quilt with these parameters, which contradicts
the previous paragraph. This completes the proof.

Theorem 8 (Chen [7]). If w = 3, an optimal four quilt or odd quilt has size

r—-1
m= [2 ] . a7

3

Proof: If r = 4, the result follows from Theorem 6 (c) and (d). So we letr > 5.
First we consider the case when r is odd and r— 1 is even. Then by Theorem 1 there
is a spread with w = 2 and m given by (17). Thus, by the Spread Construction
of Odd Quilts described above there is an odd quilt with w = 3 and m given by
(17). By applying the Doubling Construction we obtain from these odd quilts, odd
quilts with parameters (w' = 3,7 = r+ 1, m' = 2m). One may verify that these
parameters also satisfy (17) if all parameters are primed. By (13) these quilts are
optimal. This completes the odd quilt case.

To complete the proof one checks that3m > 5-27—* forr > 4, so by Theorem
3 optimal four quilts are optimal odd quilts. The case r = 3 = w is trivial.

Only partial results have been obtained for optimal quilts when w = 3:

Theorem 9. For w = 3 optimal quilts for r = 3,4 and 5 have sizes m =
272 1.

Proof: The coset construction when w = 3 yields quilts with m = 27-2 — 1. The
optimality of these bounds follows for r = 4 from Theorem 6 (a) and for r = 5
from the upper bound (12).

The inequalities (10) and (12) may be solved and in the case w = 3 yield the

bound
1 1 7 1
~lar_ - _ +1 _ L — (27— .a1/2
m53(2 5 2r 4)m3(2 V2.2 ) (18)
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which compares favorably with w = 3 quilts which may be obtained by applying
the “Odd Quilt — Quilt Construction” to the optimal odd quilts of Theorem 8. For
example if » = 0 (mod 4) there are optimal w = 3 odd quilts with parameters
(w' =3,7 =7/2+1,m' = (22 — 1). Applying this construction with
a = r/2 — 1 we obtain a quilt with parameters (w = 3, r, m) where

m= %(2'/2 —-DER27?-1= %(2r —2.272 4. (19)

The difference between (18) and (19) is O(27/2). For example, when r = 8, we
getabound m < 77, and a quilt with m = 75. Similarly near optimal quilts are
obtained when r = 1,2, or 3 (mod 4).
Theorem 10. For w = 4, optimal odd quilts and four quilts for r = 6 have
m =6, and for r = 7 the optimal size is m = 14.
Proof: The existence of an odd quilt withw = 4, r = m = 6 comes from the
“r = m = w+ 2 Construction” described above. These are optimal by (14). These
are also optimal four quilts by Theorem 3. An optimal (4,7, 14) odd quilt was
given in [13] and shown in [9] to follow from the Steiner System Construction.
By (14) it is optimal as an odd quilt and by Theorem 3 it is optimal as a four quilt.
Kaneda’s Odd Quilts for w = 4 [[17],[18]). Let r = 2t and for each pair
{x,y} of odd weight vectors in F* form the set

Hyy={(x,x+y),(y,x+y),(x+y,x),(x+y,y)}
in F. Since there are 2*~ odd weight vectors in F* there are
2t-l 3 _
m=(2 )=2r —2(r-9/2 (20)
such sets, which form an odd quilt.
In [9] a generalization to larger w of this construction is obtained using partial
Steiner systems; however, except for a few isolated examples at r = 7 and 12 (see

[9]), the Kaneda quilts are the longest known odd quilts with w = 4.
Now, solving (10) and (12) when w = 4 yields the upper bound for quilts

m<2™ 24 %- 1/2r-1 + ;4—7 R 8L2T5 —(27UDy 272 (21

Applying the “Odd Quilt — Quilt” construction to the Kaneda odd quilts with
a = 2 we obtain quilts with parameters (w = 4, r, m) where
m= (2% —1)(275 = 20=9/2y =7 . 275 _(7/8)272, 22)

Using a = (2t —2) /3 witht = 1 (mod 3) instead of a = 2, one may obtain quilts
within 0(227/3) of the bound (21).

Aside from the trivial cases r = w, the cases r = w+ 1 covered by Theorem 6,
and the above cases for w = 2, 3 and 4 we know of no additional proven examples
of optimal quilts, odd quilts or four quilts.
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5. BED Partitions

A partial w-partition H = {H,, H3,..., H,} satisfying only the condition that
the sets H; are linearly independent will be called a bed partition since the corre-
sponding codes as described in Section 2 are byte error detecting (BED). We note
that in the binary case condition (iv) is automatically true.

We observe that an optimal bed partition is not an optimal BED code since if
we simply take in (2) each H; to be the w by w identity matrix we obtain a BED
code of arbitrary length. However, a somewhat less trivial question is: Given a
parity check matrix H for an arbitrary linear code, may it be partitioned as in (2)
so that the columns of the submatrices are linearly independent, thus possibly in-
troducing the additional property of BED on top of other error control properties
the code might have already? In case the entire matrix cannot be so partitioned,
what is the least number of columns that one need delete to obtain such a parti-
tion? We establish below that at least in the case that H is the parity check matrix
of a cyclic or extended cyclic code of length n, such partial w-partitions always
exist with m = [n/w]. We note also that there exists a matroid partitioning algo-
rithm ([27],ch. 19) which can be used to, in polynomial time, find an optimal bed
partition of a given set of vectors.

Theorem 10. An optimal bed partition with parameters (w,r,m), r > w, over
F = GF(q) satisfies
g -1
m= [ ] . (23)

w
Proof: Clearly an optimal bed partition cannot have size greater than that given
by (23). We may take F™ = K = GF(q"). If a is a primitive element of K, since
w < r,the set Ho = {a',a/*!,..., a1} is linearly mdependent Since multi-
plication by o is a non-singular lmear map the sets H; = {a°,a!,...,a*""1}
are also linearly independent. It follows that the sets Ho , Hy, sz, oy Him-1)w

form the desired bed partition in F".

Theorem 11. Let S be the set of columns of the parity check matrix H of acyclic
or extended cyclic (n, k) code over F = GF(q). If w < r = n— k, then there
is a bed partition contained in S with parameters (w,r, m = [n/w]).

Proof: Since the dual C* of a cyclic code C is a cyclic code we may take H to
be the generator matrix of a cyclic code with generator polynomial

h(z) = ho + hiz+ -+ -+ h.z", hoh, #0.
Then H has the form:

h(zx)
zh(x)
H=| z*h(=)

zr! .h( T)
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It follows that the first r, a fortiori the first w columns of H, are linearly in-
dependent. Since the code is cyclic any w consecutive columns of H are linearly
independent. Thus, we may form a bed partition of the columns by taking for the
sets Hy, Ha, ... ,respectively, the first w columns, the second w columns,. .. This
yields the desired bed partition.

The parity check matrix of the extended code can be obtained by first adding a
column of 0’s to the left of H to obtain the » by n+ 1 matrix H' and finaily adding
arow of 1’s at the bottom of H' to obtain the r + 1 by n+ 1 matrix H*. By the
reasoning in the previous paragraph we may partition the columns of H as before
except we take for H, just the first w — 1 consecutive columns of H. Thereafter
we choose the columns in groups of w until there are less than w left. It becomes
clear that we may obtain a bed partition {H}, H3,..., H%} of the columns of H*
where H{ consists of the first w columns of H*, H3, of the second w columns of
H*, etc. It is easy to verify that this is a bed partition.

Acknowledgements

We are grateful to Gur Dial, Jack Hayden, Frederick Rickey, and Douglas Rogers
for useful discussions on these matters. We are also indebted to Albrecht Beu-
telspacher, David Drake and Hansjoachim Groh for references on partial w-spreads.

References

1. Albrecht Beutelspacher, Partial spreads in finite projective spaces and par-
tial designs, Mat. Z. 14S (1975), 211-229.

2. Albrecht Beutelspacher, Parallelismen in unendlichen pro;ektzven raumen
enlicher dimension, Geometriae Dedicata 7 (1978), 499-506.

3. Albrecht Beutelspacher and Franco Eugeni, On the type of partial t-spreads
in finite projective spaces, Discrete Math. 54 (1985), 241-257.

4. D.C. Bossen, L.C. Chang, and C. Chen, Measurement and generation of error
correcting codes for package failures, IEEE Trans. Comput. C-27 (1978),
201-204.

5.R.H. Bruck and R.C. Bose, The construction of translation planes from pro-
Jective spaces, J. Alg. (1964), 85-102.

6. A.A. Bruen, Blocking sets and translation nets, in “Lecture notes in pure
and applied mathematics: Finite Geometries”, edited by N.L. Johnson, et al,
Marcel Dekker, New York, 1983.

7. C.L. Chen, Error correcting codes with byte error detection capability, IEEE
Trans. Comput. C-32 (1983), 615-621.

8. W.E. Clark, L.A. Dunning and D.G. Rogers, Binary set functions and parity
check matrices, Discrete Math. 80 (1990), 249-265.

9. W.E. Clark, L.A. Dunning and D.G. Rogers, The construction of some byte
error control codes using partial Steiner systems, IEEE Trans. Information
Th. IT-35 (1989), 1305-1310.

176



10. David A. Drake and J.W. Freeman, Partial t-spreads and group constructible
(s, 7, m)-Nets, Journal of Geometry 13 /2 (1979), 210-216.

11. L.A. Dunning and M.R. Varanasi, SEC-BED codes for short byte lengths, Re-
search Report 82-1, Department of Computer Science, Bowling Green State
University, (1982).

12. L.A. Dunning and M.R. Varanasi, Code constructions for error control in
byte organized memory systems, IEEE Trans. Comput. C-32 (1983), 535-542.

13. L.A. Dunning and M.R. Varanasi, A rotational (14 -4 ,49) SEC-DED-S4ED
code for byte organized fault tolerant memory applications, Proc. 14th Inter.
Conf. on Fault-Tolerant Computing (1984), 330-333.

14. L.A. Dunning, SEC-BED-DED codes for error control in byte-organized
memory systems, IEEE Trans. Comput. C-34 (1985), 557-562.

15. S.J. Hong and A.M. Patel, A general class of maximal codes for computer
applications, IEEE Trans. Comput. C-21 (1972), 1322-1331.

16. M.Y. Hsiao, A class of optimal minimum odd-weight-column SEC-DED codes,
IBM J. Res. Devel. 14 (1970), 395-401.

17. S. Kaneda, A class of odd-weight -column SEC-DED-SbED codes for mem-
ory systems applications, IEEE Trans. Comput. C-33 (1984), 737-739.

18. S. Kaneda, A class of odd-weight -column SEC-DED-SbED codes for mem-
ory systems applications, Proc. 14th Int. Conf. Fault-Tolerant Comput. (1984),
88-93.

19. B. Linstrom, Group partitions and mixed prefect codes, Canad. Math. Bull.
18 /1 (1975), 57-60.

20. H. Luneburg, “Translation Planes”, Springer-Verlag, New York, 1980.

21. EJ. MacWilliams and N.J.A. Sloane, “The Theory of Error-Correcting Codes”,
Amsterdam, North-Holland, 1977.

22. D.M. Mesner, Sets of disjoint linesin PG(3, g) , Canadian J. Math. 19 (1967),
273-280. 4 ,

23, P. Piret, Binary codes for compound channels, IEEE Trans. Inform. Theory
IT-31 (1985), 436-440.

24. A class of linear codes for error control in byte-per-card organized digital
systems, IEEE Trans. Comput. C-27 (1978), 455-459.

25. W.J. van Gils and J.P. Boly, On combined symbol-and-bit error-control [ 4 , 2]
codes over {0,1}8 to be used in the (4,2) concept fault-tolerant computer,
IEEE Trans. Info. Theory, IT-33 (1987), 911-917.

26. T. Verhoeff, An updated table of minimum-distance bounds for binary linear
codes, IEEE Trans. Inform. Theory IT-33 (1987), 665-680.

27. D.J.A. Welsh, “Matroid Theory”, Academic Press, New York, 1976.

177



