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Abstract. A tricover of pairs by quintuples on a y-element set V is a family of 5-
element subsets of V, called blocks, with the property that every pair of distinct ele-
ments of V occurs in at least three blocks. If no other such tricover has fewer blocks,
the tricover is said to be minimum, and the number of blocks in a minimum tricover is
the tricovering number Cs (v, 5,2), or simply C3(v). It is well known that C3(v) >
[v[3(v — 1)/4]/5] = Ba(v), where [z] is the smallest integer that is at least z. Itis
shown here that if v = 1 (mod 4), then C3 (v) = B3(v) +1 forv =9 or 17 (mod 20),
and C3(v) = B3(v) otherwise.

1. Introduction.

Let V be a finite set of cardinality v. A (k,t)-cover of index X is a family of k-
element subsets of V', called blocks, with the property that every t-element subset
of V occurs in at least )\ of the blocks. The covering number Cy(v, k, t) is defined
to be the number of blocks in a minimum (as opposed to minimal) (k, t)-cover
of index A on V. Many authors have been involved in determining the covering
numbers known to date (see bibliography).

The object of this paper is to determine C; (v, 5,2) for all v = 1 (mod 4). The
corresponding covers are called tricovers of pairs by quintuples.
Forv>k>t>0let

vfv-—1 v—t+1
B k,3) = [Z [k— 1" [k—t+ 1'\] ” ’

where [z] is the smallest integer that is at least z. Schonheim [26] observed that
the quantity B (v, k, t) is a lower bound for Cy (v, k,t).

For simplicity let C\(v, 5, 2) be denoted by Cy(v) and By(v, 5, 2) be denoted
by By(v).

Hanani [9] has shown that if \(v—1) =0 (mod k—1) and \v(v—-1) =1
(mod k), then Cy(v, k,2) > Bx(v,k,2) + 1. Thus,ifv =9 or 17 (mod 20),
then C3(v) > Ba(v) + 1.

A balanced incomplete block design BIBD(v, k, \) is a pair (V, B), where V'
is a v-clement set and B is a family of k-element subsets of V, called blocks, such
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that every pair of distinct elements of V' occurs in exactly X blocks. Hanani [9]
has shown that there exists a BIBD(v, 5, ) for all integers v > 5 which satisfy
the relations

AM(v—=1)=0 (mod 4)
and

Av(v—1) =0 (mod 20)

with the exception of v = 15 and X = 2.

Since the relation Cy(v) = By (v) holds for balanced incomplete block designs,
it is immediate that C3 (v) = B3(v) forv = 1 or 5 (mod 20).

We combine these various results into the following theorem.

Theorem 1. If v = 1 or 5 (mod 20), then C3(v) = B3(v). If v =9 or
17 (mod 20), then C3(v) > B3(v) + 1. If v =13 (mod 20) then C3(v) >
Bs(v).

In the next four sections we will show that we always have equality in Theorem
1. We do this by constructing appropriate covering designs.

We require several other types of combinatorial configurations. We need some
of these types only for A = 1 so we will drop the A from our notation for these
types. A pairwise balanced design PBD[ {5, w*}; v] is a pair (V, B), where V is
a v-clement set and B is a family of subsets of V' called blocks, such that there
is a special block W of size w, all the other blocks have size 5, and every pair of
distinct elements of V' occurs in exactly 1 block. The blocks that are not W are
called ordinary blocks. They all have size 5. A resolvable balanced incomplete
block design RBIBD(v, k, 1) is a BIBD(v, k, 1) in which the blocks can be di-
vided into disjoint classes such that each element of V' occurs in exactly one of
the blocks of each class. These are called resolution classes.

A group divisible design GDD[a®b? ...d%; K; )] is atriple (V, G, B) where

(i) V is afinite set,
(ii) G is a family of disjoint subsets of V called groups, whose union is V,
(iii) exactly « of the groups have size a, exactly A of the groups have size b, ...,
exactly § of the groups have size d, and there are no other groups,
(iv) B is a family of subsets of V, called blocks, and the size of every block is
an element of the set K,
(v) each block contains at most one element from any given group,
(vi) every pair of distinct elements of V' belongs to exactly one of the groups or
to exactly A of the blocks.
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A transversal design TDy (k; v) is a GDD[ v*; {k}; A1. For \ = 1 suchadesign
is equivalent to a set of £ —2 mutually orthogonal Latin squares, and is, of course,
denoted by TD(k; v).

An incomplete transversal design TD( k; v)— TD(k; w) is a quadruple (X,Y,
@G, B),suchthat X is a kv-element set; G is a family of disjoint v-element subsets,
G1,Ga,... ,Gi of X, called groups, whose union is X ; Y is a subset of X, called
the hole, satisfying |[Y NG;| = w for all i; B is a family of k-element subsets of X,
called blocks, such that each block intersects each group in exactly one point, no
block contains more than one element of Y, and every pair of elements of distinct
groups, not both in Y, belongs to exactly one block.

For the existence of transversal designs, our authority is Brouwer [3] unless
another reference is given. Similarly, for the existence of resolvable balanced
incomplete block designs and balanced incomplete block designs, see Mathon and
Rosa [14].

2. Some constructions.

For any integer n > 5, we set Ay(n) = Cy(n) — By(n).
The following lemmas are useful for our constructions.

Lemma 1. If a PBD[ {5, w*}; v] exists, then A\(v) < Ax(w) forall ).

Proof: Let W be the special block of size w in the PBD, and let V be the set of
elements not in this block. Thus, the cardinality of V is v—w. Let F'(«) denote the
number of ordinary blocks that contain «. For « € V we have F((a) = (v—1) /4
and fora € W we have F(a) = (v—w) /4. Thisgivesusv=w =1 (mod 4).
Moreover, if F is the total number of ordinary blocks, then we have

v—w _ v(v—1) _w(w-—l)
4 4 4

5F=) F(a)= (v—-w)v;l +w

This gives us

A\F ]=Bx(v)—Bx(w)-

_v(v=1)) w(w—l)A_[v(u—l)XI [w(w—l))\
T200 T 20 | 20 || 20

If we replicate the ordinary blocks in our PBD ) times, and adjoin the C)(w)
blocks of a minimum (5, 2)-cover of W of index ), then we get a covering of
index ) of a v-clement set with \F' + C)(w) blocks of size 5. Therefore,

Cx(v) < AF + Cy(w) = By(v) — By(w) + Cy(w) = By(v) + Ay(w).

It follows that Ay (v) < Ay(w). ' ]
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Lemma 2. Thereexists aPBD[{5,(4u+ 1)*};16u + 5], and A\(16u+ 5) <
Ay(4u + 1) forall positive integers u and ).

Proof: Hanani, Ray-Chaudhuri, and Wilson [10] have shown that there exists an
RBIBD (12u + 4,4, 1), say D. Such a design has 4 u + 1 resolution classes. Let
T1,T3,... , T4u+1 DE @ set of points not occurring in D. By adjoining z; to each
block of the ith resolution class of D, for 1 < i < 4u+ 1, and adding a new block
{z1,22,... ,%aus1} we obtain a PBD[{5,(4u + 1)*}; 16 u + 5], and Lemma 1
yields Ay(16u + 5) < Ay(4u+1). 1

Lemma 3. Let m and t beintegers suchthat0 <t<m,m=0o0r1 (mod 5),
and either there exists 2 TD(6; m) or m = 10. Then A\(20m + 4t + 1) <
Ay(4t+ 1) forall ).

Proof: We can construct a GDD[45; {5}; 1] by removing one element from a
BIBD(21,5,1), and a GDD[45; {5}; 1] by removing one element from a
BIBD(25,5,1).
- If there exists a TD(6; m) we start with it and remove m — ¢ elements from
one of the groups, giving us a GDD[m>t!;{5,6}; 1]. We inflate each of the
points of this GDD by a factor of 4, replace each block of size 5 by the blocks
of aGDD[4%; {5}: 11 on the corresponding points, and each block of size 6 by
the blocks of a GDD[4¢; {5}; 1] on the corresponding points. This gives us a
GDD[(4m)%(4t)!; {5}; 1]. Take one extra point X at infinity and adjoin it to
each of the groups of this last GDD, replace each of the resulting sets of size
4m+ 1 by the blocks of a BIBD(4m + 1,5, 1). We now have a PBD[ {5, (4t +
1)*}; 20m + 4t + 1]. Applying Lemma 1 we get our result.

On the other hand, if m = 10 we start with a TD(6; 10) — TD(6; 2) which has
been constructed by Brouwer [4]. We remove m — t elements from one of the
groups Gy in such a way that the two points z, y, of Gy, that are also in the hole
are either both removed or neither removed. Inflate each point by a factor of 4 as
before, replace the blocks of sizes 5 and 6 as before with the blocks of the designs
GDD[4%; {5}; 11 and GDD[45; {5}; 11, respectively. If z and y have both been
removed, add the blocks of a GDD[8%; {5}; 1] on the 40 points obtained from
the hole. If z and y have not been removed add the blocks of a GDD[8%; {5}; 1]
on the 48 points obtained from the hole. Such a GDD has been constructed by
Brouwer [2]. Then we complete the construction as before. 1

It is worth noting that there exists a TD(6; m) or all m = 0 or 1 (mod 5),
exception of m = 6 and possibly m € {10,26,30}, as is shown in [3] and [29].

Lemma 4. Suppose that there exists an RBIBD(m,5,1), and let t be an integer
satisfying 0 <t < (m—1)/4. Then Ay(4m+4t+ 1) < Ay(4t+ 1) forall ).

Proof: Taking the blocks of one of the resolution classes of the RBIBD as groups
we obtain a GDD[5™/3; {5}; 1] with at least ¢ resolution classes of blocks. We
adjoin a new group consistng of t new points z, . . . 7, to our design, and adjoin z;
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to the blocks of the ith resolution class . This gives us GDD[5™3t!; {5,6}; 1].
As in the proof of Lemma 3, we inflate each point by a factor of 4, replace the block
of sizes 5 and 6 by the blocks of the designs GDD[4°; {5}; 1] and GDD[4%; {5}; 1],
respectively. This gives us a GDD[20™/%(4t)!; {5}; 1]. We now adjoin a point
X at infinity to each group, replace each of the resulting sets of size 21 by a
BIBD(21,5,1) to obtain a PBD[{5, (4t + 1)*}; 4m + 4t + 1] and our result
follows from Lemma 1. 1

Lemma 5. Let u and w be odd positive integers, and let b be an integer satisfying
0 < b < w. Suppose that there exists a PBD[{5,w*}; u] and an incomplete
transversal design TD(5; u — w + b)— TD(5;b). Then Ay(5u — 4w + 4b)
< A\(4b+ w) forall ).

Proof: Let Go,G1,...,Gs be the groups of the incomplete transversal design.
LetY be the hole of this design. Let Z be a set of (w — b) points that is disjoint
from the set of points of our design. Let F; = G;UZ andlet H; = (Y NG,) U Z.
For each i take the blocks of the PBD[{5,w*}; u] on the points of F; in such
a way that the block of size w is H;. The blocks of our incomplete transversal
design combined with the ordinary blocks of these five PBDs and the block Y UZ
of size 4b + w give us aPBD[{5,(4b+ w)*}; 5u — 4w + 4b]. Our result now
follows from Lemma 1. |

In order to apply Lemma 5 we will need some incomplete transversal designs.
Most of the ones we will need follow from the following lemma, which is due
essentially to Wilson. Itis stated and proved in the form that we need it in Brouwer
and van Rees [5].

Lemma 6. Let m > 1 and suppose that a TD(k + 1;t), a TD(k; m)), and a
TD(k; m+ 1) all exist; and that 0 < s < t. Thena TD(k; mt + s)— TD(k; s)
exists.

3. Tricovers for v = 17 (mod 20).
This is the easiest of our cases. Here we have the following result.

Theorem 2. Let v=20m + 17. Then C3(v) = B3(v) + 1.

Proof: By Theorem 1 we have C3(v) > Bs(v) + 1. To complete the proof we
must construct a tricover on v points with B3 (v) + 1 quintuples.

First consider the case m > 0. Let D be a BIBD(20m + 21, 5, 1) constructed
onthe set {1,2,...,20m+ 15,y1,¥2,... ,ys }. We can renumber the points so
that D contains the blocks

n y2 ¥v3 va s,
1 2 3 ys ys,
4 5 6 ys ys.-
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Delete these three blocks, and replace the symbols y;, y2, y3 by the symbol y.
Similarly, replace the symbols y,, ys, y¢ by the symbol 2. To the resulting set of
blocks, adjoin the three blocks

N et
W W
[V I N
A O\ W

N NN

We now adjoin the blocks of a BIBD(20m+15,5,2) ontheset{1,2,... ,20m+
15}, which exists since v # 15. It is easily verified that this collection of blocks
forms a tricover of 20m + 17 points with B3 (20m + 17) + 1 blocks.

Now consider the case v = 17. Hanani [9] has shown that there exists a
TD)(7; n) forall X > 2 and all positive integers n. Setting A\ = n= 3 and remov-
ing two groups, we obtaina GDD[ 3%; {5 }; 3]. By adjoining two new points X, Y’
to each group, replacing the resulting blocks by three copies of themselves, and us-
ing the blocks of our GDD we obtain a tricover on 17 points with B3 (17) + 1 = 42
blocks. 1

4. Tricovers for v = 9 (mod 20).
Here v = 9, 29,49 need to be treated individually.

Lemma 7. For v € {9,29,49}, there exists a tricover with B3(v) + 1 blocks.

Proof: For v = 9 let the point set be the integers modulo 9. We have B3 (9) = 11.
Our 12 blocks are

31 31+2 3i+4 3i+6 3i+8, i=0,1,2
0 1 2 3 6 mod 9.

For v = 29, let the point set be a point at infinity X and the 28 ordered pairs
(1,7), where 1 is an integer modulo 7 and j is an integer modulo 4. The blocks
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arc
(2i,0) (2i+1,0) (2i+2,00 (2§+3,0) (2i+4,0) i=0,1,2,3

X (0,0) 4,1 (6,2) (2,3) mod (7, -)

X (0,0) (5,1 (3,2 (4,3) mod (7, —)

X (0,0) (6,1 (4,2 3,3 mod (7, -)
(0,00 (6,0 (0,1) 0,2 (0,3) mod (7, -)
(0,00 (2,0 0,1 (0,2) (0,3) mod (7, -)
(0,00 (4,0 (0,1 (0,3) (1,3) mod (7, -)
(0,00 (3,0 0,2 (1,2) (5,3 mod (7, -)
(0,00 (2,0 (1,2) (3,3) (6,3) mod (7,-)
(0,00 (1,1 (2,1 (2,2) (4,2) mod (7,-)
(0,00 (L, (2,1 (3,2) (6,2 mod (7,-)
0,00 (2,1 (4,1 (5,2 (6,3) mod (7,-)
0,00 (3,1 (5,1 (2,2) (6,3 mod (7, -)
0,00 (@3,D (6,1 (2,2) (5,3 mod (7, -)
(0,00  (4,1) 6,1 3,2 (2,3) mod (7,-)
(0,1 (1,1 4,1 (3,3 (5,3 mod (7, )
(0,2 (1,2 (2,2 (4,2) (2,3) mod (7, -)
(0,2 (2,3 (3,3) (4,3) (6,3) mod(7,-).

For v = 49 we proceed as follows: Let W be a 40-element set, and let X be
a nine element set disjoint from W, say X = {a, a2, a3, a4, as, as,a7,0a3,0a9 }.
Let Cy, C,... ,Ch3 be the resolution classes of an RBIBD(40,4,1) on W.

Adjoin a, to the blocks in Cy, C,, C3. Adjoin a; to the blocks in C, C,, C;.
Adjoin a3 to the blocks in Cy, Cs, Cs. Adjoin a4 to the blocks in Cs, Cs, Cs.
Adjoin as to the blocks in C7, Cs, Cy. Adjoin ag to the blocks in C7, Cs, Co.
Adjoin a7 to the blocks in Cio, C11, Ci2. Adjoin ag to the blocks in Cyo, Ci1,
Clz . )

Now adjoin a9 to the blocks in C;; and take each of the resulting quintuples
twice. Finally, take the 82 quintuples of a BIBD(41,5, 1) on the 41 element set
obtained by adjoining a9 to W. This gives us the 342 quintuples which cover
all pairs exactly three times, except for the pairs of elements of X, which are not
covered at all. Now C3(9) = 12. Therefore, there is a tricovering of our 49-
element set with B3 (49) + 1 = 354 quintuples. ]

Lemma 8. Suppose that v=80m + 69. Then C3(v) = B3(v) + 1.

Proof: Setu = 5m+4 inLemma 2 and use Theorem 2 to get A3 (v) < A3 (20 m+
17)=1. |

Lemma9. Suppose that v = 100m+9 or 100m+ 89. Then C3(v) = B3(v) +
1.

Proof: For v = 9 our result follows from Lemma 7. For the remaining cases,
note that if u = 20m + 21 or v« = 20m + 25 and m > 0, then there exists a
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BIBD(u, 5, 1). Let B be a block of this design. Taking B as the special block we
obtain a PBD[ {5, 5*}; u]. By [3] and [28] there exist three mutually orthogonal
Latin squares for all orders n > 10, so that there exists a TD( 5; u—4) — TD(5; 1)
for all of the above u. Applying Lemma 5 with w = 5§ and b = 1 and using the
result for v = 9 establishes the lemma. 1

Theorem 3. Let v=20m + 9. Then C3(v) = Ba(v) + 1.

Proof: By Theorem 1 we have C3(v) > Bs(v) + 1. To complete the proof
we must show that A;(v) < 1. In view of Lemma 9, we need consider only v
congruent to 29, 49, 69 modulo 100. By Lemma 7, Lemma 8, and Lemma 9,
we have C3(u) = B3(u) + 1 foru € {9,29,49,69,89}. Applying Lemma
3 we obtain the required result for all v except 129, 149, 169, 269. Wilson has
constructed a PBD[{5,29*}; 129]. See Lamken, Mills, and Wilson [13]. We
apply Lemma 1 to obtain the result for v = 129. Furthermore, v = 149 is covered
by Lemma 8. For v = 269, note that there exists a RBIBD(65,5,1). Applying
Lemma 4 with ¢ = 2 yields the result.

For v = 169, we will apply Lemma 5 with u = 37, w = 9,and b = 5. For this,
aPBD[{5,9*}; 37] and a TD(5; 33) — TD(5; 5) are needed. If we set u = 2 in
Lemma 2, we obtain this PBD. Applying Lemma 6 withk = 5,s =5, m = 4,
t = 7, gives us this incomplete transversal design. 1

5. Tricovers for v = 13 (mod 20).

We first treat the cases with v < 100.
Hereis a(13,5,2) tricover with B3(13) = 24 blocks.

X0178 Y0289 Z0459 XYZ08 01234
X0357 Y0369 Z0467 XY Z19 01256
X1369 Y1458 Z1279 XY Z27 34789
X2459 Y1467 Z1358 XY Z34 56789
X2468 Y2357 Z2368 XYZ56

Next we come to v = 33,

Here is a (33,5, 2) cover with 54 blocks. The points are thé 33 ordered pairs
(1,7), where i is an integer modulo 3 and j is an integer modulo 11. The blocks
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(0,0
(0,0
(0,0)
(0,0
(0,0
(0,0
(0,0
(0,1
(0,1)
(0,1)
(0,1)
(0,1)
(0,2)
(0,2)
(0,2)
(0,2
(0,3)
(0,3)

In this covering the pairs of the form (1,9), (1 + 1,9) and those of the form
(1,10), (i + 1, 10) are covered three times, while all other pairs are covered ex-
actly once. This shows that C;(33) < 54. Since C1(33) > Bi1(33) + 1 = 54,

(1,0
(L1
(1,2)
(1,3)
(2,4
(2,7
(1,7)
(1,1)
(1,3)
(1,4)
(1,5)
(0,5)
(1,2)
(1,3)
(2,3)
(1,4
(1,4)
(2,5)

0,1)
(0,4)
(0,6)
(1,5)
(1,6)
(1,8
(2,8)
(2,2)
(2,3)
(2,7
(0,6)
(1,6)
(1,5)
(0,4)
(2,4)
(2,5)
(2,6)
(2,8

0,2
(1,4)
(0,9)
(2,5
(2,6)
(1,9)
(1,10
(1,7
(2,6)
(0,9)
(1,9)
(0,10)
(1,6)
(0,9
(0,10)
(0,8)
(0,7)
(1,9)

(0,3)
0,5
(0,10)
0,7)
(0,8)
(2,9)
(2,10
(1,8)
(2,8
(1,10)
(2,9)
(2,10
(1,7)
(1,9)
(1,10)
(1,8)
(1,7
(0,10)

mod (3,-)
mod (3, -)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-)
mod (3,-).

we have C;(33) = B;(33) + 1 = 54, which is a new result.

Hereis a (33,5, 2) bipacking with 105 blocks. The points are the ordered pairs
(1,7), where 1 is an integer modulo 3 and ; is an integer modulo 11. The blocks
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(0,00 (1,00 (2, (1,2) (0,100 mod(3,-)
(0,00 (1,2) (2,2 (0,3) (0,4 mod(3,-)
(0,00 (0,3 (1,3) (0,4 (2,4 mod(3,-)
(0,00 (1,3) (2,3 (0,5 (1,5 mod(3,-)
(0,00 (2,3 (0,6) (1,6) (0,7) mod(3,-)
0,00 (1,9 (0,6 (2,6) (1,79 mod(3,-)
0,00 (1,9 (2,7 (0,8 (1,8) mod(3,-)
0,00 (2,9 (0,8 (0,9 (1,90 mod(3,-)
(0,00 (2,5 (2,60 (2,8) (0,10) mod(3,-)
(0,00 (2,5 (1,8) (2,8) (2,10) mod(3,-)
(0,00 (1,6) (0,9 (2,9) (1,100 mod(3,-)
0,00 (0,7 (1,7 (2,9) (1,100 mod(3,-)
o,n (1,1 (L,2) (1,79 (2,8) mod(3,-)
0,1 (1,2) (0,5 (0,6) (2,9) mod(3,-)
(0,1 (0,3 (1,9 (0,9) (0,10) mod(3,-)
(0,1 (0,3) (1,5 (2,79 (2,9) mod(3,-)
(0,1 (1,3) (L,5) (0,8 (2,10) mod(3,-)
0,1 (1,3) (2,60 (0,7) (0,10) mod(3,-)
0,1) (2,3) (1,6) (2,8) (1,90 mod(3,-)
0,1) (2,3 (2,6) (0,8 (0,9 mod(3,-)
0,1) (0,4 (1,49 (1,9 (1,100 mod(3,-)
0,1) (2,9 (0,5 (1,6) (1,8 mod(3,-)
0,1 (0,49 (2,5 (0,6) (2,10) mod(3,-)
0, (2,9 (2,5 (1,7 (2,7 mod(3,-)
0,2 (1,2) (1,5 (0,6) (0,9) mod(3,-)
(0,2 (0,3) (0,6) (2,8) (2,10) mod(3,-)
(0,2 (0,3) (0,7) (0,8 (1,90 mod(3,-)
0,2 (1,3) (2,7 (2,8 (1,100 mod(3,-)
0,2 (2,3 (2,7 (2,9 (0,100 mod(3,-)
0,2 (2,9 (1,5 (1,7 (0,10) mod(3,-)
(0,2) (0,49 (0,5 (1,8 (0,9) mod(3,-)
(0,2 (0,4 (1,6) (1,79 (0,8 mod(3,-).

In this bipacking the pairs of the form (1, 10), (3 + 1, 10) -are not covered at all,
while all other pairs are covered exactly twice. This shows that the bipacking
number P> (33) > 105. Since P,(33) < [33[64 /4]1/5] = 105 weget P>(33) =
105.

If we combine the (33, 5, 2) coverand the (33, 5, 2) bipacking we geta (33,5, 2)
tricover with B3 (33) = 159 blocks.
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Setting u = 3 in Lemma 2, we obtain A3 (53) < A3(13) = 0.

To handle the case v = 73 we construct a PBD[ {5, 13*}; 73]. The points of
the special block of size 13 are the integers 0,1,2,3,4 and A,B,C, D, E, F,G,
H. The other points are the 60 ordered pairs (1, j), where { is an integer modulo
15 and j is an integer modulo 4. The quintuples are -

h(h+5g9,0) (h+5g+1,0) (h+5g+3,0) (h+5g+4,2) mod(—,4)
h(h+5g9+2,0) (h+5g+2,1) (h+5g9+2,2) (h+59+2,3),

where h=0,1,2,3,4andg=0,1,2;and

0,00 (3, (9,2 (5,3) mod(15,-)
0,00 (4,1 (5,2 (12,3) mod(15,-)
0,00 (5, (2,2 (11,3) mod(15,-)
(0,00 (7,1) (10,2) (14,3) mod(15,-)
0,00 (9,1 (13,2) (3,3) mod(15,-)
(0,00 (1,1) (6,2) (9,3) mod(15,-)
(0,00 (12,1) (8,2) (7,3) mod(15,-)
(0,00 (14,1 (7,2) (4,3) mod(15,-)
(0,00 (4,00 (9,00 (2,1) (10,1) mod(15,-)
0,1 (4,1 (10,1) (2,2 (9,2) mod(15,-)
0,2y (4,2 (9,2 (2,3 (10,3) mod(15,-)
0,00 (7,00 (2,3 (8,3) (13,3) mod(15,-)

Using Lemma 1 we obtain A3 (73) < A3('13) = 0.
Lamken, Mills, and Wilson [13] have constructed a PBD[ {5, 13*}; 93]. Using
Lemma 1 again we obtain A3 (93) < A3(13) = 0.

Theorem 4. Let v = 20m + 13. Then C3(v) = B3(v).

Proof: By Theorem 1 we have C3(v) > B3 (v). To complete the proof we must
show that A3 (v) < 0.

We have already shown that A3 (v) = 0 forv = 13, 33, 53, 73, and 93. Using
these results we apply Lemma 3 to obtain the desired result for all v except 133,
153, 173, 193, 273, 293, 393, 613.

For v = 133 we use Lemma 2 with u = 8.

Frv = 153 we set v = 2 in Lemma 2 to obtain a PBD[{5,9*}; 37]. Since
there exists a TD(5; 29) there exists a TD(S5; 29) — TD(5; 1). Using Lemma 5
withu =37, w=9,b= 1, we obtain A3 (153) < A;(13) = 0.

For v = 173, we have just seen that there exists a PBD[ {5,9*}; 37]. Setting
k=5,s=6,m=4,t=7,in Lemma 6 we obtain a TD(5; 34) — TD(5; 6). We
now use Lemma 5 withu =37, w=9,b=6.

For v = 193, we take one block of a BIBD(41, 5, 1) as a special block to obtain
aPBD[{5,5*};41]. Wesetk=5,s=2,t=9,m=4,inLemma6 and geta
TD(S5; 38) — TD(5; 2). We now apply Lemma5S withu =41, w=15,b=2.
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It is known that there exists an RBIBD(u, 5,1) for u = 65,85,125. Forv =
273 and 293 we apply Lemma 4 with m = 65 and ¢ = 3 and 8, respectively. For
v = 393 we apply Lemma 4 with m = 85 and ¢t = 13. For v = 613 we apply
Lemma 4 with m = 125 and ¢t = 28, and use the fact that we already know that
A3(113) = 0. 1

Theorems 1, 2, 3, and 4, together yield the following.

Theorem 5. If v =1 (mod 4), then C3(v) = B3(v) + 1 forv=9 or17
(mod 2)0, and C3(v) = B3 (v) otherwise.
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