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Abstract. Let Z; be the cyclic group of order k. Let H be a graph. A function
c: E(H) — 2 is called Zj.-coloring of the edge set E( H) of H. A subgraph G C H
is called zero-sum (with respect to a Zj-coloring) if EeeE(G) c(e) = o (mod k).
Define the zero-sum Turan numbers as follows. T'(n, G,Z;) is the maximum number
of edges in a Zj-colored graph on n vertices, not containing a zero-sum copy of G.
Extending a result of [BCR], we prove:

THEOREM. Let m > k > 2 beintegers, k | m. Supposen > 2(m — 1)(k — 1)

then
T(m, K1y Z5) mh D _ | p_l=m=k=o (mod 2)
 K1,m,2) = Lgmk-zzm |,  otherwise.

1. Introduction.
Bialostocki and Dierker [BD1, BD2] raised the following variant of the Ramsey
numbers. ’

Let Z;, be the cyclic group of order k. Let H be a graph. A function c: E(H)
— Z is called a Z;-coloring of the edges of H. A subgraph G C H is called
zero-sum (with respect to a Z-coloring), if 3 . g ) c(e) = o (mod k).

Define R(G, Z;) to be the minimal integer ¢, such that for every Zx -coloring of
the edges of K, there exists a zero-sum copy of G. (One must assume k | e(G),
e(G) = |B(Q)).

Bialostocki and Dierker [BD1,BD2] proved among many results that

R(K z)_{2'n n=1 (mod 2)
tmfn/ =1 2n—1 n=o (mod 2).
Later this result has been greatly extended to yield [CAR], for k | n

n+k—1 n=k=o (mod 2)
R(Kl,mzk) = s
n+ k otherwise.

In [BCRY] the related Turan numbers were introduced. T'(n, G, Zy) is the max-
imum number of edges in a Z;-colored graph on = vertices, not containing a zero-
sum copy of G.

Among the many results of [BCR] the following result is the starting point of

this paper.
T(n K1 o Zn) {(m—l)n—l n—1=m=o0 (mod 2)
n, my4m) = .
b (m—-1Dn otherwise.

The main concern of this paper is the investigation of T'(n, K| y, ) fork | m.
We shall make use of the following theorem of Erd6s-Ginzburg-Ziv.
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Theorem A. [EGZ] Let{a1,a2,...,a¢+1k-1} be a sequence of integers.
There exists a subset I C {1,2,...,(t + 1)k — 1}, |I| = t-k such that

The next result dealt with the extremal cases in the EGZ-theorem.

Theorem B. [CAR] Let A = {a1,03,...,a¢+1)k-2} be a sequence of in-
tegers. .
Suppose there exists no subset I C {1,2,...,(t+ 1)k —2},|I| = t- k such
that Y ;. a; = o (mod k), then
(1) the members of A belong to exactly two residue classes of Zy, and further,
each residue class contains —1 (mod k) members from A.
(2) Ifk is even, then the residue classes are of distinct parity.

Two further results that we §hall need later are:

Theorem C. [HAR] Let K, be the complete graph on n vertices.
(1) ifn=1 (mod 2), then K, is the edge disjoint union of ** hamiltonian
cycles C,.
(2) ifn=o0 (mod 2), then K,, is the edges disjoint union of ""Tz hamiltonian
cycles C, and one perfect matching M .

Theorem D.  [SSP] [BOL] [YAP] Let G and H be graphs on n vertices,
with maximum degree A(G) and A(H). Suppose 2A(G)A(H) < m, then
there is a packing of G and H (that is, one can place edge disjoint copies of G
and H within n vertices). '

Lastly, our notation is standard and we refer to the books of Harary and Bollobas
([HAR], [BOL)).

2. Results.
We start with the exact determination of T'(n, K1 m,22).

Theorem 1. If2 | m then

() n<m
T(n, Kim,Z2) = { Za n=o (mod 2), n>m
m5_1 n=1 (mod 2), n>m.

Proof: The case » < m is trivial so we assume n > m. Let G be an extremal
graph that realizes T'(n, K1 m,Z2).

IfA(G) > m + 1, then by Theorem A there exists a zero-sum copy of K
(take in Theorem A, k = 2,t = ), hence, e(G) < =,

Suppose n=1 (mod 2). If there exists a vertex v € V(G) such thatdeg v <
m thenclearly e(G) < T®—1, otherwise G is an m-regular graph. As G contains
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no zero-sum copy of K ., the number of edges, incident with a vertex v, that are
colored by 1 must be odd. The graph induced by the edges colored 1 hasn =1
(mod 2) vertices and all its vertices are of odd degree which is clearly impossible.
Hence, we have shown that

meven

mn
T(n, Kim, 2 .
(n,K1m 2)3{ 2% _1 nodd.

To prove the lower bound we consider two cases.
Casel: m=2 (mod 4).
Consider a connected m-regular graph G on » vertices. Since n > m sucha graph
G exists by Theorem C, in fact, take 7' hamiltonian cycles C,.

As m is even G is eulerian. Color its edges alternately by 0 and 1, along the
eulerian trail.

As m = 2 (mod 4) we shall have in each vertex v of G, 3 edges colored 1
and 3 edges colored 0, except perhaps the last (= first) vertex on the trail which
is dependent on the parity of n. Soif n = o (mod 2) the construction is exact,
and if n = 1 (mod 2) then we shall delete the last edge of the trail and G is
Z, -colored without zero-sum copy of K1 ,,. Hence, we proved

m-n

n even
T(nkKym,Z2) >4 2
( 1,m 2)_{%_1 n odd

completing the proof of the theorem for m = 2 (mod 4).
Case2: m =o (mod 4).
Let G be the union of 3 hamiltonian cycles Cy, (again G exists by Theorem C).

Color one cycle by the color 1. The remaining edges form a connected m — 2
regular graph, m — 2 =2 (mod 4).

Apply the eulerian coloring, as in Case 1, to obtain a Z; -colored graph G in
which in every vertex there are 3 + 1 edges colored 1, and 3 + 1 edges colored
0, except perhaps the two vertices forming the last edge on the eulerian trail in
which case we delete this lastedge if n=1 (mod 2).

One can see that G contains no sero-sum copy of K ,,, and again

mn n even
T(n, Kim2Z2) >4 2
(n 1,m 2) 2 { mzl -1 nodd
completing the proof. |

We are now ready for the main result, namely,

Theorem 2. Let k,m,n > 2 be positive integers, such that k | m, and n >
2(m —1)(k—1). Then

n, A1,m,4k) = lSLszMJ otherwise.
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Proof: Let us first show that

l—("‘; “"J + [('“ . )"J < T(n, Ky ) < [—("” ';'2)"J.

Suppose G realizes T'(n, K1,m,Z). If A(G) > m+ k — 1 then by Theorem
A, there exists a zero-sum copy of Ky m (take in Theorem A, ¢t = ). Hence,
C(G) < I-m+k—2!n-|

On the other hand, let H(t,n) be the extremal Turan graph on = vertices for
Kz, thenA(H(m,n)) = m—1,A(H(k,n)) = k—1 (see, for example, [SIM])
and by Theorem D there is a packing of H(m,n) and H(k, n) into a graph G on
n vertices.

Color the edges that belong to H(m,n) by color 1.

Color the edges that belong to H(k, n) by color 0.

Clearly, there exists no zero-sum (mod k) copy of K m. Hence, T(n, K1 m,Z)
> T(n, Kim) +T(m, K1) = 2522 + [ $5122 ], (for T(n, K ) see, for ex-
ample, [SIM]).

Consider now three cases.

Casel: n=o (mod 2)
Here, |_("‘;1)"J +|5hn | = | (mtk=Dn | an this case is solved.

Case 2: =1 (mod 2), m=o (mod 2), k=1 (mod 2).
l-gm-lln_l +|-§Ic—1!nJ gm—lln _ 1 +§k—1!n §m+k—2!n l§m+lc—22nJ and
this case is also solved.

As k | m, the only case that remains is
Case3: n=1 (mod 2), m=k=o0 (mod 2).

In this case (A=A _ 1 < T(n, K 1, Zy) < (mth=2n

We shall improve the upper bound by 1.

Let G be a graph that realizes T'(n, K1 m,Zy) in Case 3.

If for some vertex v, degv < m + k — 3, we are done as 2e(G) = ), deg
v<n(m+k—2)—1 (recall that A(G) < m + k — 2). Hence, G must be a
m + k — 2 regular graph.

Apply now Theorem B. The only possibility to avoid a zero-sum copy of K1 n,
is when in each vertex thereare —1 (mod k) edges colored o,and —1 (mod k)
edges colored g, for some «, B € Z and also «, B are of distinct parity.

Asume w.1.0.g that « is of odd parity. Consider the subgraph H C Gonn=1
(mod 2) vertices induced by the edges colored «. In each vertex v of H there
are —1 (mod k) edges, hence, deg yv =1 (mod 2) forallv € V(H) which
is impossible as is well known. Hence, we proved thatif n— 1=m =k = o
(mod 2) then
(m+k—-2)n

2
completing the proof of the theorem. a

T("‘:Kl,myzk) S -1
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Remark: For the sake of completeness it is of interest to close the gap for the cases
in which m < n < 2(m — 1) (k — 1). Our next result concerns cycles. Let F; be
the family of all cycles of at least ¢ vertices that is, F; = {Cn,n > t}. We pose
the following problem.

Determine T'(n, Fy, Z\) , where T'(n, F;,Z}) is the maximal number of edges
in a Z,-colored graph G on n vertices, not containing a zero-sum (mod k) copy
of any cycle C,,n > t.

Theorem 3. T(n, F3,%;) = |52 ).

Proof: Let G be an extremal graph that realizes T'(n, F3,23).

If there exist in G two vertices x and y and three vertex disjoint paths which con-
nect them, then clearly there are two paths, the sum of their edgesis 0 (mod 2).
These two paths constitute a zero-sum cycle. Hence, for any pair of vertices z,y
the connectivity x(z,y) < 2.

For such graphs it is well known (see, for example, [BOL, p. 30]) that e(G) <
[gz‘—llj , and the bound attained by graphs in which every block is K3 except
perhaps one block, which is either a single edge K, or a cycle Cj.

In such an extremal graph G, color all the edges belonging to a block of type
K3 by 1, a block of type K color 1, and in a block of type Cy4 color three edges
by 0 and the remaining edge by 1. Clearly, no cycle in G is zero-sum (mod 2).

|

One may ask what happens if instead of F3 we take F; in Theorem 3. We cannot
give an exact solution to this problem but we can show that a linear upper bound
exists.

Theorem 4. Forevery t > 3 there exists a positive constant c(t) s.t
T(n, Fy,Z3) < (1) n.

Proof: Recall the definition of topological complete graph T' K, (see, for example,
[BOL, p. 368]). Mader [MAD] was the first to show that the Turan numbers of
T K, are bounded above by a linear function, namely, T'(n,TK,) < ci(p)n,
c1(p) > 0 depend on p only.

Let G be an extremal graph that realizes T'(n, F},Z3) .

Suppose G contains a copy of a topological complete graph H = TK,( [$1-1)+2+
Then in H there are two vertices z, y and three vertex disjoint paths of length at
least [£] connecting z and y (this is because such z and y exist in K3 ([41_1)+2)-
Now two of the paths add to 0 (mod 2) as in Theorem 3. The resulting cycle is
of length at least 2 [{[ > t and is zero-sum (mod 2) contradicting the choice
of G.

Hence, T(n, Fy,Z2) < T(n,TKj( m—l)+2) < ¢(t)n by Mader’s theorem.

1
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We choose to close with the following problem, due also to Bialostocki.

Problem: Lett and & be given integers, t > 3,k > 2.
Does there exist a constant ¢(t, k) such that

T(n, Ft,Zk) < c(t,k)-m
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