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1. Introduction

In this paper we discuss finite undirected simple graphs. For any un-
defined terms see [2] and [10]. For any graph G, we denote by V(G)
and E(G) the vertex set and edge set of G respectively. For v € V(G),
let Ng(v) be the set of vertices adjacent to v in G and, more generally,
Ng(S) = Uyes Na(v) for S C V(G). A set of mutually nonadjacent verti-
ces of a graph is said to be independent. The maximum size of an indepen-
dent set in a graph G is called the independence number of the graph and
is denoted by a(G). A graph is called well covered if every maximal inde-
pendent set is a maximum independent set (equivalently every independent
set is contained in a maximum independent set). For example, the graphs
in Figure 1 are well covered. A graph G is said to be very well covered if
G is a well covered graph without isolated vertices and a(G) = |V(G)|/2.

The concept of a well covered graph was introduced by Plummer [11]
in 1970. Until now, however, only a few classes of well covered graphs
have been studied. For example, Staples [14] studied properties of the W,
classes of graphs, where a graph G belongs to class W, if |V(G)| > n
and every n disjoint independent sets in G are contained in n disjoint
maximum independent sets. The W, classes form a descending chain
Wiy D W; D Ws D ... and W is the class of well covered graphs. Sta-
ples [13] and later Favaron [4] gave a characterization of very well covered
graphs. These graphs include bipartite well covered graphs which were also
characterized by Ravindra [12]. Berge [1], among other things, presents re-
lationships between the class of well covered graphs and some other classes
of graphs. Finbow and Hartnell [5] characterized well covered graphs of
girth at least 8. Recently Finbow, Hartnell, and Nowakowski in [8] and [9]
have completely described well covered graphs of girth at least 5 and well
covered graphs containing neither a cycle C, nor a cycle Cs as a subgraph.
The cubic, planar, 3-connected graphs which are well covered have been
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characterized in [3] by Campbell and Plummer (see Proposition 5 below).
Other subclasses of the well covered graphs were studied in [6], [7], and
[15].

The concept of the well coveredness of a graph has attracted our atten-
tion in relation to products of graphs. In this paper we study the (very)
well coveredness of graphs formed from other graphs by various operations.
Conditions for the corona, the join, the disjunction, the conjunction, the
lexicographic product, and the cartesian product of graphs to be (very) well
covered are established based upon the factors. Many questions relating to
the well coveredness of product graphs are still open, and we present a few
of them.

Before proceeding we state a few necessary results. As in [2], a vertex
z of a graph G is called a critical vertex of G if a(G — z) # a(G), or
equivalently, if every maximum independent set of G contains .

Proposition 1 [2]. If a graph G has no critical vertices, then a(G) <
[V(@)|/2. O

Proposition 2. If G is a well covered graph without isolated vertices,
then G has no critical vertices.

Proof. Let = be any vertex of G. It is enough to show that there exists
a maximum independent set in G that does not contain z. Let y be any
neighbour of z and let I be any maximal independent set that contains y.
Certainly, z ¢ I. In addition, since G is well covered and I is a maximal
independent set in G, I is a maximum independent set in G. This implies
the result. O

Corollary 1. If G is a well covered graph without isolated vertices,
then a(G) < |V(G)|/2.

Proof. Immediate from Propositions 1 and 2. O

Proposition 3 [4]. A graph G without isolated vertices is very well
covered if and only if G has a perfect matching M and for every edge
vu €M,

(1) vu does not belong to a triangle and

(2) every vertex of Ng(v) is adjacent to every vertex of Ng(u). O

Proposition 4 [12]. A bipartite graph G without isolated vertices
is well covered if and only if G has a perfect matching M and for every
vu € M, the subgraph induced by Ng(v) U Ng(u) is a complete bipartite
graph. O

200



An immediate consequence of Propositions 3 and 4 is

Corollary 2. A bipartite graph without isolated vertices is very well
covered if and only if it is well covered. O

Proposition 5 [3]. There are exactly four cubic, planar, 3-connected,
well covered graphs and they are shown in Figure 1. O

I ) A

Figure 1.

2. The corona of graphs

For a graph G and a family X = {H, : v € V(G)} of graphs indexed by
the vertices of G, the corona G o’H of G and K is the disjoint union of G
and H,, v € V(G), with additional edges joining each vertex v of G to all
vertices of H,. If all the graphs of the family H are isomorphic to one and
the same graph H then we shall write G o H instead of G o M.

The following results specify when the corona G o H is a (very) well
covered graph.

Theorem 1. Let G be a graph, and let H = {H, : v € V(G)} be a
family of nonempty graphs indexed by the vertices of G. Then the corona
G oM is a well covered graph if and only if H consists of complete graphs.

Proof. Assume that G o M is a well covered graph. For every vertex
v € V(G), let I, be any maximum independent set in H,. It is easy to see
that I = |J,ev(g) o is a maximal (and thus, maximum) independent set in
GoH. We claim that H, is a complete graph for every v € V(G). Suppose
to the contrary that H,, is not a complete graph for some vo € V(G). Then
|Iso] > 1 and by removing I,, from I and replacing it by {vo}, we form
the set I' which is also a maximal independent set in G o X but which is
smaller than I, a contradiction. This implies that the above condition is
necessary for the corona G o H to be well covered. -

We now assume that each graph of the family H is complete. Let I be
a maximal independent set in G oM. It follows from the definition of GoH
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and the choice of I that either v € I or [INV(H,)| = 1 for every v € V(G);
for if there were a vertex vy in G such that vo ¢ I and INV(H,,) = 0,
then, for any z € V(H,,), the set TU{z} would be a larger independent set
in G o’H which is impossible. This implies that each maximal independent
set in G o M has exactly |V(G)| elements. Hence G o is well covered. O

Corollary 3. For any graph G and a positive integer n, the corona
Go K, is a well covered graph. O

The above theorem and its proof immediately yield the next corollary.

Corollary 4. For a graph G and a family H of nonempty graphs
indexed by the vertices of G, the corona G o H is very well covered if and
onlyifGoH=GoK,. O

3. The lexicographic product

In this section we study maximal independent sets of a lexicographic
graph. Then we establish necessary and sufficient conditions for the (very)
well coveredness of lexicographic products of graphs. For a graph G and a
family # = {H, : v € V(G)} of nonempty graphs indexed by the vertices of
G, the lexicographic product G[H] of G and M is the graph having vertex
set V(G[H]) = erV(G'){(”’ u) i u € V(H,)} = UveV(G){”} x V(H,),
and two vertices (v1,v2) and (uy, u) of G[H) are adjacent whenever either
[vivs € E(G)] or [vy = u; and vau; € E(H,,)]. If all the graphs of the
family # are isomorphic to one and the same graph H then we shall write
G[H] instead of G[}]. For a subset S of V(G[H]), we denote 7¢(S) = {z €
V(G) : Jyev(ma)(2,y) € S} and 7w, (S) = {y € V(H,) : (2,9) € S} for
every z € ng(S).

The join Gy + G2 of two graphs G; and G is defined as the disjoint
union of Gy and G, with additional edges joining each vertex of G, with
each vertex of G;. It is obvious that the join Gy + G5 is isomorphic to the
lexicographic product K[{G1, G2}].

We begin by describing maximal independent sets in the lexicographic
product of graphs.

Proposition 6. Let G be a graph and H = {H, : v € V(G)} a family
of nonempty graphs indexed by the vertices of G. A subset S of V(G[H)])
is & maximal independent set in G[H] if and only if n¢(S) is a maximal
independent set in G, and for every v € 7g(S), the set wy, (S) is a maximal
independent set in the graph H,.
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Proof. Assume that the set S C V(G[H]) is a maximal independent set
in G[H)]. It is obvious from the definition of the lexicographic product that
the set 7g(S) is independent in G, and for every v € ng(S), the set 7g, (S)
is independent in H,. We claim that #g(S) is a maximal independent set
in G and 7g, (S) is & maximal independent set in H, for v € m¢(S). First
suppose to the contrary that =g(S) is not a maximal independent set in
G. Then there is v9 € V(G) — wg(S) such that the set ng(S) U {vo} is
independent in G. Hence, for every z € V(H,,), the set SU{(vo, )} would
be a greater independent set in G[H], a contradiction. Similarly, the set
TH, (S) (for v € 7g(S)) is a maximal independent set in H,, as otherwise
there is 2 € V(H,) — 7y, (S) such that g, (S) U {z} is independent in H,
and then SU{(v,z)} would be a greater independent set in G[X], which is
impossible.

On the other hand, if 7¢(S) is a maximal independent set in G and
7H,(S) is a maximal independent set in H,, v € 7¢(S), then S is a ma-
ximal independent set in G[H]; for if not, then there is a vertex (vo, 2o) €
V(G[H]) — S such that S U {(vo,20)} is independent in G[H] and then
76 (SU{(vo, 20)}) = ma(S)U{vo} or wa,, (SU{(vo, 20)}) = 7a,, (S)U{20}
is a greater independent set in G or in H,, respectively, which is impossi-
ble. This completes the proof. O

We are now ready to show conditions for the lexicographic product of
graphs to be well covered.

Theorem 2. Let G be a graph and H = {H, : v € V(G)} a family
of nonempty graphs indexed by the vertices of G. Then the lexicographic
product G[H] is a well covered graph if and only if G and ‘H satisfy the
following two conditions:

(1) each graph H, of the family H is well covered,

(2) Ypese @(Ho) = Duest, a(H,) for every two maximal independent
sets Sg and Sy of G.

Proof. We begin by assuming that G[H] is a well covered graph. First
we claim that every graph H, from H is well covered. For if not, let H,,
be a counterexample. Then H,, has two maximal independent sets of
different cardinality, say I,, and I, . Let S¢ C V(G) — {vo} be such that
Sg U {vo} is a maximal independent set in G. For every v € Sg, let I,
be any maximal independent set in H,. Since |I,,| # |I;,|, Proposition 6
implies that |J,cs,{(v,2) : 2 € L}U{(v0,9) : y € I, } and U, s, {(v,2) :
z € I} U{(vo,t) : t € I, } are maximal independent sets of different
cardinality in G[H], which contradicts our assumption. Hence, each graph
of the family 7 is well covered if the graph G[H] is well covered.

Let Sg and S be two maximal independent sets in G. We now claim
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that Y .5, a(H,) = Zvesg a(H,). To prove this, let J, be any maximum
independent set in H, for v € Sg U Sg. Proposition 6 and the assumption
on G[H] imply that S = J,c5,{(v,2):2 € J,} and &' = ersg{(”rz) :
z € J,} are maximum independent sets in G[#]. Hence |S| = |S'| and then
from the observation |{(v,2): 2 € J,}| = |J,| = a(H,) (for v € Sg U S%)
we have Y- .o a(H,) = |S| = |S'| = Zoesg a(H,), and our assertion
follows.

For the converse, assume G and 7 satisfy the conditions (1) and (2).
We shall prove that G[H] is a well covered graph. To this end, assume that
S is a maximal independent set in G[¥]. Then, by Proposition 6, 7g(S)
is a maximal independent set in G and 7y, (S) is a maximal independent
set in H, for every v € mg(S). Since S = U,erq(s){(v2) : 2 € 7a, ()}
and |rg, (S)| = a(H,) (by (1), IS| = Eyerg(s) {(v:2) : 2 € 7a, (S)} =
Pvena(s) |TH (S)| = Yvero(s) @(Hs). Consequently, by (2), every two
maximal independent sets in G[H] have the same cardinality and therefore
G[H] is a well covered graph. O

Corollary 5. The lexicographic product G[H| of two nonempty graphs
G and H is a well covered graph if and only if G and H are well covered
graphs; if graphs G and H are nonempty and one of them is without isolated
vertices, then the lexicographic product G[H] is very well covered if and
only if exactly one of G and H is very well covered and the second is totally
disconnected, i.e., without edges.

Proof. The first part of the assertion easily follows from Theorem 2.
Thus we shall only prove the second part. Let a = |V(G)| and b = |V (H)|.

We first assume that G[H] is very well covered. Then G and H are well
covered (by the first part of the corollary), and o(G[H]) = [V(G[H])|/2 =
ab/2. Moreover, it follows from Proposition 6 that a(G[H]) = a(G)a(H).
Since G or H is without isolated vertices, Corollary 1 implies that a(G) <
a/2 or a(H) < b/2. Therefore ab/2 = a(G)a(H) < (a/2)a(H) or ab/2 =
a(G)a(H) < o(G)b/2. This makes it obvious that a(H) = b and «(G) =
a/2 or &(G) = a and a(H) = b/2. From this it may be concluded that H
is totally disconnected and G is very well covered or vice versa, as claimed.

Finally, if G is very well covered and H is totally disconnected (or G
is totally disconnected and H is very well covered), then a(G) = a/2,
a(H) = b (or a(G) = a, a(H) = b/2) and G[H] is well covered. Moreover,
since a(G[H]) = a(G)a(H) = ab/2 = |V(G[H])|/2, G[H] is very well
covered. O

Corollary 8. The join G + H of two nonempty graphs G and H is
a well covered graph if and only if G and H are well covered graphs and
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o(G) = a(H); G+ H is very well covered if and only if both G and H are
totally disconnected and have the same number of vertices. O

Proof. The first part of the assertion immediately follows from Theorem
2, since G + H is isomorphic to K2[{G, H}].

In order to prove the second part, assume first that G and H are totally
disconnected and each of them has n vertices. Then G+ H is isomorphic to
the bipartite complete graph K, ,. Since K, , is very well covered, G + H
is very well covered.

Now assume that G+ H is very well covered. Then at once a(G+ H) =
V(G + H)|/2 = |[V(G)|/2 + |V(H)|/2 and a(G + H) = o(G) = a(H).
Since a(G) < |V(G)| and a(H) < |V(H)|, so we have a(G) = |V(G)| =
|V(H)| = a(H), and thus G and H are totally disconnected graphs of the
same order. O

4. The disjunction of graphs

In this section the (very) well coveredness of a disjunction graph is
established based upon the (very) well coveredness of the factors. The
disjunction G; V G; of graphs G; and G is the graph having vertex set
V(G1VG,;) = V(G1) x V(G,), and two vertices (vy,v2) and (u1, uz) of G1V
G, are adjacent whenever [v1u; € E(G1)] or [vaus € E(G2)]. For a subset
S of V(G1VGyz), we denote by 7, (S) and g, (S) the projections of S onto
V(G1) and V(G.) respectively, so 7g,(S) = {2 € V(G1) : Jyev(6.)(2,¥) €
5} and 7¢,(S) = {y € V(G2) : Jeev(a.)(2,9) € S}

The next four properties of independent sets in a disjunction graph will
help provide a well coveredness criterion for the disjunction of two graphs.

Proposition 7. If I; C V(G;) is an independent set in a graph G;
(i=1,2), then I; x I, is an independent set in Gy V Gs.

Proof. Since the set I; is independent in G;, Ng;(vi) C V(G;) — Li
for each vertex v; € I; (i = 1,2). Hence Ng,va,((v1,v2)) = (Ng,(v1) X
V(Ga))U(V(G1) X Na, (v2)) € ((V(G1)—11) X V(G2)) U(V (Gr) x (V' (Gs) -
L)) = V(G1V G2) — (I, x I;) for each (v1,v2) € I x Iz, and therefore the
set I; X I, is independent in Gy VG,. O

Proposition 8. Ifa set I C V(G1 V G,) is independent in G1 V G,
then the set ng;(I) is independent in G; (i = 1,2).

Proof. Let v1, v be any two vertices from =g, (I). We claim that they
are nonadjacent; for if not, then vertices (vy,v}), (v2,v3) € I (for some
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v}, v3 € V(G2)) would be adjacent in Gy V G2, which is impossible. This
implies that the set xg,(I) is independent in G;. We conclude similarly
that wg,(I) is an independent set in G,. O

Proposition 9. If I; C V(G;) is a maximal independent set in G;
(i=1,2), then I; x I, is a maximal independent set in Gy V Gs.

Proof. By Proposition 7, the set I; x I, is independent in G; V Gj.
Suppose to the contrary that I x I» is a proper subset of some independent
set Iin G1V G3. Then the set wg,(I) is independent in G; (by Proposition
8) and I; C wg,(I) for i = 1,2. Since |I;| < |rg;(I)| ({ = 1,2) and
I x Ta| < |11 < Ira,(I) x 76, (D), IRl < Ire,(D)] ot |L| < |ra,() and
therefore at least one of the sets I; and I is not a maximal independent
set in Gy and G3, respectively, a contradiction. O

Proposition 10. If I C V(G; V G2) is a maximal independent set in
G1V Gy, then I = 7g,(I) X 7g,(I) and ng;(I) is a maximal independent
set in G; (i =1,2).

Proof. Assume that I is a maximal independent set in G; V G;. By
Proposition 8, 7g,(I) is an independent set in G; (i = 1,2). Let I; be an
independent set in G; such that 7g,(I) C I (i = 1,2). Then =g, (I) x
7g,(I) and Iy x I, are independent sets in Gy V G; by Proposition 7.
Since I C 7g,(I) X ®g,(I) C I1 x I, from the maximality of I we have
I =mg,(I) x 7g,(I) = I; x L. In addition, ng,(I) = I, and g, (I) = L.
Consequently, 7, (I) and #g,(I) are maximal independent sets in G; and
G, respectively. O

With the above, the main result of this section falls out quite quickly.

Theorem 3. The disjunction Gy V G of graphs Gy and G; is a well
covered graph if and only if the graphs G, and G5 are well covered.

Proof. Assume G; and G are well covered graphs. In order to prove
the sufficiency, it is enough to show that every maximal independent set in
G1V G has a(G1)a(Gz) elements. Let I C V(G1VGz) be any maximal in-
dependent set in G;VG,. Then by Proposition 10, I = 7a,(I)xxa,(I), and
7g,(I) and 7g,(I) are maximal independent sets in Gy and G, respecti-
vely. Consequently, by hypothesis, |rg,(I)| = a(G1), |7e,(I)] = a(G>)
and therefore |I| = a(G1)a(G?).

On the other hand assume that G1 V G; is well covered and suppose to
the contrary that G or G is not well covered. Without loss of generality,
we may assume that G is not well covered. Then G; has two maximal
independent sets of different cardinality, say I; and I{. Let I, be a maximal
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independent set in G. Then by Proposition 9, I; x I, and I] X I are ma-
ximal independent sets of different cardinality in G; V G3, a contradiction.
This proves the necessity and completes the proof of the theorem. O

Corollary 7. If graphs G, and G, are nonempty and one of them is
without isolated vertices, then the disjunction Gy V G is very well covered
if and only if exactly one of G1 and G is very well covered and the second
is totally disconnected.

The proof of Corollary 7 is similar to the proof of the second part of
Corollary 5, so it will be omitted.

5. The conjunction of graphs

The conjunction G; AG; of graphs G; and G, is the graph having vertex
set V(G1 AG;) = V(G1) x V(Gz), and two vertices (v1,v2) and (u1,uz) of
G1 A G; are adjacent if [viu1 € E(G1)] and [vaus € E(G2)].

In this section we study conditions for the well coveredness of conjunc-
tion graphs. We begin with a simple observation.

Proposition 11. Let G; and G, be graphs without isolated vertices.
If I, and I, are maximal independent sets in G, and G, respectively, then
I, x V(G,) and V(G4) x I, are maximal independent sets in G1 A Gz.

Proof. Assume that I; is a maximal independent set in Gi, and G2
has no isolated vertex. Then Ng,(v) NIy =0 (# 0, tesp.) if v € I; (v €
V(G1) — I, resp.), and Ng,(u) # 0 for u € V(G2). Thus Ng,ac,((v,2))N
(I xV(G2)) = (Ng,(v)NI1)x Ng,(v) = 0 (# 0, resp.) if (v,u) € 1 xV(G2)
((v, %) € Iy xV(G3), resp.). Hence I; x V(G2) is a maximal independent set
in Gy AG3. Likewise, V(G2) X I is a maximal independent set in G1 A G;.
m]

The next theorem gives necessary conditions for the conjunction of two
graphs to be well covered.

Theorem 4. If G; and G, are graphs without isolated vertices and
G1 A G; is a well covered graph, then

(1) G1 and G, are well covered and

(2) «(G1)[V(G2)| = a(G2)|V(Gh)l-

Proof. Let I; be any maximal independent set in G; (i = 1,2). By

Proposition 11, I} X V(G;) and V(G;) X I; are maximal independent sets in
G1AG;. Since G1 A G, is well covered, the sets I x V(G;) and V(G1) x I,
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have the same cardinality and therefore |I,||V(G;)| = |I||[V(G1)|. This
implies that |I;| = a(G;) (i = 1, 2) and then the result follows. O

The implication in Theorem 4 cannot be reversed. This can be seen
with the aid of the cycle Cs of length 5. The graphs G; = G, = Cs
have the properties (1) and (2) of Theorem 4, and it is easy to check that
C5 A Cj is not a well covered graph. However, for very well covered graphs
the converse of Theorem 4 is true. The following proposition is useful in
proving that fact.

Proposition 12. Let vy,...,v2, and ui,...,%sm be the vertices of
graphs G and G, respectively. If the edges vyi_1v3; (i = 1,...,n) and
Uzj-1uz; (§j = 1,...,m) form a perfect matching in Gy and G, respecti-
vely, then the edges (vzi—1, u2j—1)(vai, u2;) and (vai, uzj—1)(vai-1, uz;) (i =
1,...,mn;5=1,...,m) form a perfect matching of the graph G, A G,.

Proof. The proof is immediate. O

The following theorem and its corollaries will establish where the class
of very well covered conjunction graphs belongs in the world of well covered
graphs.

Theorem 5. Let Gy and G, be graphs without isolated vertices. Then
the graph G1 A Gy is very well covered if and only if Gy and G5 are very
well covered.

Proof. Let Gi A Gz be a very well covered graph. By Theorem 4,
G: and G, are well covered. Clearly, G; and G; are very well covered;
for if not, there exists a maximal independent set I, in G (or I in G,)
such that |I1' ?é |V(G1)l/2 (or IIzI # IV(G2)|/2) and then |I1 X V(Gz)' =
ILIV(Ga)| # [V(GL[IV(Ga)I/2 = [V(G: A Ga)l/2 (o IV(Gy) x Ip] #
[V(G1 A G2)|/2), which is impossible since I; x V(G3) (or V(G1) x I) is
a maximal independent set in G; A G;. Hence, G; and G are very well
covered if G1 A G, is very well covered.

Conversely, assume that the graphs G; and G, are very well covered.
For i = 1,2, let M; be a perfect matching of G; that has the proper-
ties (1) and (2) of Proposition 3 in G;. Assume that M; = {vy;_1v; :
i=1,...,n} and M; = {uzj_yus;: j = 1,...,m}. By Proposition 12,
M = {(vzi-1,u2j-1)(va2i, u2j), (v2i, u2j—1)(v2i—1,u2;) : ¢ = 1,...,n and
J = 1,...,m} is a perfect matching of G; A G2 and in order to prove
that G1 A G; is very well covered it is enough to show that M satisfies the
conditions of Proposition 3 in Gy A Gs.

First we claim that no edge of M belongs to a triangle in G; A G;. Let
(v, u) be any vertex of G A G;. It follows from the property (1) of M; and
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M, that {vsi_1,v2} € Ng,(v) (i =1,...,n) and {uzj—1,v25} € Ng,(u)
(=1,...,m). Hence, neither {(vzi—1,u2j-1), (v2i, ¥25)} C Na,ac.((v; %))
nor {(vzi—1, uz;), (v2i, 2j-1)} C Nawnea (v, %) (i=1,...,m55=1,...,m)
and therefore no edge of M belongs to a triangle in G; A G».

Finally, we claim that the matching M has the property (2) (of Propo-
sition 3) in G4 A G,. Since M) and M; have the property (2) in Gy and
G, respectively, every vertex v € Ng,(v2i-1) is adjacent to every vertex
v' € Ng,(v2:) (i = 1,...,n) in Gy, and every vertex u € Neg,(u2j-1) is
adjacent to every vertex u' € Ng,(u2;) (j = 1,...,m) in G;. This com-
bined with the definition of the conjunction of graphs implies that every
vertex (v,u) € Ng,ac, ((v2i-1, u2j—1)) is adjacent to every vertex (v',v') €
NG,AG,(('Dzi, u2]'))) and every (‘U, ul) € NG:/\Gz((vzi—lruz.‘i)) is adjacent to
every (v',u) € Ng,a@,((vai,uzj—1)) (6 = 1,...,m; j = 1,...,m). This
implies the desired claim and finishes the proof. O

Corollary 8. Let Gy and G be graphs without isolated vertices. If at
least one of Gy and G5 is very well covered, then the following statements
are equivalent:

(1) G1 A G, is well covered,

(2) G1 A G, is very well covered,

(3) both G, and G; are very well covered.

Proof. We have already proved that (2) and (3) are equivalent, and
since (2) trivially implies (1), it suffices to prove that (1) implies (3).
Let us assume that Gy A G2 is well covered and G is very well covered.
By Theorem 4, G; is well covered and a(G1)|V(G2)| = a(G2)|V(G1)| =
[V(G1)||[V(G2)|/2. Thus a(G1) = |V(G1)|/2 and hence G is very well
covered. O

There is an analogous result for bipartite graphs.

Corollary 9. Let G, and G, be graphs without isolated vertices. If
at least one of Gy and G4 is bipartite, then the following statements are
equivalent:

(1) G1 A Gy is well covered,

(2) G1 A G, is very well covered,

(3) G1 and G, are very well covered.

Proof. By Theorem 5, (2) and (3) are equivalent. Our assumption on
G1 and G, imply that G1 AGy is a bipartite graph without isolated vertices,
so (1) and (2) are equivalent by Corollary 2. O

Above results give rise to some interesting observations. For example,
if both G4 and G; are graphs without isolated vertices, then: (a) G4 A G2
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is very well covered if and only if both Gy and G are very well covered; (b)
G1AG; is not well covered if exactly one of G; and G; is very well covered;
(c) G1 and G are well covered but not very well covered if Gy A G5 is well
covered but not very well covered.

As we have already admitted, it is possible that Gy A G is not well
covered while G; and G, are well covered. It appears difficult to find
general theorems for the cases where each of the graphs Gy, G2 and G1AG,
is well but not very well covered.

We conclude this section with well covered conjunctions of complete
graphs and cycles.

Proposition 13. The conjunction K, A K,, of complete graphs K,
and K, (n,m > 2) is a well covered graph if and only ifn = m; K, A K,
is a very well covered graph if and only if n = m = 2.

Proof. The necessity of the first part follows immediately by applying
Theorem 4 to K, A K,,. On the other hand, assume that I is a maximal
independent set in K, A K, and (v,u) € I. Since Nk, k., ((v,u))NI =19
and Nk, ak,.((v,2)) = (V(Kn) — {v}) x (V(Kn) — {u}), the maximality
of I implies that either I = {v} x V(K,) or I = V(K,) x {u}. Therefore
every maximal independent set in K, A K, has exactly n elements, so
K, A K, is well covered. Since K, is the only complete very well covered
graph, Theorem 5 implies that K, A K,, is very well covered if and only if
n=m=2. 0

Proposition 14. The conjunction C, A Cy, of cycles C,, and C,, is a
well covered graph if and only if n = m = 3 or 4; C, A C,, is a very well
covered graph if and only if n = m = 4.

Proof. Tt is clear that if n and k are integers such that n > 3 and [n/3] <
k < |n/2], then in the cycle C, there exists a maximal independent set of
cardinality k. This implies that the cycle Cy is well covered if and only if
[n/3] = |n/2], that is, if and only if n = 3,4,5 or 7.

Certainly, C4 is the only very well covered cycle. Therefore, by Theorem
5, Cn A.Cp, is very well covered if and only if n = m = 4. This proves the
second part of the theorem. The well coveredness of C3 A C3 follows from
Proposition 13, since C3 = Kg.

On the other hand, assume that the conjunction C, AC,, is well covered.
Then C, and C,, are well covered by Theorem 4; hence, n,m € {3,4,5,7}.
Again, by Theorem 4, none of the six graphs C3 A C4, C3 A Cs, Cs A Cr,
Cy4 AC5, C4 A Cy, C5 A Cy is well covered. One can verify that neither
Cs A Cg nor Cy A Cy is well covered. Thus, C3 A C3 and C4 A Cy are the
only well covered conjunctions of cycles. O
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Corollary 10. The conjunction Cn A Ky, of a cycle Cp (n > 3) and a
complete graph K, (m > 2) is a well covered graph ifand only ifn =m =3
orn =4 and m = 2; C, A K,, is very well covered if and only if n = 4 and
m=2.

Proof. This follows at once from the above results. O

6. The cartesian product of graphs

The cartesian product Gy x G2 of two graphs G and G is the graph
having vertex set V(G x G2) = V(G1) x V(G3), and two vertices (v1,v2)
and (u1,u2) of Gy x G are adjacent if either [viu1 € E(G1) and vz = uy)
or [v; = u; and vau,; € E(G2)).

We are not able to give a complete description of the relationship be-
tween the well coveredness of graphs formed by the cartesian product and
their factors. However, we consider some special cases which seem inter-
esting. Since the cartesian product nK; x G is isomorphic to nG, we
may only consider the cartesian product of graphs which are not totally
disconnected. We begin by proving that for such graphs, the cycle Cy
(= K32 x K3) is the only connected, bipartite, (very) well covered cartesian
product of graphs.

Theorem 8. If Gy, G3 are connected bipartite graphs and each of
them is different from Ky, then Gi X G, is well covered if and only if
G1 = Gz = Kz.

Proof. If Gy = G3 = K3, then G1 X G2 = Cy is well covered. Conversely,
assume that G; X G2 is a well covered graph. Since Gy, G2 are bipartite,
G, X G, is bipartite. Thus, according to Proposition 4, G1 X G; has a perfect
matching M such that for every edge (z,y)(',y') € M, the subgraph
induced by Ng, xa,((2,¥))UNg,xa,((2',¥')) is a complete bipartite graph.
We claim that G; = G, = K3. For if not, without loss of generality, let
G1 be a counterexample and let v be a vertex of degree at least two in
G:. Then for any v' € Ng,(v), v € Ng,(v) — {v'}, v € V(G3) and
u' € Ng,(u), the vertices (v”,u) and (v, ') are not adjacent in G1 X G,
but each of them is adjacent to exactly one of the vertices incident with
the edge (v, u)(v',u) (and (v,u)(v,v')). Therefore neither the subgraph
induced by Ng,x@a,((v,%)) U Ng,xa,((v',u)) (for any v' € Ng,(v)) nor
the subgraph induced by Ng,xa,((v,%)) U Ng,xa,((v,v')) (for any ' €
Ng,(u)) is complete bipartite. This implies that no edge incident with the
vertex (v, u) belongs to M, contrary to the hypothesis that M is a perfect
matching in G; x G,. O
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Corollary 11. If Gy, G, are connected very well covered graphs, then
G1 x Gy is very well covered if and only if G4 = G; = K,.

Proof. Assume that G, Gz, and Gy x G are very well covered graphs.
Let I; be a maximum independent set in G; (¢ = 1, 2). It is then clear that
the set I; x I is independent in G; X G,. Let I be a maximum independent
superset of I; X I in G1 X G2. Obviously, |I| = |V(G1 X G,)|/2 = |(I x I2)U
((V(G1) — I) x (V(G3) — I,))|. By the maximality of I;, every vertex v; €
V(G;)—I; is adjacent to some vertex of I; in G; (i = 1, 2). Thus every vertex
(v1,v2) € (V(G1)— L) x I)U(I1 X (V(G2)—I2)) is adjacent to some vertex
of It x I. Hence I is a subset of (I} x I) U((V(G1) — I1) x (V(G3) — I.))
and so I = (I; x I;)U((V(G1)—I1) x (V(G2)—I,)). By the independence of
(V(Gl)—Il) X (V(Gz)—Iz) in G1 X Gz, the sets V(G]_) -—Il and V(Gz) —Iz
are independent in G; and Ga, respectively. This implies the bipartition of
G1 and G3. The rest follows from Theorem 6 and Corollary 2. O

For the cartesian product of complete graphs we have

Proposition 15. For all positive integers n and m, K,, x K,, is well
covered.

Proof. Assumen < mand V(Kn X Kp) = {21,22,..., 2.} x{¥1,%2,...,
Ym}. Let I be any maximal independent set in K, x K. In order to prove
that K, x K., is well covered, we shall show that a(K, x K;,) = nand |I]| =
n. It is easy to see that |[IN({2;}xV(Kn))| < 1and [IN(V(Ka)x{y;})| < 1
fori=1,...,nand j =1,...,m. Hence |I| < n and therefore a(K, x
Km) < n. On the other hand, since the set {(z1,31), (22, ¥2),-- -, (Zn, %)}
has n elements and is independent in K, X Km, a(K, x Kn)=n. It
remains only to show that |I| = n. Suppose indirectly that |I| < n. Then
the sets V(K,) — 7k,(I) and V(Kn) — 7k,.(I) are nonempty, and for
every 2 € V(K,) — nk,(I) and y € V(Kn) — 7k, (I), the proper superset
ITU{(=,y)} of I is independent in K, X K., a contradiction. O

We now study the well coveredness of the cartesian product of two
cycles. Let C,, and Cp, be two cycles with V(Cy) = {21,...,2,}, V(Cp) =
{v1,- - ¥m}, BE(Cn) = {=iziy1:i=1,...,n— 1} U {212,}, and E(Cr) =
{yivi+1:5=1,...,m—1}U{y1ym }. For the cartesian product C, x C,, of
the cycles C,, and Cy,, we define I, , to be the set of these vertices (z;, ;)
of Cp x Cp, that i = 1,...,2|n/2], j = 1,...,2|m/2], and i 4+ j is an
even integer. Put I} | = I,, ,» U{(2n, ym)} if both n and m are odd, while
I = Inm in other cases. It is easy to check the following properties of
the set I} ; in Cp X Cpy.

Proposition 16. For all integers n,m > 3, the set I o is a maximal
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independent set in Cp, X Cry; in addition, |I}; .| = 2|n/2]|m/2] +1 if both
n and m are odd, while |I .| = 2|n/2]|m/2] in other cases. O

Proposition 17. For every integer m > 3, the cartesian product C3 x
C,. is well covered.

Proof. Let I be any maximal independent set in C3 X Cr,. As in the
proof of Proposition 15, it is enough to show that a(Cs x C;n) = m and
|I| = m. Sinece [IN (V(C’a) x {yi})| <1forj=1,...,m, s0|I| <m and
a(Cs x Cm) < m. On the other hand, by Proposmon 16, the set I3, is
independent in C3 x Cry and |I3 ,,| = m. Hence a(C3 x Cn) = m. We now
claim that |I| = m. For if not, then |I| < m and therefore I N (V(Cs) x
{y;}) = 0 for some j € {1,...,m}, say j = 2. The maximality of I implies
that Ne,xe,.((zi,32)) N T ;6 0 for each i = 1,2, 3. From this and from the
structure of C3 x Cp, it follows that the subset J_; Neyxe.. ((2i,¥2)) NI
of V(C3) x {y1,ys} has at least three vertices. Hence, I N (V(C3) x {x1})
or IN(V(Cs) x {ys}) has at least two vertices, a contradiction. O

Proposition 18. For all integers n,m > 4, the cartesian product
Cp X Cp, iIs not well covered.

Proof. The result follows from Theorem 6 if both n and m are even.
Thus it suffices to show that C, x Cy, is not well covered if n or m is odd.
We consider two cases.

Case 1. n and m are odd. By Proposition 16, the set I; ., is a maximal
independent set in C,, X Cp,. On the other hand, it is easy to check that
the set

Jﬂ'm = (I:z,m - {(zlt yl)’ (zli y3)) (321 yz)}) G] {(zly yz), (zn’ 3/3)}

is also a maximal independent set in Cp x Cp. Since |I; .| # |Jn,ml,
Crn X Cp, is not well covered.

Case 2. Exactly one of n and m is odd. Since C, x Cy, is isomorphic to
Cp X Cp, we may assume that m is odd. An easy verification shows that
the set

Nn,m = (I;'m - {(31) yl)) (zlv y3)1 (zz, y2)» (zn) 1/2)}) U {(21! yz)’ (21, ym)}

is a maximal independent set in Cp, X Crs. Since N, , is smaller than I,‘,,m
Cp X Cp, is not a well covered graph. This completes the proof. O

We summarize the above results in the following corollary.

Corollary 12. The cartesian product C, x Cy, of cyclés C,, and C,, is
well covered if and only if n = 3 or m = 3.
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Staples [14] has observed that K, x G is a W,_; graph if G is a W,
graph (n > 2). This implies that the cartesian products K, x C3 and
K3 x Cy are well covered. We conclude this section with the observation
that the cycles Cs, Cs, and the graph K; + (Kz; UnK;) (for n > 1) are
the only unicyclic graphs G for which the cartesian product K, x G is well
covered. We begin by proving the following useful proposition.

Proposition 19. Suppose that a connected graph G contains a bridge
v1v2 such that vy is not an end vertex in G and the set Ng (v1) is indepen-
dent. Then the cartesian product K, x G is not well covered.

Proof. Let V(K3) = {a,b}, U = Ng(v1) — {vz}, and let G; = G} — v;,
where G is the connected component of G — v;v, that contains the vertex
v; (i = 1,2). Let S be a maximal independent set in Gy — U, let T be a
maximal independent superset of U in Gy — S, and let W be a maximal
independent set in K3 X G — Nk,xa({d} x (V(G})U{v2})) (= K2 x G; —
* Nk,x6((b,v2))). Observe that WU ({a} x S) U ({b} x T)U{(a, v1), (b, v2)}
and WU ({b} x S) U ({a} x T) U{(b, v2)} are maximal independent sets of
different cardinality in K, x G. Thus K; x G is not well covered. O

Proposition 20. IfG is a connected unicyclic graph, then the cartesian
product K; x G is well covered if and only if G = C3, G = Cs or G =
K; + (K3 UnK;) for some positive integer n.

Proof. We consider two cases.

Case 1. Gis acycle, G = C,. Since K3 X C,, is a cubic, planar, 3-connected
graph, it follows from Proposition 5 that K, x C, is well covered if and
onlyif n=3 orn=5. .
Case 2. G is not a cycle. Let C be the unique cycle of G, V(K;) =
{a,b}, and assume that K, x G is a well covered graph. Then it easily
follows from Proposition 19 that C is a cycle of length three and each
end vertex of G is adjacent to a vertex of C. Let V(C) = {v1,v2, v}
be the vertex set of C and denote p; = |Ng(v:) — V(C)| (i = 1,2,3).
We may assume that p; > p, > ps. We claim that p, = ps = 0. For
if not, then p; > 0 and the sets I = ({a} x (V(G) — V(C))) U {(b,va)}
and I' = ({a} x (Na({v1,v2}) — {v1,%2})) U ({8} x (Neg(vs) — {v2})) are
maximal independent sets of different cardinality in K, x G, a contradiction.
Hence, G = K; 4+ (K; UnK,) (for n = p;) and it is easy to check that
K3 x (K1 + (K; UnK,)) is well covered. O

7. Conclusion

There are a number of questions raised by the results presented here.
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Unanswered in this paper is the problem of finding a “nice” characterization
of well covered graphs G; and G, for which Gy A G is well covered. The
results of Section 6 indicate the difficulty in finding a characterization of
graphs G; and G; for which G; x G; is well covered. Finally, is it possible
to find a pair of graphs, G; and Gz, for which Gy X G is well covered but
both G4 and G3 are not well covered?
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