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Abstract. Let p be an h-ary areflexive relation. We study the complexity of finding a
strong h-coloring for p, which is defined in the same way for h-uniform hypergraphs.
In particular we reduce the H -coloring problem for graphs to this problem, where H is
a graph depending on p. We also discuss the links of this problem with the problem of
finding a completeness criterion for finite algebras.

1. Motivation and Preliminaries

Let A be a finite nonempty set. For a positive integer na partial n-ary operation

on A is amap f: Dy — A where Dy C A™. Let P(™ denote the set of all partial
n-ary operations on A and let P = ., P™. A subset C C P is a partial clone
on A if C contains all projections and is closed under arbitrary superpositions (for
more details see [10]). Let FF C P. We denote by ' the partial clone generated
by F (i.e. the smallest partlal clone containing F') and we say that the set F'is
complete (or primal) if F' = P.

Finding a general completeness criterion is a fundamental problem in Universal
Algebra. Since every proper partial clone is contained in a maximal one ([8])
such a criterion may be based on the knowledge of all maximal partial clones (i.e.
the dual atoms in the lattice of partial clones, recall that the partial clones on A,
ordered by inclusion, form an algebraic lattice). The maximal partial clones are
determined in [4] for |A| = 2. The following concept is used for the general case:

Let p be an h-ary relation on A (i.e. p C A*) and let f be a partial n-ary
operation with domain Dy C A". We say that f preserves p if for every h x n
matrix A = [A;;] whose columns A,; € p (j = 1,...,n) and whose rows A;, €
Dy (i =1,...,h) we have (f(A1),..., f(Aw)) €Ep. LetPolp= {f €P: f
preserves p} and it is well known that Pol p is a partial clone.

Example: Let0 € A. Then

Pol {0} = | J {f € P”:(0,0,...,0) € D; = £(0,...,0) = 0}.
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Now for |A| > 3, the maximal partial clones are described in [9]. With one
exception, each of them is determined by an h-ary relation on A (where 1 < h <
| A]) admitting a special coloring. The study has been separated into 3 cases, one
of them deals with areflexive h-ary relations having a kind of symmetry:
Definition: The h-ary relation p on A is said to be areflexive if for every (zo, ...,
Th-1) Epandall0 < i< j < h—1,wehave z; # z;.

Let Sj be the symmetric groupon b = {0,...,h — 1} and let # € S. For an
h-ary relation p let

PV := {(Ta(0), -+, Tm(h=1)): (T0, - .-, Th1) € p}.

Definition: Let p be an h-ary areflexive relation on A and let # € Sj,. We say
that p is symmetric with respect to w (respectively asymmetric with respect to )
if p = p™ (resp. pN p™ = P).

Assume that there exists a subgroup G, of S, for which the h-ary areflexive
relation p is symmetric with respect to each m € G, and asymmetric with respect
to each a € S;\G,, (G, is called the symmetry group of p).

Definitions:
1) The model of p is the h-ary relation

M= {(n(0),...,m(h—1)):7 € G,}

ontheseth = {0,...,h—1}.
2) A strong h-coloring of p is a map

¢:A—h

which is a relational homomorphism from p to M, (i.e. for every (zo, ...,
Zp-1) € p, (¢(x0),...,¢(zh_1)) € M,). Note that a strong h-coloring
is surjective.
Example: Let A = {0,1,2,3,4} and p = {(0,1,2), (1,0,2), (1,3,4), (3,1,4),
0,1,4), 1,04)}. Then G, = {I3,(01)} (where I3 is the identity permutation
on3 = {0,1,2}) and M, = {(0.1,2), (1,0,2)}. Define ¢:A — {0,1,2} by
¢(0) = ¢(3) = 0,¢(1) = 1 and ¢(2) = ¢(4) = 2, then clearly ¢ is a strong
3-coloring of p.

In [10] it is shown that the h-ary areflexive relations which determine maximal
partial clones on A are exactly those which have a symmetry group G and admit
a strong h-coloring. The question arises naturally is under which conditions (es-
pecially concerning the group G,) does there exist an efficient algorithm deciding
whether an h-ary areflexive relation p has a strong h-colormg and under which
conditions is the problem NP-complete.

In the sequel we assume A = k = {0,...,k — 1}.
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2. The Strong Coloring Problem (SCP)

Instance. h > 2,k > 2, G asubgroup of Sy, p an h-ary areflexive relation on
k={0,...,k — 1}, symmetric with respect to each = € G and asymmetric with
respect to each a € S;\G.

Question. Does p have a strong h-coloring?

Examples:

1) If H = (V, E) is a simple graph, then Gy = S, My = {(0,1),(1,0)}
and H has a strong 2-coloring if and only if H is bipartite.

2) If D = (V, E) is a digraph with no cycles of length 2, then Gp = {I2},
Mp = {(0,1)} and D has a strong 2-coloring if and only if D has no two
consecutive arcs (i.e. if (z,y) € E then(y,2) € EVz€ V).

Therefore the case h = 2 is trivial. Note that in general the SCP is in NP. For a
given subgroup G of S, we denote by SCPgq, the restriction of the SCP to those
instances ( h, k, p, G) such that G = G;. We want to determine the complexity of
the SCP.

Definition: An h-ary areflexive relation is totally symmetric if it is symmetric with

respect to every w € S,

Now from [2] we deduce
Proposition 1. Determine whether a tenary areflexive totally symmetric relation
has a strong 3-coloring is NP-complete. (i.e. the SCPs, is NP-complete). 1

Suppose there is a partition By, ..., B, of h such that #(B;) C B; for every
m€Gandeveryi=1,...,s. Put

Gi:= Glp, = {7|p: 7 € G}.

Proposition 2. There is a polynomial reduction from the SCPg, to theASCPg.

Hence

1) If the SCPg is in P, then so are the SCPg, (i = 1,...,s).
2) Ifforsomei=1,...,s,the SCPg, is NP-complete, then so is the SCPg.

Proof: It is enough to prove the result for s = 2. We rearrange the elements of
h={0,...,h— 1} suchthat B; = {0,...,t —1},where 0 < t < h.

Let ) be a t-ary areflexive relation on k such that G, = G. Hence there are n
different t-tuples

1 1 1
T =(Zp,eeeyTg1)y-or T" = (TG, ..., Tp 1)

such that .
A= U {(zjr(o)! ""z:r(t—l)):"r € G]} .

1=1
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For each z* put
= (a:f,,...,z;_l,a:,...,az_l)

where af # af whenever £ # iort # j.
Let

. n
p:= U {(I;(O),” . ’z:r(t—l):a:r(t)v vee Ja:r(h-l)): e G} .
1=1

Clearly p is an h-ary areflexive relation on the set
B=kU{a;:1<i<nt<j<h-1}

whose group of symmetry is G.
We show that p is strongly h-colorable if and only if ) is strongly ¢-colorable.
(¢«=) Let¢: k — ¢ be astrong t-coloring of A\. We extend ¢ to a mapping

Yv:B—h

by the following way: ‘
Lety' = (z},...,7i_,,a},...,a}_;) € p. Since ¢ is a strong t-coloring of \ we
have

($(z0), .-+, $(25_1)) = (a(0),...,a(t — 1)) for some & € G

Let B € G be such that B|; = o and put
Y(a ) =f(j) foralll <i<nandt<j< h-—1.

We show that 4 is a strong h-coloring of p. Indeedlety = (z% gy, ..., Th, 1y, 0%y,
..,ai(h_l)) € p where 7 € G. Then'lﬁ('lr:(,)) =aom(s)fors=0,...,t -1
and & € G, is such that (¢(z3), ..., #(z_,)) = (a(0), ..., a(t — 1)).
Now 9(a}) = B(j) implies Y(a%(;)) = Bon(j) foralll < i < mand
t<j<h-1.
Since g is such that 8|; = «, we have

(V(Th0)) - W(Thgey) , Wakny) oo Y @b yy)
= (aon(0),...,aon(t—1),B0n(t),...,Bon(h—1))
= (Bomn(0),...,Bom(h—1)),

where B o w € G. Hence ¢ is a relational homomorphism from p to M,, and thus
p is strongly h-colorable.
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(=) Ify:a — his arelational homomorphism from p to M), then clearly
¢ = 9| is a relational homomorphism from X to M. 1

Remark: The converse of Proposition 2 seems to be false, but a counter example
is not known. It will be interesting to find a subgroup G of Sj, such that the SCP¢
is NP-complete and for which there is a partition By, Bz of h such that the SCPg,
isin P fori = 1,2 (clearly G should not be the direct product of G and G;.
Since in such a case, if both SCPg, are in P, i = 1,2, then so is SCPg).
Definition: A subgroup G of S is sharply transitive (or regular) if foralls, j € h,
i # j, there is a unique w € G such that () = ;. .

Theorem 3. If G is a sharply transitive subgroup of Sy, then the SCPg, is in P.

Proof: Let G be a sharply transitive subgroup of S,. We give an efficient algo-
rithm to decide whether an h-ary areflexive relation p such that G, = G has a
strong h-coloring. In fact our algorithm deals with a component of p (a compo-
nent of an h-ary relation is defined in a similar way as for a hypergraph).

Fix (o, ..., Zh-1) € p. We define by induction on n > 1 a family of subrela-
tions p,, of p and subsets I',, of k, as follows:

Put p1: = {(z0,...,Zh-1)} and I1: = {zo0,...,Zh-1}. Forn > 1, put p,:=
{(y0,.-+,Yn-1) € p:y; € [y forsomei = 0,...,h — 1} and let I'; be the
set covered by p, (or the set of vertices of p,). Clearly the chain py C p2 C
<+« C pi C pis1 C ... is finite. Lett > 1 be such that p; is a component
of p and let I; be the subset of k covered by the component p;. We define a
correspondance a: I'; — h and we show that o is a mapping if and only if p; is
strongly h-colorable.

Let o be defined on Iy by a(z;) = 4,4 =0,...,h — 1. Now assume that « is
defined on T, ; andlet (yo,...,Yr-1) € pn. Theny, € ',y for some s € h.

Let a(ys)r € h. There is a unique # € G such that w(s) = r. Put a(y;):=
w(t) fori=0,...,h—1.

Claim: a: T} — h is a mapping if and only if p, is strongly h-colorable.

Proof (of the claim):

(=) Assume « is a mapping, hence each z € I'; receives a unique color and by
construction it is a relational homomorphism from p; to M,, thus p has a strong
h-coloring.

(<) Let ¢:Ty — h be a strong h-coloring of p; and # € G be such that
(¢(z0),...,¢(zh=1)) = (7(0),...,m(h — 1)). Then clearly ¢: = nlogisa
strong h-coloring of p; such that (¢(zo),...,¥(zs-1)) = (0,...,h—1). We
show by induction on n > 1 that a|r, = ¥Ir,.

Clearly a|r, = ¥|r,. Assume that a|T'y_1 = 9|, forsome1 <n<t—1
andlet (yo,...,Yn—1) € px-. Since ¢ is a strong h-coloring of p; we have

(¢(v0),---, (Y1) = (71(0),...,m(h — 1)) for some m € G,
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hence (¥(y0),...,%(ya-1)) = (77 0o m(0),...,n~" o m(h — 1)). Now
(¥0,.--,Yn-1) € pn. Therefore there exists j € h = {0,...,h — 1} such that
yj € Ta1. Hence a(y;) = 77! o m(j) € h. By construction of a we have
a(y;) =7l om(s) = Y(y;) foralli=0,...,h — 1. Hence a|ly = ¢|T,.

We have shown that « = 9 and as ¢ is a mapping then so is a. [ |

In the following we show that, for a suitable orbit H of G on h X h, the H-
coloring problem for digraphs is reducible to the SCP¢ (actually if H is an undi-
rected graph, then the same holds for the H-coloring problem for graphs).

Let H be a fixed digraph (respectively an undirected graph).
Definition: An H-coloring of a digraph D (resp. of a graph D) is a mapping
¢: V(D) — V(H) such that (¢(z), ¢(y)) is an edge of H whenever (z,y) is
an edge of D.

The H-coloring problem is described as follows.
Instance. A digraph D (resp. a graph D).
Question. Does there exist an H-coloring of D?

The complexity of the H -coloring problem has been studied by several authors
(clearly the problem is in NP for any fixed H). In particular Hell and Nesetril
proved the following result for undirected graphs.

Theorem 4 [11]. The H -coloring problem is in P if H is bipartite and is NP-
complete if H is not bipartite. [ |

At the present time, no similar results are known for the directed case. Howéver
cases such as tournaments and semicomplete digraphs are solved:
Theorem S [6]. Let T be a semicomplete digraph.

1) If T has more than one directed cycle, then the T -coloring problem for
digraphs is NP-complete.
2) If T is acyclic or has a unique cycle, then the T' coloring problem is in P.

Note that the same holds for a tournament T'.
Also results about the effect of two cycles on the complexity of the H-coloring
problem (for digraphs) are shown in [5]. We return to the SCPg.

Definition: Let G be a subgroupof S, and0 < i< j < h—1.Put
Rij:= {(n(3),n(j)): 7 € G}
Clearly R;; is an orbit of G on h X h.

Theorem 6. If for some 0 < i < j < h — 1, the R;j-coloring problem for
digraphs is NP-complete, then so is the SCPg.

Proof: Let D = (V(D), E(D)) be a digraph with E(D) = {4\,...,d,} where
ly = (z¢,y;) and let M = {(w(0),...,m(h — 1)): 7w € G}. On the top of each
edge #; we construct a copy of M by the following way:
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Fort=1,...,nlet
z' = (zb,...,zh_y) where (z},3%) = (z¢, 1) = @&,

7t ¢ V(D) fors ¢ {i,j} and z} = s, = xt € V(D) (hence if two edges ii;
and @y have no common vertices, then the copies of M constructed on i; and @y
are disjoint). Put

Mt:= {(zt,(o),...,xf,(h_l)):'n € G}

and a
p:=UMt.

Clearly p is an h-ary areflexive relation whose group of symmetry is G (hence
M, = {(n(0),...,m(h—1):m € G}.
Claim: D is R;j-colorable if and only if p is strongly h-colorable.
Proof (of the claim): Let A be the set covered by p.
(=) Let¢: V(D) — V(R;;) bean R;j-coloring of D. Weextend ¢ toy: A —
hin the following way: Letz = (},...,2},..., %, ..., z}_,). Since (=}, z}) =
(zt,u) € E(D) we have that (¢(z}), ¢(z%)) € Rij. Chooseam € G such that
(¢(zh), ¢(=%)) = (m1(i), m(j)) (note that m; is not necessarily unique) and de-
fine $(zt): = m(s) fors=0,...,h— 1. Now for g = (ztqy,-.., Thes_1y) €
put( z‘,(s)): = wom (s) fors=0,...,h—1. Here(1/)(zf,(o)) yeres 1/)(zf,(h_1))) =
(mom(0),...,mom(h—1)) € M,since w, m € G (hence wom € G). Thus
3 is a strong h-coloring of p proving the first part of the Theorem.
(«=) Lety: A — hbeastrong h-coloring of p and let @; = (z¢,y:) € E(D).
Hence(z},..., =%, ..., 2, ..., 7h_1) € pwherez! = z¢, 2} = yr and (P(xp) . .-,
P(zt_1)) = (n(0),...,m(h — 1)) for some m € G. Then (P(zs),¥(ys)) =
($(=h), (%)) = (n(i),n(;)) € Rij. Therefore the restriction of ¢ to V(D)
is an R;;-coloring of D. 1
Note that Theorem 6 holds if the orbit R;; is an undirected graph.

Corollary 1. If for some 0 < i < j < h — 1, R;; is a nonbipartite undirected
graph, then the SCPg, NP-complete. 1

Applying Corollary 1to G = S, with A > 3, we obtain the following known
result:

Corollary 2. [2]. Determining whether a partial (v, k, 1) system has a strong
k-coloring is NP-complete for any fixed k > 3. ]

We can also deduce the following:
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Corollary 3. Let G be a subgroup of Sj,.

1) If G is n-fold transitive for n > 1, then the SCPq is NP-complete.
2) If G is the altemating group Ay, then the SCPg is NP-complete for h>4.

Proof: The first part follows from the fact that if G is n-fold transitive on b with
n>1,then R;j = K, forall0 <i<j<h—1.

Now the second part follows from the first since A; is (h — 2)-fold transitive
on h for h > 3 (see [13] Theorem 9.7). 1

Moreover combining Theorems 5 and 6 we can deduce many results such as:

Corollary 4. Let G be the group of degree 10 constructed in the remark preced-
ing Theorem 31.1 of [13). Then the SCP;, is NP-complete.

Proof: By a direct verification, Ry, is a tournament with more than one cycle. |

Remark: G is non-doubly transitive. Actually p = 5 is the only prime for which
anon-doubly transitive group of degree 2 p is known to exist (see [13] p. 94).

By way of conclusion, we raise the following problem: Let G < G' be two
subgroups of S;. Assume that the SCPg is NP-complete. Is it true that the same
holds for G'?

If so, then we will have a “cut” in the lattice of subgroups of S, where the
subgroups G for which the SCPg¢ is in P are below those for which the SCP is
NP-complete (since the SCPy, is in P and the SCPg, is NP-complete). Of course
if it were possible to construct a group as described in the remark following Propo-
sition 2, then the answer to our problem would be no.

References

1.J. Berman. Personal communications.

2. C. Colbourn, D. Jungnickel, A. Rosa, The strong chromatic number of partial
triple systems, Discrete Appl. Math. 20 (1988), 31-38.

3. D. Djokovic. Personal communications.

4.R.V. Freivald, Completeness criteria for partial functions of the algebra of
logic and many-valued logics, Dokl. Akad. Nauk. SSSR 167 No. 6 (1966),
1249-1250.

5.J. Bang-Jensen, P. Hell, The effect of two cycles on the complexity of color-
ings by directed graphs. Preprint CMPT TR88-7, Computing Science, Simon
Fraser University (submitted).

6.J. Bang-Jensen, P. Hell, G. MacGillivray, The complexity of colorings by
semi-complete digraphs, SIAM J. Discrete Math. 1 No. 3 (1988), 281-298.

7. M.R. Garey, D.S. Johnson, “Computers and intractability. A guide to the the-
ory of NP-completeness”, W.H. Freeman, San Fancisco, 1979.

224



8. L. Haddad, I.G. Rosenberg, D. Schweigert, A maximal partial clone and a
Slupecki-type criterion, Acta Sci. Math. 54 (1990), 89-98.
9. L. Haddad, 1.G. Rosenberg, Critére général de complétude pour les algébres
partielles finies, CR. Acad. Sci. Paris, t. 304, Série I n. 17 (1987), 507-509.
10. L. Haddad, 1.G. Rosenberg, Maximal partial clones determined by the are-
flexive relations, Discrete Appl. Math. 24 (1989), 133-144.
11. P. Hell, J. Nesetril, On the complexity of H-coloring, J. Combin. Theory Ser.
B. 48 (1990), 92-110.
12. H.A. Maurer, J.H. Sudborough, E. Welzl, On the complexity of the general
coloring problem, Information and Control 51 (1981), 123-145.
13. H. Wielandt, “Finite permutation groups”, Academic Press, New York, 1964.

225



