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Abstract. A (v, k,)) covering design of order v, block size k, and index X is a
collection of k-element subsets, called blocks of a set V such that every 2-subset of
V occurs in at least ) blocks. The covering problem is to determine the minimum
number of blocks in a covering design. In this paper we solve the covering prob-
lem with k = 5 )\ = 4 and all positive integers v with the possible exception of
v=17,18,19,22,24,27,28,78,98.

1. Introduction.

A (v, k, )\) covering design of order v, block size k, and index X is a collection
B of k-element subsets, called blocks, of a v-set V' such that every 2 subset of V/
occurs in at least A blocks.

Let a(v, k, \) denote the minimum number of blocks in a (v, k, X) cover-
ing design. A (v, k,)) covering design with || = a(v,k,)) will be called a
minimum covering design.

Schénheim [13] has shown that

v[v—1
(v, k) > [; 1= L] = 6o,k

where [z] is the smallest integer satisfying [z] > z. Hanani [5] has sharpened
this bound in certain cases by proving the following result.

Theorem 1.1. If A\(v — 1) = 0 mod(k — 1) and dv(v —1)/(k-1) = -1
(mod k) then a(v,k,)\) > ¢(v,k,\) + 1.

The value of a(v, 3, )\) for all v and ) has been determined by Hanani [S].
The value of a(4,1,2) has been determined by Mills [9, 10]. The value of
a(4,),v) forallv and A > 1 has been determined by Assaf [1] and Hartman
[6].
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The value of a(5,1,v) v Z 0 (mod4) has been determined by Lamken,
Mills, Mullin, Vanstone [8] and by Mills and Mullin [11], and «(5,2,v) for v
even has been determined by-Horton and Mullin [7].

In order to state the result known about a(v, k, A) we need the following
definition. A balanced incomplete block design, B(v, k,)\) isa (v, k, \) covering
design where every 2-subset of points is contained in precisely ) blocks. If a
B(v, k,)) exists, then it is clear that a(v, k, \) = \v(v—1) /k(k—1) =¢(v, k, )
and Hanani [5] has proved the following existence theorem for B(5, v, )).

Theorem 1.2. Necessary and sufficient conditions for the existence ofa B(v,5,))
are that M(v—1) = 0 (mod4) and Mv(v—1) = 0 (mod20) and (v,)) #
(15,12).

This theorem implies that a(v,5,1) = ¢(v,5,1) forallv=1,2,5,6 (mod 20)
by taking a balanced incomplete block design when v = 1, 5 (mod20). For
v=2,6 (mod(20) take a B(v—1,5,1) design and partition the v — 1 points
into [v — 1/47 blocks and add a point to these blocks.

In this paper we are interested in determining the values of a(v,5,4). Our
goal is to prove that a(v,5,4) = ¢(v,5,4) for all v with some few possible
exceptions. Specifically we prove the following.

Theorem 1.3. For all positive integers v we have a(v,5,4) = ¢(v,5,4) with
the possible exceptions of v = 17,18,19,22,24 27,28,78,98.

2. Recursive construction of covering design.

In order to describe our recursive constructions we need the notions of designs
with a hole, transversal designs and truncated transversal designs.

Let (V,B) be a (v, k,)\) covering design, and let H be a subset of V of
cardinality k. We shall say that (V, 8) is an exact covering design with a hole of
size h if no 2-subset of H appears in any block, and every other 2-subset of V
appears in precisely A blocks.

Lemma 2.1 (Assaf-Hartman [2]).

(i) Letv=2,4 (modS). Anexact (v,5,4) covering design with a
hole of size 2 exists for all v# 7.

(ii) Let v =3 (mod5). An exact design with a hole of size 3 exists
for all v # 8 and possible exceptions of v = 43,68.

Let k, X and w be positive integers. A transversal design T'(k, A\, w) is a
triple (V, B,~) where V is a set of points with |V| = kw, and vy = {G\,... ,Gk}
is a partition of V into k sets of size w. The parts, G}, of the partition are called
groups. The collection B consists of k-subsets of V, called blocks with the fol-
lowing properties:
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1. |BNG;|=1forall B€ fandG; € v;
2. every 2-subset {z,y} of V such that z and y belong to distinct
groups is contained in exactly A blocks.

Itis well known thata T'( k, 1, w) is equivalent to k — 2 mutually orthogonal
Latin squares of side w.

In the sequel we shall use the following existence theorems for transversal
designs. The proofs of these results may be found in [3], [4], [5], [12] and [14].

Theorem 2.1. There exists a T(6, 1, w) for all positive integers w with the ex-
ception of w € {2,3,4,6} and the possible exception of w € {10,14, 18, 22,
26,28, 30, 34, 38,42,44, 52}.

Theorem 2.2. There exists a T(7,\,w) for all positive integers w and all inte-
gersh > 2.

We now give the definition of truncated transversal design. Let k, A and w
be positive integers, and let + be a non-negative integer. A truncated transversal
design TT'(k, ), w, u) is a triple (V, 8,4) where V is a set of points with |V| =
(k—1) w+u,andy = {Gy,...,Gy} is a partition of V into k — 1 sets of size
w and one set Gy, of size u. G; are called the groups of the truncated transversal
design. The collection 8 consists of k-subsets and (k — 1)-subsets of V, called
blocks, with the following properties:

1. |[BNG;|=1forallBeBandl <i<k;

2. |BNGg|=1forall B € Bsuchthat |B|= k;

3. every 2-subset {z,y} of V such that z and y belong to distinct
groups is contained in exactly A blocks.

Clearly,a TT'(k, A\, w, 0) is equivalent to a T'(k — 1, A\, w). Furthermore, if
0 < u < w then one may construct a T'T'(k, \, w, u) from a transversal design
T'(k, \, w) by removing points from the last group, and from all the blocks which
contain them. Thus, we have the following existence results which are in the form
most useful to us.

Theorem 2.3. There existsaTT(6,1,w,u) forall integers 0 < u < w and for
all positive integers w with the exception of w € {2,3,4,6} and the possible
exception of w € {10,14,18,22,26,28,30,34,38,42,44,52}.

Theorem 2.4. There exists aT(5,4,w) for all positive integers w.

We can now give the recursive constructions used in the proof of our main
theorem.

Theorem 2.5. If there exists a TT(6,1,w,u) with w = 0 or 1 (mod5) and
a(u,5,4) = ¢(u,5,4) then a(Sw+ u,5,4) = ¢(Sw+ u,5,4).

229



Proof: On the blocks and the groups of size w of the truncated transversal design
construct balanced incomplete block design B(v, 5,4) withv = 5,6 and w. On
the groups of size u constructa (u, 5,4) covering design with ¢(u, 5,4) blocks.
This gives us a (Sw + u, 5,4) covering design with ¢(5w + u,5,4) blocks. J

Let us add h points to the groups of a TT(6, 1, w, u). On the blocks con-
structa B(v,5,4) with v = 5,6. On the groups of size w we construct a (w +
h,5,4) covering design with hole of size h and index 4, and on the last group
we constructa (u + h,5,4) covering design (we assume that the last two designs
exist). The resultant designis a (S5w+ u+h, 5,4) covering design. We may write
the above observation as the following theorems.

Theorem 2.6. If there exists a TT(6,1,w,u) with w = 0 or 4 (mod 5) and
a(u+1,5,4) = ¢(u+1,5,4) thena(Sw+u+1,5,4) = p(5w+u+ 1,5,4).

Theorem 2.7. If there exists a TT(6,1,w,u) withw = 0 or 2 (modS5) and
a(u+2,5,4) = ¢(u+2,5,4) then a(Sw+u+2,5,4) = d(Sw+u+2,5,4).

Theorem 2.8. If w = 0 or2 (mod5) and a(w + 2,5,4) = ¢(w + 2,5,4)
then a(Sw+ 2,5,4) = ¢(5w+2,5,4).

Theorem 2.9. If w = 0 (mod5), and there exists an exact (w + 3 ,5,4) cover-
ing design with a hole of size 3, then there exists an exact (Sw+ 3,5 ,4) covering
design with a hole of size 3, and hence o(5w + 3,5,4) = (5w + 3 ,5,4).

The following lemma is very useful for constructing covering designs with a
hole.

Lemma 2.2 (Assaf-Hartman [2]). Let r be a positive integer such that 3r + 1
is a prime power. Then there exists an exact (4r + 1,5,4) covering design with
a hole of size r.

Lemma 23. IfthereexistsaTT(6,1,w,u) then thereexistsa TT(5 4.2w2u).

Proof: Let X be the pointsetof aT'T'(6,1,w,u) and constructa T'T'(5 4,2 w,2 u)
by replacing each point z € X by two points {zg,z;} so the groups are of size
2w and 2 u. On each block B of size five construct a GD[5,4,2, 10] in such a
way that it has groups {bo,b, } for b € B. Such design exists by Theorem 2.4;
and on each block B of size six constructa GD[5,4,2, 12] where the groups are
{bo,b1} for b € B. [Note thata GD[5,4,2,12] can be constructed as follows.]
Let the pointset be Z, x Zs U {a, b} then the required blocks are:

((0,0)(0,1)(0,2)(0,3)(0,4))
((1,0)(1,1)(1,2)(1,3)(1,4))
((0,0)(0,2)(1,3)(1,4),a) (mod(—,5))
((0,0)(0,1)(1,2)(1,4),b) (mod(-,5))
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each block taken twice. [ |
The following theorem is the last recursive construction we need to prove

Theorem 1.3.

Theorem 2.10. If there exists a TT(5,4,w, u) then

(1) Ifw=0or4 (mod5) and o(u+1,5,4) = ¢(u+1,5,4) then
a(Sw+u+1,5,4) =¢(Sw+u+1,5,4).

(2) Ifw=0or2 (mod5) anda(w+2,5,4) =$(w+2,5,4) then
a(Sw+u+2,5,4)=¢(5w+u+2,5,4).

(3) If w= 0(mod5) and there exist an exact (w+ 3,5,4) covering
design with a hole of size 3, and a(u + 3,5,4) = ¢(u+3,5,4)
then a(Sw+ u+3,5,4) =¢(Sw+u+3,5,4).

3. The main theorem.

Before giving an induction proof of Theorem 1.3, we need the following con-
struction of covering designs with small values of v.

Lemma 3.1. a(v,5,4) = ¢(v,5,4) forv=17,8,9,12,13,14.

Proof: Forv =7 let X = Z¢ U {a} then the blocks are:

~{0,1,2,4,a) (mod 6)
(0,1,2,3,5)
(1,2,3,4,5)
(0,1,3,4,5).

For v = 8 let X = Z7 U {a} then the blocks are:

(0,2,3,4,a) (mod7)
(1,2,4,5,6)+14, i€ 2,
(2,1,3,4,5).

Forv=9 let X = Z; x Z3 U{a,b,c} then the blocks are:

{(0,0),(0,1),a,b,c) (mod (—,3),)
{(1,0),(1,1),a,b,c) (mod (—,3),)
((0,0),(0,1),(1,0),(1,2),a) (mod (—,3))
((0,0),(0,1),(1,0),(1,1),b) (mod (—,3))
((0,0),(0,2),(1,1),(1,0),c) (mod (—,3)).
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Forv =12 let X = Z3 x Z3 U {a, b, c} then the required blocks are:

((0,0),(0,1),(0,2),(1,2),(2,2)) (mod (—,3))
((1,00,(1,1,(1,2),(0,1),(2,1)) (mod (—,3),)
((2,0),(2,1),(2,2),(0,0),(1,0) (mod (—,3))
{(0,0),(1,1),(2,2),a,b) (mod (—,3)) twice
{(0,0),(1,2),(2,1),b,c) (mod (—,3)) twice
((0,0),(1,0),(2,0),a,c) (mod (—,3))
{(0,0),(0,1),(0,2),8,c) (mod (—,3)).

For v = 13 let X = Z,3, then the required blocks are:

(1,4,9,12,13)  (1,3,6,8,9)
(2,3,6,9,10)  (1,4,5,9,11)
(4,5,7,10,13)  (1,6,7,10,12)
(5,6,7,9,13)  (1,2,10,11,13)
(3,8,11,12,13) (1,2,4,7,8)
(2,5,9,11,12)  (1,6,7,11,13)
(3,7,8,9,12)  (4,7,8,11,12)
(2,6,11,12,13) (4,6,7,9,11)
(5,8,9,10,13)  (3,4,10,12,13)
(2,7,9,10,12)  (3,4,9,10,11)
(2,3,5,7,13)  (1,5,8,10,12)
(5,6,8,10,11) (2,4,6,8,10)
(2,4,5,6,12)  (1,3,7,10,11)
(3,4,6,8,13)  (1,2,3,4,5)
(1,2,8,9,13)  (3,5,7,8,11)
(1,3,5,6,12)  (2,3,7,8,11).
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Forv = 14 let X = Zj4 then the required blocks are:

(1,3,9,11,13)  (3,4,5,10,12)
(1,3,7,10,14)  (1,3,4,5,6)
(5,8,9,11,14)  (2,3,7,9,14)
(2,6,7,8,13)  (2,5,6,9,11)
(1,2,10,11,12) (1,4,11,13,14)
(3,7,8,11,12)  (4,7,9,12,14)
(1,4,8,9,12)  (6,10,11,12,14)
(1,5,7,8,11)  (6,8,12,13,14)
(5,7,10,11,14) (2,4,11,12,13)
(1,6,10,13,14) (3,4,8,10,11)
(1,6,7,8,12)  (1,5,6,9,12)
(1,2,4,7,13)  (4,6,7,9,10)
(4,8,9,10,13) (2,4,6,7,11)
(2,3,9,12,14)  (3,6,9,11,13)
(2,5,10,12,13) (2,4,5,8,14)
(5,7,9,10,13)  (3,5,7,12,13)
(1,2,8,9,10)  (3,5,8,13,14)
(2,3,6,8,10)  (1,2,3,5,14)
(3,4,5,6,14)

We now give a table describing the construction of some exact (v, 5,4) cov-
ering designs with a hole of size n. In general the construction is as follows. Let
X = Zy_yU H, where H, = {ho,h1,... ,hy1} is the hole. The blocks are
constructed by taking the orbits of the tabulated base blocks under the action of
the cyclic group generated by the permutation which fixes the elements of H,, and
senti —» 1+ 1 (modv — n) foreachi € Z,_,.
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Figure 1.

Exact (v, 5,4) covering designs with a hole of size n.

v n Point Set Base Blocks

29 7 Zha U Hy (0,3,8,12, ko) 0,2,6,11,h,) (0,1,8,10,h3)
{0,2,3,10, h3) (0,5,6,12,h4) (0,3,4,11,hs)
{0,3,5,9,h¢)

32 7 Zzs U Hy (0,5,10,15,20) +i,{ € Zs (0,4,11,17, ko)
(0,2,3,9,h1) (0,3,11,12, h3)
(0,4,6,13,h3) (0,3,4,11,h4)
(0,2,4,14, hs) (0,1,6,9,h6)

3 | 7| ZnUH | (0,1,4,10,15)  (0,2,7,8,h)  (0,3,7,16,h)
0,2,8,12,h3) (0,1,3,11,h3) (0,7,12,13, h4)
(0,2,9,13, hs) (0,9,12,17, hs)

38 8 Z30 U Hg (0,1,6,9,17) {0,10,12,16,h0) (0,3,7,18,h)
(0,9,10,17, ;) {0,2,7,13,h3) (0,1,5,15,h4)
(0,2,3,12, hs) {0,4,7,16,h¢) (0,2,8,13,h9)

39 7 Z3 U Hy (0,1,5,11,18) (0,7,9,12,20) {0,6,9,10, ko)
(0,14,16,24,h,) (0,3,15,19,h;) (0,1,6,15,h3)
(0,2,7,11,h4) (0,6,14,21, hs) (0,1,3,13,h¢)

47 9 Z38 U Hy {0,1,4,14,20) 0,2,7,19,27)
(0,9,15,24, ho) (0,1,4,12,h)
{0,5,7,17, h3) (0,2,10,13, h3) (0,1,7,17,h4)
(0,14,18,23,h5s) (0,1,5,27,h¢) (0,2,15,22,h7)

{0,3,9,17,hg)

48 8 Z4o U Hg (0,2,9,13,25) (0,5,8,22,30)
{0,6,19,20,26) {0,1,4,13 ko)
{0,1,5,14,hy) (0,1,5,16,h3)
(0,2,7,17, h3) (0,2,8,18,h4) {0,2,8,19, hs)
(0,3,10,21, k) (0,3,12,24, he)

59 12 Z41 U Hy2 see [2]
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The following lemma is our main reason for constructing exact covering de-
signs with holes.

Lemma 3.2. Ifanexact (v,5,4) covering with a hole of size h > 5 exists and
a(h,5,4) = ¢(h,5,4) then a(v,5,4) = ¢(v,5,4).

Proof: Take the blocks of an (h, 5,4) covering design with ¢(h, 5, 4) blocks and
the blocks of the exact covering design. |
As a result of the above lemma a(v, 5,4) = ¢(v,5,4) for all the values of
v appearing in Figure 1.
Lemma 3.3. Forall v =3 (mod20), a(v,5,4) = ¢(v,5,4).

Proof: Let X = {1,... v}, then the blocks of a (v, 5,4) covering design can be
constructed as follows:

(1) Take the blocks ofa B(v —2,5,2).

(2) Take the blocks of a B(v+2,5, 1) and assume that no triple of the
points {v—1,v,v+ 1, v+2} appears in one block. Further assume
we have the two blocks (1,2,3,v—1,v+1) (4,5,6,v,v+2).
In the first block change v + 1 to v and in the second change v + 2
to v — 1. In the remaining blocks of B(v + 2,5,1) change v + 2
tovandv+ 1tov—1.

(3) Take B(v + 2,5, 1) one more time and assume that no triple of
{v—1,v,v+ 1,v+ 2} appears in one block. Further assume we
have the two blocks (1,2,3,v,v+2) (4,5,6,v—1,v+1). In
the first block change v+ 2 to v— 1 and in the second change v+ 1
to v. In all other blocks of B(v + 2,5,1) change v+ 2 tov and
v+1ltov—1. |

We are now able to prove our main theorem, which is restated below for the
reader’s convenience.

Theorem 1.3. For all positive integers v we have a(v,5,4) = ¢(v,5,4) with
the possible exceptions of v = 17,18,19,22,24,27,28,47,48,78.

Proof: Forv = 0 or 1 (mod5) there exists a B(v, 5,4); and for v = 3 (mod 20)
it follows from the above lemma. For other values of v we consider the following
cases:

Case 1. v=2,3,4 (mod25).

In this case v = Sw + u+ 1 where w = 4 (mod5) andu € {6,7,8}. By
theorem 2.3 there exists aT'T'(6, 1, w, u) for all the relevant pairs (w, u) with the
exception of w € {4, 14,34 ,44}. So for v # 27, 28, 29, 77, 78, 179, 227, 228,
229, apply Theorem 2.6 to give the result. For v = 29 see Figure 1. Forv =77,
79, 177, 178, 179, 227, 228, 229, see Figure 2.
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Figure 2
Exceptional constructions for (v, 5,4) covering design.

v w u Theorem v w u Theorem
57 10 6 2.10 173 | 30 | 22 | 210
58 10 6 2.10 177 | 34 6 | 210
59 10 8 2.10 178 | 31 | 23 | 25
73 12 | 11 27 179 | 34 8 | 210
77 14 6 2.10 187 | 35 | 12 | 25
79 14 8 2.10 188 | 35 | 13 | 25
117 20 7 25 189 | 35 | 14 | 25
118 20 8 | 25 217 | 41 | 12 | 25
119 20 9 25 -1 218 | 41 | 13| 25
122 20 0 2.8 219 | 41 | 14 | 25
123 20 | 20 29 222 | 42 | 10 | 210
124 2| 12 2.10 224 | 422 | 12 | 210
137 25 | 12 |. 25 227 | 44 6 | 210
138 25 | 13 25 228 | 41 | 23 | 25
139 25 | 14 25 229 | 44 8 | 210
157 29 | 11 2.6 269 | 51 | 14 | 25
158 29 | 12 26 272 | 47 | 35 | 28
159 29 | 13 2.6 274 | 47 | 37 | 28

Case 2. v=17,8,9 (mod25).

In this case v = 5w + u where w = 0 (mod5) and v € {7,8,9}. By
Theorem 2.3 there exists a T'T'(6, 1, w, u) for all relevant pairs (w, u) with the
exception of w € {10,30}. So for v # 32, 33, 34, 57, 58, 59, 157, 158, 159,
apply Theorem 2.6 to give the result. For v = 32, 34, 59, see Figure 1. For v = 33
apply Lemma 2.2 and Lemma 3.2. For the remaining values see Figure 2.

Case 3. v=12,13,14 (mod 25).

In this case v = 5w + u where w = 1 (mod5) and u € {7,8,9}. By
Theorem 2.3 there exists a T'T'(6, 1, w, u) for all relevant pairs (w, u) with the
exception of w € {26,36}. So forv # 38, 39, 137, 138, 139, 187, 188, 189,
apply Theorem 2.6 to give the result. For v = 38, 39, see Figure 1. For the
remaining values see Figure 2.

Case 4. v=17,18,19,22,23,24 (mod25).

Inthlscasev = 5w+u+2 wherew 2 (mod5) andu € {5,6,7,10,12}.
By Theorem 2.3 there exists a TT(6, 1, w, u) for all relevant pairs (w u) with
the exception of w € {22,42,52}. So forv # 117, 118, 119, 122, 124, 217,
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218, 219, 224, 267, 268, 269, 272, 274, apply Theorem 2.6 to give the result. For
v = 47 see Figure 1. For v = 49 apply Lemma 2.2 and Lemma 3.4. For the other
values of v, see Figure 2.

Case 5. v =23 (mod25).

In this case v = 5w + 23 where w = 0 (mod5) and u = 23. By Theorem
2.3 there exist a TT(6,1,w, u) for all relevant pairs (w, u) with the exception
of w € {10,15,20,30}. So for v # 48, 73, 98, 123, 173, apply Theorem 2.6 to
give the result. For v = 48 see Figure 1. Forv = 73, 123, 173, see Figure 2. Qi
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