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Abstract. Using the definition of k-free, a known result can be re-stated as follows: If
G is not edge-reconstructible then G is k-free, for all even k. To get closer, therefore,
to settling the Edge-Reconstruction Conjecture, an investigation is begun into which
graphs are, or are not, k-free (for different values of k, in particular for k = 2); we also
discuss which graphs are k-free, for all .

1. Introduction

The graphs in this paper are connected simple graphs with n vertices. Such a
graph G will be considered as a spanning subgraph of K,,.

Definition: Suppose that G is a graph and that 1 < k < |E(G)|. Then G is
k-free if, for every subset A of E(G) with [A]| = |E(G)| — k, there exists an
automorphism ¢ of K, such that E(G) N E(¢(G)) = A. A graph is even-free
if it is k-free, for all even k. A graph is super-free if it is k-free, for all k.

Now the following result is known (se¢ Nash-Williams [3]):

Lemma 1. If G is not edge-reconstructible then, for every subset A of E(Q)
such that |A| = |E(G)| (modulo 2), there exists an automorphism ¢ of K, such
that E(G) N E(¢(@)) = A.

This lemma says that if a graph is not edge-reconstructible then it is even-free,
and so a graph that is not k-free, for some even value of k, is edge-reconstructible.
An investigation into which graphs are, or are not, k-free may therefore bring
closer the settling of the Edge-Reconstruction Conjecture. In subsequent sections
of this paper, this question is considered for different classes of graph.

The above definition, with some related remarks, was presented in [5], and The-
orems 1 and 3 below were announced there, without proofs.

The concept is related to that of fixing subgraph introduced in [4]. If G has a
fixing subgraph U then G is not k-free, for all £ < |E(G)| — |E(U)|. This is
elaborated upon in Section 5 below.

The following method is used in practice to determine whether or not a graph
is k-free. Let {e1,e2,...,ex} be a set of edges of a graph G. A replacing set
is any set of edges that can be added to G — {ey, e2,... e} to form a graph
isomorphic to G. The replacing set { f1, f2,... , fi} is called a disjoint replacing
setif {e;,e2,...,ex} N {f1, f2,--., fe} = 0. If there is a disjoint replacing set
for {e1,e2,... e}, we shall say that the set {ey, ez, ... ,e;} is replaceable,
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Lemma 2. The graph G is k-free if and only if every set of k edges is replace-
able.

Proof: Suppose that G is k-free. Let {e1,e2,...,€ex} be a set of k edges and

let A = E(G) — {e1,€z2,...,ex}. Then there is an automorphism ¢ such that

E(G) N E(¢(@)) = A. Now E(G) = A+ {e1,€e2,...,e} 50 B(¢(B)) =

A+{fl|f2)°" ’fk}’Where{elyCZ:"' !ek}n{fl)f?.)"' »fk} = ﬂ’ Since¢(G)

isisomorphicto G, { f1, f2,-- - , f} is adisjoint replacing setfor {e;, €2, ... , ex}.
The converse is equally straightforward.

2. Paths

The path P, with 3 vertices, is 1-free but not 2-free. But we have the following:
Theorem 1. The path P, (n > 4 ) is super-free.

Proof: The result can be verified for n = 4. The proof for n > 5 is by induction
and proves the stronger result:

Let G be the path P, (n > 5), with vertices a1, a3, ..., a, and edges a;a;,1
(i=1,...,n—1). Let Abeasubsetof E(G). Then there exists an automorphism
¢ of K, such that E(G) N E(¢(G)) = A. Moreover, if ajaz ¢ A, there exists
such a ¢ such that a; has degree 1in ¢(G).

@) Let G be the path Ps. The result can be checked and is illustrated in
the figure. For each of the 2 subsets A, a diagram showing ¢(G) is shown in
Figure 1. The vertex a; is on the left-hand end and it can be seen that, when
ajay € A, a; has degree 1in ¢(G).



(ii) Now let G be the path P, (n > 5) and A any subset of E(G). Suppose
firstthat a;a; ¢ A. Let P’ be the path (a subgraph of G') with vertices a3, ..., a,.
Then A C E(P'). By the induction hypothesis, there is an automorphism ¢’ such
that E(P") N E(¢'(P')) = A. Now ¢'( P') has two vertices of degree 1; one of
them, b say, is not a;. Then ¢/( P') + a1 b is isomorphic to G and so is equal to
¢(Q), for some ¢. Itis clear that E(G) N E($(G)) = A and thata; has degree 1
ing(G@).

Suppose now that a;a; € A. Let j be the smallest value such thata;_ja; € A
and aja;.1 ¢ A. (If j = n, take the identity automorphism for ¢.) Let P’ be the
path (a subgraph of G) with vertices a;, aj+1, ..., Gn.

First, suppose thatn—j > 4. Let A' = ANE(P'). By the induction hypothesis,
there exists a ¢’ such that E(P')NE(¢'(P')) = A’ and a; has degree 1in ¢'( P').
Then ¢'(P') + { a102,0203,...,aj-1a; } is isomorphic to G and so is equal to
¢(Q), for some ¢, with the right property.
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Suppose that n — j = 3. There are 4 possibilities for A and the existence of ¢
is illustrated in Figure 2. Also shown are the two cases when n— j = 2 and the
casewhenn—j=1. - [ |

3. Trees

The only 1-free trees (apart from paths) are the trees T and T3, given in Theo-
rem 10 of [4], and shown in Figure 3. It is easy to check that these two are, in fact,
super-free. So they are the only super-free trees (apart from paths).

A I S

L Ta
Figure 3

We are at present determining all 2-free trees; it seems likely that there are just
a finite number of them (apart from paths). Here is a first result on 2-free trees:

Theorem 2. The only 2-free bidegreed trees (apart from paths) are the three trees
shown in Figure 4.

4 N

Figure 4

Proof: Let G be a bidegreed tree (not a path). Then G has at least two vertices of
degree 1. Suppose that the vertices of G have degrees 1 and A (> 3).

Case (): A > 4. In G, there is a vertex of degree A adjacent to at least three
vertices of degree 1. (If not, the deletion of all the pendant edges gives a subgraph
with degrees > 2, which thus has a cycle—a contradiction.) So let ag be a vertex
of degree A with adjacent vertices a1, a2 and a3 of degree 1. Then {eoa1,a0a2}
is clearly not replaceable. So there are no such 2-free bidegreed trees.

Case (ii): A = 3. In G, there is a vertex of degree 3 adjacent to at least two
vertices of degree 1. (Otherwise, the deletion of all pendant edges again would
give a subgraph which would have to have a cycle.) Let a vertex of degree 3
adjacent to exactly two vertices of degree 1 be called a ‘type 1’ vertex. If there is
no type 1 vertex, G is the tree B;. Otherwise, consider a shortest path, of length s
(> 2), from a type 1 vertex to a non-adjacent vertex of degree 1.
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If s > 3, let a, a1, ..., a, be the vertices of such a shortest path, where ag
is the type 1 vertex and a, has degree 1. Let b be the other vertex adjacent to a;,
as shown in Figure 5(a). For the set {a,_1a,,a1b} it can be seen that the only
disjoint replacing set could be {a;a,, a,—1b}; but then in G — {a,_10,,a1b} +
{a1a,, a,_1b}, which is isomorphic to G, there is a path of length 2 from a type 1
vertex to a non-adjacent vertex of degree 1, a contradiction.
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So s = 2. Therefore, there is a vertex adjacent to both a type 1 vertex and at
least one vertex of degree 1. Let a vertex adjacent to both a type 1 vertex and
exactly one vertex of degree 1 be called a ‘type 2’ vertex. (See Figure 5(b).) If
there is no type 2 vertex then G is the tree B, . Otherwise, it can be shown, in the
same way, that the shortest distance from a type 2 vertex to a non-adjacent vertex
of degree 1 is equal to 2, and the argument is continued. Thus G is one of the
family of graphs B;, in which, for 1 > 2, B; has 1 vertices of degree 3 forming a
path, the end-vertices of which are each adjacent to two vertices of degree 1, and
the others each adjacent to one vertex of degree 1.

It is easy to show that the first three of this family, which are shown above, are
indeed 2-free and that the others are not. |

We note that B, is exactly 2-free (i.e., 2-free but not k-free for k # 2); B, and
Bj are k-free, forall k > 2. o

We conjecture that these are the only 2-free bidegreed graphs (that are not
paths). A proof of this conjecture—namely that all other bidegreed graphs (apart
from paths) are not 2-free—would, by Lemma 1 above, give the result of Myrvold,
Ellingham and Hoffman [2], that bidegreed graphs are edge-reconstructible.

4. Cycles
For cycles, we have the following result:

Theorem 3. The cycle C, is not k-free, for k < 4. The cycle C, (n > 5) is
k-free, forall k > 5.

Proof: In the cycle C,, it is clear that, for 1 < k < 4, k consecutive edges are
not replaceable. So C, is not k-free, for these values of k.

Now let G be the cycle C, (n > 5). Let A be a subset of E(G) such that
|Al = |E(G)|—k,withk > 5. If A = @, there certainly exists an automorphism ¢
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such that E(GQ) N E(¢(Q)) = A, since, for n > 5, there is a packing of C,, and
Ch.

So suppose that A # @. Label the vertices of G (= Cy) as a1, @2, ..., Gy,
with edges @162, ..., 8n-10n, aga1, in such a way that a,e) € A, a1a3, ...,
a;—10; € A and g;a;+1 € A. Let P,_; be the path (a subgraph of G) with vertices
Qi+1, G5+2, ..., Gy, There are at least 3 more edges in E(G) — A and these be-
long to E(P,;), 50 |[E(P,—)| > 3,ie,n—1 > 4. Let A = AN E(P,;).
Since P,; is super-free, by Theorem 1, there is an automorphism ¢' such that
E(P.—) N E(¢'(P.;)) = A'. Let b and c be the two vertices of ¢'( P,_;)
of degree 1; label them so that b is not a,, and c is not a;+1. Then ¢'(P,—;) +
{ba1,a102,...,a;-1a;,a;c} isisomorphicto G (= C,) and sois $(G), forsome ¢,
and E(G) N E(4(G)) = A. 1

5. Regular graphs

There are no super-free regular graphs, because regular graphs are clearly not
1-free. Indeed, we have the following:

Theorem 4. Let G be a regular graph of degree r. Then G is not k-free, for all
k<2r.

Proof: If G is a complete graph then any set of edges is not replaceable, so G is
not k-free, for all k.

If G is not complete, let 4 and v be two vertices such that d(u,v) = 2. Lete;,
..., e, be the edges incident with u and e 1, ..., ez, the edges incident with v.
Then, forall k < 2, the set {e1, e2,... , e} is not replaceable. 1

Results about other regular graphs also follow from [4]. A spanning subgraph U
of G is a fixing subgraph of G if, whenever E(G) N E(¢(G)) D E(U), for
some automorphism ¢ of K,, E(G) N E(¢(G)) = E(G). Moreover, if U is
a fixing subgraph of G and U C V C G then V is also a fixing subgraph of G.
Consequently, if G has a fixing subgraph U then G is not k-free, for all k& <
|B(G)| - |E(U).

In particular, consider the Tutte cages. In [4], it was shown that each i-cage
(i=3,4,5,6,8) has a fixing subgraph (in fact, a tree) with n — 1 edges. Since
|E(G)| = 3, it follows that the i-cage is not k-free, fork < 3n— (n—1) =
1
-2-'n+ 1.

6. Self-complementary graphs

A graph is |E(G) |-free if and only if there is a packing of G and G. Let G be
a graph with |E(G)| = $n(n— 1), where n = 0 or 1 (mod 4). Then it is
- immediate that G is self-complementary if and only if G is | E(G) |-free. We also
have the following result for self-complementary graphs:
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Theorem 5. Let G be a self~complementary graph, with n vertices and q (=
1—11(1; — 1)) edges. Then G is k-free if and only if it is (q — k) -free.

Proof: Suppose that G is k-free. Let A be a subset of E(G) such that |4] = k.
Let B= E(G) — A,sothat|B| =g — k.

Since G is k-free, there is an automorphism ¢ with E(G) N E(¢(G)) = B.
Let D= E(K,) — (E(G) U E(¢(G))). A Venn diagram is shown in Figure 6.

E(K)

E(e

a E(¢(5))

Figure 6

>

Since E(K,) =2¢,|D|=29g—(g+g¢—(g—k)) = ¢g— k. Now ¢(G) is self-
complementary so there is a mapping o that maps ¢(G) onto its complement, that
is, E(a(¢(@))) = AUD. So E(G) N E(c¢(G)) = A. Since such a mapping
(namely, o¢) exists for all A, G is (g — k)-free. |

7. Conclusion
The interesting problem remains of determining all super-free graphs.

A bound on the number of edges is known. For if G is super-free then, for
every subset A of E(QG), there exists an automorphism ¢ of K, such that E(G) N
E(¢(@)) = A. So, as in Miiller [1], it follows that 2 E(®| < n! and we obtain
the bound | E(G)| < nlog, n.

The class of unicyclic graphs was considered in [5]. There it was explained
how, from results in [4], the 1-free unicyclic graphs are known and how it follows
that the only super-free unicyclic graphs are the three, My, M, and M3, shown in
Figure 7.

Thus the super-free graphs known so far are: (i) the paths P, (n > 4), (ii) the
trees Ty and T3 given in Section 3, and (iii) the unicyclic graphs Mo, M, and M3.
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