On the Chromatic Number of Some Rational Spaces

Joseph Zaks

University of Waterloo CANADA N2L 3G1 and University of Haifa ISRAEL 31999

Let Q^d denote the collection of all the rational points of the d-space E^d , and let $G(Q^d)$ denote the graph, obtained by taking Q^d as its vertex set, and connecting two points if they are at distance one.

It is well known that $\chi(G(Q^2))=2$ [7], and that $\chi(G(Q^3))=2$ and $\chi(G(Q^4))=4$ [1]; Benda and Perles asked in [1] for the value of $\chi(G(Q^5))$. Clearly, $\chi(G(Q^5))\geq 4$; we [8] showed that $\chi(G(Q^6))\geq 6$, $\chi(G(Q^7))\geq 8$ and $\chi(G(Q^8))\geq 9$. These results follow also from [2], where the maximum clique number $\omega(G(Q^d))$ of $G(Q^d)$ is determined, and from the fact that $\chi(G)\geq \omega(G)$ for all graphs G.

The purpose of this note is to prove

Theorem 1.
$$\chi(G(Q^5)) \ge 5$$
, $\chi(G(Q^6)) \ge 7$, $\chi(G(Q^7)) \ge 9$, and $\chi(G(Q^8)) \ge 10$.

We need the following.

Lemma 1. If A and B are two different points of Q^d , then the reflection of E^d with respect to the hyperplane which is the perpendicular bisector of the segment AB, is a rational transformation (that is, takes rational points to rational points).

Proof of Lemma 1: The reflection $f: E^d \to E^d$ with respect to the hyperplane which is the perpendicular bisector of the segment AB, is given by

$$f(x) = x - 2 \frac{\langle \left(x - \frac{A+B}{2}\right) \cdot (B-A) \rangle}{\langle (B-A) \cdot (B-A) \rangle} \cdot (B-A).$$

f is clearly a rational transformation, $f: Q^d \to Q^d$.

Notice that the said hyperplane contains the origin if and only if A and B are at equal distances from the origin, which happens if and only if $\langle (A+B) \cdot (B-A) \rangle = 0$; in this case f(x) is given by

$$f(x) = x - 2 \frac{\langle x \cdot (B - A) \rangle}{\langle (B - A) \cdot (B - A) \rangle} (B - A).$$

Lemma 2. Let O (the origin), F_1, \ldots, F_k be a unit-distance k-simplex in Q^d , $k \ge 2$, and let $A = (a_1 \ldots a_d) = \frac{2}{k} \sum_{i=1}^k F_i$. If there exists a rational solution to the system

$$\sum_{i=1}^{d} x_i^2 = \sum_{i=1}^{d} a_i^2 \tag{1}$$

$$\sum_{i=1}^{d} (x_i - a_i)^2 = 1 \tag{2}$$

then $\chi(G(Q^d)) \geq k+2$.

Proof of Lemma 2: A is chosen such that the points A, F_1, \ldots, F_k form another unit-distance k-simplex; if $B = (x_1 \ldots x_d)$ is the said solution to the system (1,2) then d(O,B) = d(O,A) and d(A,B) = 1. Thus, if $\chi(G(Q^d)) = k+1$, then the points O and A must have the same colour. Let f be the reflection of E^d with respect to the hyperplane which is the perpendicular bisector of the segment AB. By Lemma 1, f is a rational transformation, O = f(O) and f(A) = B. It follows by considering $\{O, f(F_1), \ldots, f(F_k), B\}$ that O and B have the same colour, therefore, A and B have the same colour, which is a contradiction, since d(A,B) = 1. Thus, $\chi(G(Q^d)) \geq k+2$.

The idea of the proof is based on L. Moser and W. Moser [6] claim that $\chi(G(E^2)) \ge 4$ (see also [4, 5]); this claim is proved by using the following well-known configuration, in which all the segments have unit length.

Proof of the Theorem: It suffices to give the points F_1, \ldots, F_k A and B in each case, as follows:

To show $\chi(G(Q^5)) \geq 5$, take

$$F_1 = (0,0,0,-1,0), F_2 = \frac{1}{2}(-1,1,1,-1,0), F_3 = \frac{1}{2}(-1,1,-1,-1,0), k=3,$$

 $A = \frac{2}{3}(-1,1,0,-2,0) \text{ and } B = \frac{1}{12}(-15,2,3,-11,5).$

To show $\chi(G(Q^6)) \ge 7$, take

$$F_1 = (0, \dots, 0, -1), \ F_2 = \frac{1}{2}(-1, 1, 0, 0, 1, -1),$$

$$F_3 = \frac{1}{2}(-1, 1, 0, 0, -1, -1), \ F_4 = \frac{1}{2}(-1, 0, 1, 1, 0, -1),$$

$$F_5 = \frac{1}{2}(-1, 0, 1, -1, 0, -1), \ k = 5,$$

$$A = \frac{2}{5}(-2, 1, 1, 0, 0, -3) \text{ and } B = \frac{1}{20}(-28, -1, 1, 2, 1, -13).$$

To show $\chi(G(Q^7)) > 9$, take

$$F_{1} = (-1,0,\ldots,0), F_{2} = \frac{1}{2}(-1,1,0,0,1,-1,0),$$

$$F_{3} = \frac{1}{2}(-1,-1,0,0,1,-1,0), F_{4} = \frac{1}{2}(-1,0,1,1,0,-1,0),$$

$$F_{5} = \frac{1}{2}(-1,0,-1,1,0,-1,0), F_{6} = \frac{1}{2}(-1,0,0,1,1,0,1),$$

$$F_{7} = \frac{1}{2}(-1,0,0,1,1,0,-1), k = 7,$$

$$A = \frac{4}{7}(-2,0,0,1,1,-1,0) \text{ and } B = \frac{1}{56}(-84,1,1,10,0,3,1).$$

Finally, to show $\chi(G(Q^8)) \geq 10$, take

$$F_{1} = (-1,0,\ldots,0), F_{2} = \frac{1}{2}(-1,1,0,0,0,0,1,-1),$$

$$F_{3} = \frac{1}{2}(-1,-1,0,0,0,0,1,-1), F_{4} = \frac{1}{2}(-1,0,1,0,0,1,0,-1),$$

$$F_{5} = \frac{1}{2}(-1,0,-1,0,0,1,0,-1), F_{6} = \frac{1}{2}(-1,0,0,1,1,0,0,-1),$$

$$F_{7} = \frac{1}{2}(-1,0,0,-1,1,0,0,-1), F_{8} = \frac{1}{2}(-1,0,0,0,1,1,1,0), k = 8,$$

$$A = \frac{3}{8}(-3,0,0,0,1,1,1,-2) \text{ and } B = \frac{1}{6}(-8,1,1,3,1,0,-1,-2).$$

This completes the proof of the theorem.

Notice that we have used maximum cliques [2] of $G(Q^d)$ 5 $\leq d \leq 8$, taken from ([8], see also [2]) and shifted them to the origin. The technique is useless for $d \geq 10$, since $\chi(G(Q^d)) \geq d+2$ for all $d \geq 10$ (see [3]).

K.B. Chilakamarri has another proof that $\chi(G(Q^5)) \geq 5$, based on a 10-point configuration (private communication).

References

- 1. M. Benda and M. Perles, Colorings of metric spaces. (unpublished).
- 2. K.B. Chilakamarri, *Unit-distance graphs in rational n-space*, Discrete Math. **69** (1988), 213–218.
- 3. P. Frankl and R.M. Wilson, *Intersection theorems with geometric consequences*, Combinatorica 1 (1981), 351–368.
- 4. M. Gardner, A new collection of brain-teasers, Sci. Amer. 206 (October 1960), p. 180.
- 5. V. Klee, Some unsolved problems in plane geometry, Math. Magazine 52 (1979), 131-145.
- L. Moser and W. Moser, Solution to P10, Figure 2, Canad. Math. Bull. 4 (1961), 187–189.
- 7. D.R. Woodall, Distance realized by sets covering the plane, J.C.T. (A) 14 (1973), 187-200.
- 8. J. Zaks, On four-colourings of the rational four-space, Aequat. Math. 37 (1989), 259-266.