Domination Sequences of Graphs

E. J. Cockayne University of Victoria Victoria, Canada

C. M. Mynhardt University of South Africa Pretoria, South Africa

Abstract. A dominating set X of a graph G is a k-minimal dominating set of G iff the removal of any $\ell \leq k$ vertices from X followed by the addition of any $\ell-1$ vertices of G results in a set which does not dominate G. The k-minimal domination number $\Gamma_k(G)$ of G is the largest number of vertices in a k-minimal dominating set of G. The sequence $R: m_1 \geq m_2 \geq \cdots \geq m_k \geq \cdots \geq n$ of positive integers is a domination sequence iff there exists a graph G such that $\Gamma_1(G) = m_1, \Gamma_2(G) = m_2, \ldots, \Gamma_k(G) = m_k, \ldots$, and $\gamma(G) = n$, where $\gamma(G)$ denotes the domination number of G. We give sufficient conditions for R to be a domination sequence.

1. Introduction

A set X of vertices of a graph G = (V, E) is a dominating set of G iff each vertex in V - X is adjacent to at least one vertex in X. The domination number $\gamma(G)$ (upper domination number $\Gamma(G)$) of G is the smallest (largest) number of vertices in a minimal dominating set of G.

The concepts of minimality and maximality in general were extended in [1]. The application of this generalisation of minimality to domination parameters in particular results in the following definitions: A dominating set $X \subseteq V$ is a k-minimal dominating set of G iff for all $\ell \in \{1, \ldots, k\}$ for all ℓ -subsets Q of X and all $(\ell - 1)$ subsets R of V, $(X - Q) \cup R$ is not a dominating set of G. The k-minimal domination number $\Gamma_k(G)$ of G is the largest cardinality of a k-minimal dominating set of G. The k-minimal domination numbers of all paths and cycles are determined in [1] and [3] respectively, while the product of k-minimal domination numbers of a graph and its complement is discussed in [2].

It is clear that for any graph G,

$$\Gamma(G) = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \ge \Gamma_k(G) \ge \cdots \ge \gamma(G)$$
.

The sequence

$$A: \Gamma_1(G) \geq \Gamma_2(G) \geq \cdots \geq \Gamma_k(G) \geq \cdots \geq \gamma(G)$$

is called the domination sequence of G. Further, the sequence

$$R: m_1 \geq m_2 \geq \cdots \geq m_k \geq \cdots \geq n$$

of positive integers is a domination sequence iff there exists a graph G such that

$$\Gamma_1(G) = m_1, \Gamma_2(G) = m_2, \ldots, \Gamma_k(G) = m_k, \ldots, \gamma(G) = n.$$

In this paper we begin the study of domination sequences of graphs. We first deduce a simple necessary condition for a sequence R to be a domination sequence and then find a sufficient condition for R to be such a sequence by explicitly constructing a graph having a given R as domination sequence. This supplies a partial solution to the problem of characterising domination sequences, which seems to be a very difficult problem in general.

2. Preliminary Results

We begin by stating a classical result of Ore [4, p. 206] which provides us with a useful method of determining when a dominating set is a minimal dominating set. Let $N_G(U)$ ($N_G[U]$) denote the neighbourhood (closed neighbourhood) in a graph G of a subset U of V(G). If $U = \{u\}$, we also write $N_G(u)$ for $N_G(\{u\})$ and $N_G[u]$ for $N_G[\{u\}]$.

Proposition 1. A dominating set X of a graph G = (V, E) is a minimal dominating set of G iff for each $x \in X$ one of the following two conditions hold:

- (i) x is an isolated vertex of $\langle X \rangle$;
- (ii) there exists a vertex $y \in V X$ such that $N_G(y) \cap X = \{x\}$.

Although $\Gamma_k(G)$ is defined for all positive integers k it is clear from the finiteness of G that the sequence A above can contain only finitely many distinct integers. In our next result we show that the maximum number of distinct integers in A depends on the value of $\gamma(G)$.

Proposition 2. If $R: m_1 \ge m_2 \ge \cdots \ge m_k \ge \cdots \ge n$ is a domination sequence, then $m_i = n$ for all $i \ge n+1$.

Proof: Let G be a graph having R as its domination sequence and let X be a dominating set of G with |X| = n. If Y is a dominating set of G with $|Y| \ge n+1$ and Y' is any (n+1)-subset of Y, then $(Y-Y') \cup X$ dominates G, showing that Y is not (n+1)-minimal and consequently not i-minimal for $i \ge n+1$. It follows that $\Gamma_i(G) \le n$ for all $i \ge n+1$ and since $\gamma(G) = n$, $\Gamma_i(G) = n$ for all $i \ge n+1$.

We now devote the rest of this paper to the following question: For which positive integers k and $m_1, \ldots, m_k, m_{k+1}$ with $m_1 \geq \ldots, \geq m_k \geq m_{k+1} = k$ does there exist a graph G such that

$$\gamma(G) = k \text{ and } \Gamma_i(G) = m_i, \quad i = 1, \dots, k$$
?

We shall also need the following definition: An ℓ -subset Q of a dominating set X of a graph G is said to be *stable* (*unstable*) iff there does not exist (there exists) an $(\ell-1)$ -subset R of V-X such that $(X-Q) \cup R$ is dominating. Notice that a dominating set is k-minimal iff for each $1 \le \ell \le k$, all ℓ -subsets of X are stable.

3. Main Construction

Consider the sequence $R: m_1 \ge \cdots \ge m_k \ge m_{k+1} = k$ as above. Let $K = \{1, \ldots, k\}$ and $I' = \{i \in K - \{1\} : m_i > m_{i+1}\}$. If $I' = \phi$ define I as

$$I = \begin{cases} \phi & \text{if } m_1 = m_2 \\ \{1\} & \text{otherwise.} \end{cases}$$

If $I' \neq \phi$, let $a' = \max_{i \in I'} \{i\}$; we assume $m_1 \geq m_2 + a' - 2$ since this is required by the sufficiency condition, and define I as

$$I = \begin{cases} I' & \text{if } m_1 = m_2 + a' - 2 \\ I' \cup \{1\} & \text{otherwise.} \end{cases}$$

Suppose that |I|=q and $I=\{a_1,\ldots,a_q\}$ with $a_1\leq \cdots \leq a_q=a'$ and define $Q=\{1,\ldots,q\}$. For each $i\in Q$ for which $a_i\geq 2$, let $n_i=m_{a_i}-m_{a_i+1}+a_i-a_{i-1}$, where a_o is defined to be 0. If $a_1=1$ let $n_1=m_1-m_2-a_q+3$ if $a_q\geq 2$, and $n_1=m_1-m_2+1$ if $a_q=1$. Note that $m_{a_i+1}=m_{a_i+2}=\cdots=m_{a_{i+1}}$ (where $m_{a_{q+1}}$ denotes $m_{k+1}=k$), and that $n_i\geq 2$ for all $a_i\in I$.

For each $i \in Q$ define $H_i = \overline{K}_{n_i}$ and construct \widetilde{H}_i as follows: Take a_i copies H_{i1}, \ldots, H_{ia_i} of H_i with $V(H_{ij}) = \{v_{ij\lambda} | \lambda = 1, \ldots, n_i\}$ and join the vertices of each H_{ij} to the vertices of each $H_{i\ell}$, $j \neq \ell$; $j, \ell = 1, \ldots, a_i$, by the 1-factor $\{v_{ij\tau}v_{i\ell\tau}|\tau=1,\ldots,n_i\}$. Note that in this way n_i disjoint copies of K_{a_i} are formed. Add a set $S_i = \{s_{i1},\ldots,s_{ia_i}\}$ of a_i independent vertices and join each s_{ij} to all vertices of H_{ij} as well as to each vertex $v_{i\ell 1}, \ell \neq j; \ell, j = 1, \ldots, a_i$. The resulting graph is \widetilde{H}_i .

Now form G_R by joining the graphs \widetilde{H}_i recursively as follows: Let $G_1 = \widetilde{H}_1$ and let G_i be the graph obtained by joining \widetilde{H}_i to G_{i-1} with the edges $s_{ir}s_{jr}$ where j < i and $r < a_j$, and all edges from s_{ir} to H_{jr} where j < i and $r < a_j$. Then

$$G_R = \begin{cases} G_q & \text{if } a_q = k \\ G_q \cup \overline{K}_{k-a_q} & \text{if } a_q < k \\ \overline{K}_k & \text{if } I = \phi. \end{cases}$$

The construction of G_R is illustrated in Figure 1.

4. Lower Bounds for $\Gamma_i(G_R)$

Our purpose is to impose suitable conditions on R so that it will be the domination sequence of G_R . In this section we formulate and prove various lemmas concerning dominating sets of G_R and its subgraphs and finally establish that $\Gamma_i(G_R) \geq m_i$ for all $i \geq 2$. It is significant that no restrictions on the m_i 's are necessary to obtain this result.

Figure 1: Illustration of construction with $m_1 = 11$, $m_2 = 9$, $m_3 = 6$, $m_4 = m_5 = m_6 = k = 5$

Lemma 1. For any $i \in Q$ and any $j = 1, ..., a_i, V(H_{ij})$ is an a_i -minimal, but, if $n_i > a_i$, not an $(a_i + 1)$ -minimal dominating set of \widetilde{H}_i .

Proof: It is clear that $D = V(H_{ij})$ dominates $V(H_{i\ell})$, $\ell = 1, ..., a_i$ as well as S_i . Moreover, if $|D| > a_i$ then, since $|S_i| = a_i$ and S_i dominates \widetilde{H}_i , no $(a_i + 1)$ -subset of D is stable. We now show that D is a_i -minimal.

For $r \leq a_i$, let X be any r-subset of D and suppose, contrary to the required result, that there exists an (r-1)-subset $Y \cup Y'$ of $V(\tilde{H}_i)$ such that

$$Y \subseteq S_i$$
,
$$Y' \subseteq \bigcup_{\ell=1}^{a_i} V(H_{i\ell}),$$

$$Y \cup Y' \cup (D-X) \text{ dominates } \widetilde{H}_i.$$

If $Y = \phi$, in order to dominate $\bigcup_{\ell=1}^{a_i} V(H_{i\ell})$ we must have $|Y'| \ge r$, a contradiction. If $Y \ne \phi$ then at least r-1 vertices of at least one H_{ij} are undominated by $Y \cup (D-X)$. Therefore $|Y'| \ge r-1$ and $|Y \cup Y'| \ge r$, a contradiction.

It is important to realise that a dominating set $X \subseteq \bigcup_{j=1}^{a_i} V(H_{ij})$ of \widetilde{H}_i is not necessarily contained in $V(H_{ij})$ for some j. Some properties of such dominating sets are given in Lemma 2 while further properties are discussed in Lemma 4(ii).

Lemma 2. For any $i \in Q$ and any dominating set X of \widetilde{H}_i with $X \subseteq \bigcup_{j=1}^{a_i} V(H_{ij})$, the following conditions hold:

- (i) $|X| > n_i$;
- (ii) X is a_i -minimal if and only if $|X| = n_i$;
- (iii) if $|X| > n_i$ then X is not a minimal dominating set.

Proof: Clearly, (i) and (iii) follow directly from the construction of \widetilde{H}_i ; the sufficiency of (ii) can be proved similarly to Lemma 1 while (iii) implies the necessity of (ii).

In order to find lower bounds for the upper domination numbers of G_R , we first prove that $\Gamma_{a_i}(G_i) \geq m_{a_i} - m_{a_{i+1}} + a_i$.

Lemma 3. For any $i \in \{2, ..., q\}$ and any $j = 1, ..., a_{i-1}$, let $D = V(H_{ij})$ and $D_i = D \cup S_{i-1}$. Further, let $D_1 = V(H_{1j})$ for any $j = 1, ..., a_1$. Then each D_i is an a_i -minimal but not $(a_i + 1)$ -minimal dominating set of G_i containing, if $a_i \geq 2$, precisely $m_{a_i} - m_{a_{i+1}} + a_i$ vertices.

Proof: It is easy to see that $|D_i| = m_{a_i} - m_{a_{i+1}} + a_i$ if $a_i \ge 2$. Also, referring to the construction of G_R , it is clear that S_{i-1} dominates G_{i-1} and hence D_i dominates G_i . Since S_i dominates G_i and $|D_i| \ge a_i + 1$, the removal of any $a_i + 1$ vertices from D_i followed by the addition of S_i yields a dominating set D' of G_i with $|D'| = |D_i| - 1$, showing that D_i is not $(a_i + 1)$ -minimal. We now show by induction over i that D_i is an a_i -minimal dominating set of G_i .

If i=1, then $S_{i-1}=\phi$ and D_1 is a_1 -minimal by Lemma 1. For $i\geq 2$ suppose that D_{i-1} is an a_{i-1} -minimal dominating set of G_{i-1} for any set D_{i-1} satisfying the hypothesis of the lemma and consider any dominating set of G_i of the form $D_i=D\cup S_{i-1}$. For $p\leq a_i$ let X be any p-subset of D_i and suppose $|X\cap D|=r$, $|X\cap S_{i-1}|=t$. The following vertices are not dominated by $Z=D_i-X$:

- (i) r vertices of H_{ij} for each $j = 1, ..., a_i$, and possibly vertices of S_i ;
- (ii) all vertices of t copies of H_{i-1} if $t = a_{i-1}$, or the vertices other than $v_{(i-1)j1}$ of t copies of H_{i-1} if $t < a_{i-1}$;
- (iii) the vertices in at least $a_{i-\ell} a_{i-1} + t$ copies of $H_{i-\ell}, \ell \ge 2$, (since $a_{i-1} t$ vertices of S_{i-1} remain in D_i and they dominate at most $a_{i-1} t$ copies of $H_{i-\ell}$);
- (iv) t vertices of S_{i-1} and at least $a_{i-\ell} a_{i-1} + t$ vertices of $S_{i-\ell}, \ell \geq 2$.

Let $Y \subseteq V(G_i)$ be such that $Z \cup Y$ dominates the vertices in (ii)-(iv) above and such that Y is minimal w.r.t. this property. Then $Y \cap (\bigcup_{j=1}^{a_i} V(H_{ij})) = \phi$, $Y \cap \{s_{i(a_{i-1}+1)}, \ldots, s_{ia_i}\} = \phi$ and for each $j = 1, \ldots, a_{i-1}$, at most one of s_{ij} and $s_{(i-1)j}$ is contained in Y. We now consider two cases.

Case 1: $|Y \cap (S_i \cup S_{i-1})| = c \ge t$.

Then $|Y \cap S_i| = b$, $|Y \cap S_{i-1}| = b_1$ with $b + b_1 = c$. In order to dominate the vertices in (i) above with as few vertices as possible, a set Y' has to be added

to $Z \cup Y$, where Y' contains d vertices of S_i , $d \in \{0, \dots, a_i - b\}$ and 0, at least r-1, or r vertices in $\cup_{j=1}^{a_i} V(H_{ij})$ depending on whether $b+d=a_i, 1 \leq b+d < a_i$ or b+d=0 respectively. Clearly, if b+d=0 or $b+d=a_i$, then $|Y \cup Y'| = |Y| + |Y'| \geq t+r=p$. If $1 \leq b+d < a_i$ and $d \neq 0$, then $|Y \cup Y'| \geq t+d+r-1 \geq t+r$. Further, if d=0 and $1 \leq b < a_i$, then, since $r \leq a_i-t$ and $D=V(H_{ij})$ for some $j=1,\dots,a_{i-1}$, at least one vertex $s_{i\ell}$ with $\ell \in \{a_{i-1}+1,\dots,a_i\}$ or a vertex of $\cup_{j=1}^{a_i} V(H_{ij})$ is not dominated by $Z \cup Y \cup Y'$ if $|Y' \cap (\cup_{j=1}^{a_i} V(H_{ij}))| = r-1$. Hence in this case Y' needs to contain r vertices in $\cup_{j=1}^{a_i} V(H_{ij})$ so that $|Y \cup Y'| \geq t+r=p$. It follows that X is stable, thus settling this case.

Case 2: $|Y \cap (S_i \cup S_{i-1})| = c < t$.

Then Y contains at least $n_{i-1}-1$ vertices of $\bigcup_{j=1}^{a_{i-1}}V(H_{(i-1)j})$. Let Y' be the set obtained by substituting each vertex s_{ij} of Y with $s_{(i-1)j}$; note that |Y'|=|Y|. Furthermore, let Y'' be the set obtained by substituting $n_{i-1}-1$ vertices of $Y'\cap (\bigcup_{j=1}^{a_{i-1}}V(H_{(i-1)j}))$ with $n_{i-1}-1$ corresponding vertices of $H_{(i-1)1}$. Again |Y''|=|Y'|=|Y|. Note that $(Z\cap S_{i-1})\cup Y''=B$ is a dominating set of G_{i-1} . Let $D_{i-1}=V(H_{(i-1)1})\cup S_{i-2}$, where $S_o=\phi$. By the induction hypothesis, D_{i-1} is an a_{i-1} -minimal dominating set of G_{i-1} . But then $|B|\geq |D_{i-1}|$, for if $|B|<|D_{i-1}|$, then B contains at most a_{i-2} vertices not in D_{i-1} and can be obtained by removing $a_{i-2}+1\leq a_{i-1}$ vertices from D_{i-1} and adding a_{i-2} vertices, contradicting the a_{i-1} -minimality of D_{i-1} . But

$$|B| = a_{i-1} - t + |Y''|$$

and

$$|D_{i-1}| = m_{a_{i-1}} - m_{a_{i-1}+1} + a_{i-1}.$$

It follows that

$$|Y''| \ge m_{a_{i-1}} - m_{a_{i-1}+1} + t$$

 $\ge t + 1$.

Hence $|Y| \ge t+1$ and as in Case 1, if Y^* is a set such that $Z \cup Y \cup Y^*$ dominates G_i , then $Y \cup Y^*| \ge t+r=p$ so that X is stable. This completes the proof of the lemma.

If we take $t = p \le a_{i-1}$ in the proof of the above lemma and define D_{q+1} to be S_q , we get the following result:

Corollary 1. For any $i \in Q$, the set S_i is an a_i -minimal dominating set of G_i .

Corollary 2. $\gamma(G_R) = k$.

Proof: By Corollary 1, S_q is an a_q -minimal dominating set of G_q and it contains a_q vertices. Hence $\gamma(G_q) = a_q$. Clearly then, S_q together with the $k - a_q$ isolated

vertices of G_R is a k-minimal dominating set of G_R containing k vertices so that no set with fewer than k vertices can dominate G_R .

We are now ready to establish lower bounds for the upper domination numbers of G_R . Let $L = V(\overline{K}_{k-a_q})$ if $k > a_q$ and $L = \phi$ if $k = a_q$.

Theorem 1. For any $i \in Q$, the set

$$D_{i}^{*} = V(H_{q1}) \cup V(H_{(q-1)1}) \cup \cdots \cup V(H_{i1}) \cup S_{i-1} \cup L$$

is an a_i -minimal but not $(a_i + 1)$ -minimal dominating set of G_R containing, if $a_i \geq 2$, precisely $k + \sum_{j=1}^{q} (m_{a_j} - m_{a_j+1})$ vertices.

Proof: It is easy to see that D_i^* dominates G_R , and simple arithmetic shows that $|D_i^*| = k + \sum_{j=i}^q (m_{a_j} - m_{a_j+1})$ if $a_i \geq 2$. In Lemma 3 it is shown that D_i is not an $(a_i + 1)$ -minimal dominating set of G_i and it follows that D_i^* is not an $(a_i + 1)$ -minimal dominating set of G_R . Furthermore, by extending the techniques employed in the proof of Lemma 3, it can be shown that D_i^* is a_i -minimal.

Corollary 3. For each $i \geq 2$, $\Gamma_i(G_R) \geq m_i$.

Proof: Let $i \geq 2$. For each $i = a_q + 1, \ldots, k$, $S_q \cup L$ is an *i*-minimal dominating set of G_R with $k = m_{a_q+1} = \cdots = m_k$ vertices and therefore $\Gamma_i(G_R) \geq m_i$.

For each j = 1, ..., q and each $i = a_{j-1} + 1, ..., a_j, D_j^*$ is an *i*-minimal dominating set of G_R with

$$|D_{j}^{*}| = k + \sum_{\ell=j}^{q} (m_{a_{\ell}} - m_{a_{\ell}+1})$$

$$= k + m_{a_{j}} - m_{a_{j}+1} + \dots + m_{a_{q}} - m_{a_{q}+1}$$

$$= k + m_{a_{j}} - m_{a_{j+1}} + \dots + m_{a_{q}} - k$$

$$= m_{a_{\ell}}.$$

Hence $\Gamma_i(G_R) \geq m_i = m_{a_j}$ for each $i = a_{j-1} + 1, \ldots, a_j$ and each $j = 1, \ldots, q$.

5. Upper Bounds for $\Gamma_i(G_R)$

In this section we show that subject to certain conditions, $\Gamma_i(G_R) \leq m_i$ for each $i=2,\ldots,k$. We begin by considering, for each $i\in Q$, all possible types of minimal dominating sets of \widetilde{H}_i as listed below; although tedious it is not hard to see that these cases exhaust all possibilities. An example of each type of dominating set is given in Figure 2. Note that here D_1,\ldots,D_4 denote different sets than in Section 4.

Lemma 4. For each $i \in Q$ the minimal dominating set of \widetilde{H}_i can be divided into the following types:

- (i) S_i ;
- (ii) $D_1 \subseteq \bigcup_{j=1}^{a_i} V(H_{ij})$ with $|D_1| = n_i$ note that in this case D_1 consists of exactly one vertex of each of n_i copies of K_{a_i} and is a_i -minimal (Lemma 2(ii)) but not necessarily $(a_i + 1)$ -minimal (as in Lemma 1);
- (iii) D_2 consisting of $n_i 1$ vertices of $M_i = \bigcup_{j=1}^{a_i} (V(H_{ij}) \{v_{ij1}\})$ such that D_2 contains exactly one vertex of each of $n_i 1$ copies of K_{a_i} and $D_2 \cap V(H_{ij}) \neq \phi$ for at least $a_i 1$ j's, together with one vertex from S_i (representing the copy, if necessary, of H_i not already represented) in this case D_2 is $(a_i 1)$ -minimal but not necessarily a_i -minimal (similar to the proof of lemma 1);
- (iv) D_3 satisfying the same conditions as D_2 above except that $D_3 \cap V(H_{ij}) / = \phi$ for exactly $a_i t j$'s, $t = 2, ..., a_i 1$, and that D_3 contains t vertices from S_i corresponding to copies of H_i not yet represented note that $|D_3| = n_i 1 + t$ and D_3 is not 2-minimal.
- (v) $D_4 = S_i' \cup M_i' \cup M_i''$ (disjoint union), where S_i' is a t-subset of S_i for some $t \in \{1, \ldots, a_i 1\}$ and M_i' is an $(a_i t)$ -subset of M_i chosen from ℓ different copies of K_{a_i} , $\ell \leq a_i t$, and such that exactly one element of M_i' is in each copy of H_i which corresponds to a vertex of $S_i S_i'$.

Finally, M_i'' is an $(n_i - 1 - \ell)$ -subset of M_i containing one vertex from each of the remaining $(n_i - 1 - \ell)$ copies of K_{a_i} . Further, each vertex of M_i'' must be from a copy H_{ij} of H_i such that

- (a) $s_{ij} \in S_i S_i'$ and the vertex already elected in $H_{ij} \cap M_i'$ is the only vertex of M_i' in its copy of K_{α_i} , or
- (b) t = 1 and H_{ij} is the unique copy of H_i corresponding to the vertex of S'_i .

Here $|D_4| = a_i + n_i - 1 - \ell \le a_i + n_i - 2$, and D_4 is not 2-minimal if $t \ge 2$ or if $|D_4 \cap M_i| > n_i - 1$.

Note that the choices of M_i' and M_i'' are interdependent, i.e. depending upon the choice of M_i' it may be impossible to choose a set M_i'' satisfying the conditions of D_A .

The following two lemmas and their corollaries contain information on the structure of dominating and especially minimal dominating sets of G_R .

Lemma 5. Let X be a minimal dominating set of G_R . Let $W = \{1, ..., a_i\}$ and let $T \subseteq W$, |T| = t. If there exists, for each $\ell \in W - T$, an integer $j \ge i$ such that $s_{j\ell} \in X$, and $|X \cap (V(G_i) - S_i)| > t$, then X is not (t+1)-minimal.

Proof: Suppose X satisfies the conditions above and let $Y \subseteq X \cap (V(G_i) - S_i)$ with |Y| > t. Let $Y' = \{s_{i\ell} | \ell \in T\}$ and consider $Z = (X - Y) \cup Y'$. Then,

Figure 2: Minimal dominating sets (indicated by black vertices) of \widetilde{H}_i

for each $\ell \in W$ there exists an integer $j \ge i$ such that $s_{j\ell} \in Z$. We show that Z dominates G_R .

Firstly, let $v \in V(G_i) - S_i$. If $v = s_{j'\ell}$ for some j' < i, then $\ell < a_i$ and there exists a $j \ge i$ such that $u = s_{j\ell} \in Z$; note that u and v are adjacent. If $v = v_{j'\ell r}$ for some $j' \le i$ and some ℓ and r, then $\ell \le a_i$ and $u = s_{j\ell} \in Z$ for some $j \ge i$ dominates v. Hence each $v \in V(G_i) - S_i$ is dominated by Z. Now let $v \in (V(G_R) - V(G_i)) \cup S_i$ be adjacent to a vertex in Y. Then $v = s_{j'\ell}$ for some $j' \ge i$ and some $\ell \le a_i$. But then $u = s_{j\ell} \in Z$ for some $j \ge i$ and either v = u or v is adjacent to u. Hence each $v \in V(G_R)$ is dominated by Z. But $|Z| \le |X| - |Y| + |Y'| \le |X| - t - 1 + t < |X|$, proving that X is not (t + 1) minimal.

The following result is a direct corollary of Lemma 5 using t=0, whereas Corollary 5 follows from the proof of Lemma 5.

Corollary 4. Let X be a minimal dominating set of G_R . If, for some $i \in Q$, there exists for each $\ell = 1, ..., a_i$ an integer $j \geq i$ such that $s_{j\ell} \in X$, then $X \cap (V(G_i) - S_i) = \phi$.

Corollary 5. If X is a dominating set of G_R which contains more than a_i vertices of G_i for some $i \in Q$, then X is not $(a_i + 1)$ -minimal.

Proof: Let $Y \subseteq X \cap V(G_i)$ with $|Y| = a_i + 1$ and let $Z = (X - Y) \cup S_i$. As

in the proof of Lemma 5, Z dominates G_R and since |Z| = |X| - 1, X is not $(a_i + 1)$ -minimal.

Let $S = \bigcup_{i=1}^q S_i$. In Lemma 6 we show that a minimal dominating set X of G_R can contain only certain subsets of S. Using this we obtain the upper bounds for $|X \cap S|$ in Corollary 6.

For each $v \in X$, a dominating set of a graph G, define U_v by $U_v = \{u \in V(G) - X | N_G(u) \cap X = \{v\}\}$.

Lemma 6. Let X be a minimal dominating set of G_R .

- (i) If $v = s_{i\ell} \in X$ and $u = v_{ir\ell} \in U_v$ for some r, then $X \cap S_i = \{s_{i\ell}\}$ and $s_{jr} \notin X$ for all j > i.
- (ii) If $s_{j\ell}, s_{j'\ell} \in X$ for $j \neq j'$, then each vertex $v \in X$ with $v = s_{i\ell}, i \in Q$, is a non-isolate of $\langle X \rangle$ such that $U_v \subseteq \{v_{i11}, \dots, v_{ia_i1}\}$ and $U_v \{v_{i\ell 1}\} \neq \phi$.

Proof:

- (i) If $u = v_{ir\ell}$ is not dominated by $X \{v\}$ then, by the construction of G_R , $(X \{v\}) \cap S_i = \phi$ and $s_{jr} \notin X$ for all j > i.
- (ii) We prove the contrapositive of (ii). Let $v = s_{i\ell} \in X$. If v is an isolated vertex of $\langle X \rangle$ then clearly $s_{j\ell} \notin X$ for all $j \neq i$. If v is a non-isolate of $\langle X \rangle$ then (by assumption) there exists a vertex $u \in (U_v \{v_{i11}, \dots, v_{ia_i1}\}) \cup \{v_{i\ell 1}\}$. If $u \in S$, then $u = s_{r\ell}$ for some $r \neq i$, implying that $s_{j\ell} \notin X$ for each $j = 1, \dots, q, j \neq i$. If $u \notin S$, then $u = v_{r\ell t}$ for some $r \leq i$. Clearly, $s_{j\ell} \notin X$ for each $j = r, \dots, q, j \neq i$. Since u is not dominated by $X \{v\}$, $v_{rpt} \notin X$ for each $p = 1, \dots, a_r$. But each $v_{rpt}, p \neq \ell$, is dominated by $X \{v\}$ and therefore for each such p there exists an integer $p' \geq r$ such that $s_{p'p} \in X$. By Corollary $q \in X \cap V(G_r) S_r = q$ so that $s_{j\ell} \notin X$ for each $p = 1, \dots, r 1$ and the result follows.

Corollary 6. If X is minimal dominating set of G_R and there exists an integer ℓ such that $s_{i\ell}$, $s_{j\ell} \in X$ for $i \neq j$, then $|X \cap S| \leq a_q + q - 2$ for $a_q \geq 2$; otherwise $|X \cap S| \leq a_q$.

Proof: If there is no integer ℓ such that $s_{i\ell}, s_{j\ell} \in X$ for $i \neq j$, then obviously $|X \cap S| \leq a_q$. Suppose there are $r \geq 1$ such integers ℓ . If $s_{i\ell}, s_{j\ell} \in X$ for $i \neq j$, then by Lemma 6(ii), $v_{ix1} \in U_v$ (where $v = s_{i\ell}$, say) for some x. By Lemma 6(i), $X \cap S_i = \{s_{i\ell}\}$. It therefore follows that $|X \cap S_i| = 1$ for at least r i's and hence $r \leq q$. We now consider two cases.

Case 1: $|X \cap S_i| = 1$ for q i's.

Then $|X \cap S| = q \le a_q + q - 2$ if $a_q \ge 2$.

Case 2: $|X \cap S_i| = 1$ for t i's where $r \le t \le q - 1$.

In this case there is a non-empty set $J = \{i \in Q | |X \cap S_i| \neq 1\}$ such that $|X \cap (\bigcup_{i \in J} S_i| \leq a_q - r$. Hence $|X \cap S| \leq t + a_q - r \leq q + a_q - 2$.

We are now ready to formulate conditions that will ensure that $\Gamma_i(G_R) \leq m_i$ for all i = 2, ..., k.

Theorem 2. Let $a_i \ge 2$ and suppose $m_{a_j} > m_{a_{j+1}} + a_{j-1}$ for all $2 \le a_j \in I - \{a_q\}$. If X is a minimal domination set of G_R containing more than m_{a_i} vertices, then X is not d-minimal, where $d = \max\{2, a_{i-1} + 1\}$.

Proof: Let X be a minimal dominating set of G_R with more than m_{a_i} vertices and let $Y = X \cap V(G_{i-1})$ (where $V(G_{i-1}) = \phi$ per definition if i = 1). If $|Y| > a_{i-1}$ then, by Corollary 5, X is not $(a_{i-1} + 1)$ -minimal. Hence we may assume that $|Y| = a_{i-1} - r$, where $0 \le r \le a_{i-1}$, so that

$$|X - Y| \ge m_{a_i} - a_{i-1} + r + 1$$

$$= \sum_{j=i}^{q} n_j + (k - a_q) + r + 1.$$
(1)

Assume first that $Y \neq \phi$ and suppose there is no r-subset W of X-Y such that $W \cup Y$ dominates G_{i-1} . Let $W' \subseteq X-Y$ with |W'|=r'>r, be a minimal subset of X-Y such that $W' \cup Y$ dominates G_{i-1} . (Note that in this case, $r < a_{i-1}$.) Then W' consists of vertices $s_{j\ell}$, where $j \geq i$ and $1 \leq \ell \leq a_{i-1}$. Let $Y \cap S_{i-1} = W''$ with $|W''| = r'', 0 \leq r'' \leq a_{i-1} - r$. By the minimality of W', at most one of $s_{j\ell}$ and $s_{j'\ell}$, $j \neq j'$ $(j,j' \geq i-1)$ is in $W' \cup W''$ and it follows that $r' + r'' \leq a_{i-1}$. We may now apply Lemma 5 with $t = a_{i-1} - r' - r''$. Note that

$$|X \cap (V(G_{i-1}) - S_{i-1})| = a_{i-1} - r - r'' > t,$$

so that X is not (t + 1)-minimal. But

$$t+1 = a_{i-1} - r' - r'' + 1$$

$$\leq a_{i-1} - r - r''$$

$$\leq a_{i-1},$$

hence X is not a_{i-1} -minimal. We may therefore assume that there exists an r-subset W of $(X - Y) \cap S$ such that $W \cup Y$ dominates G_{i-1} .

Next, if $Y=\phi$, let i' be the largest integer with the property that for each $\ell=1,\ldots,a_{i'}$, there exists an integer $\ell'\geq i'$ such that $s_{\ell'\ell}\in X$. Note that i-1 has this property and therefore $i-1\leq i'\leq q$. By Corollary $4,X\cap (V(G_{i'})-S_{i'})=\phi$ and if i'=i-1, then $X\cap V(G_{i-1})=\phi$. If i'=q then $X=S_q$. But then $|X|=a_q\leq k\leq m_{a_i}$ for all $i\in Q$, contrary to assumption. Consequently $i-1\leq i'< q$. Let T with $|T|=a_{i'}$ denote the set of vertices $s_{\ell'\ell}\in X$ as defined

above. Now, from (1),

$$|X| \ge \sum_{j=i}^{q} n_j + (k - a_q) + a_{i-1} + 1$$

$$\ge \sum_{j=i'+1}^{q} n_j + \sum_{j=i}^{i'} n_j + a_{i-1} + 1$$

$$\ge \sum_{j=i'+1}^{q} n_j + a_{i'} + 1 \text{ (by hypothesis and the definition of the } n_j\text{'s}).$$
(2)

We now define Z as

$$Z = \begin{cases} W \cup Y & \text{if } Y \neq \phi \\ T & \text{if } Y = \phi. \end{cases}$$

and, for j = i, ..., q, we let $X_j = (X - Z) \cap V(\widetilde{H}_j)$. Note that

$$|X| = \begin{cases} \sum_{j=i}^{q} |X_j| + a_{i-1} & \text{if } Y \neq \phi \\ \sum_{j=i+1}^{q} |X_j| + a_{i'} & \text{if } Y = \phi. \end{cases}$$
 (3)

Since |X| = |X - Y| + |Y|, it now follows from (1), (2) and (3) that there exists an integer $j \ge i$ if $Y \ne \phi$ ($j \ge i' + 1$ if $Y = \phi$) such that $|X_j| > n_j$.

Now suppose that for each integer ℓ with $1 \le \ell \le a_j$, a vertex of the form $s_{j'\ell}$ for some $j' \ge j$ is contained in X. If $Y = \phi$, this contradicts the choice of i' since $j \ge i' + 1$. If $Y \ne \phi$, then this implies that X - Y dominates G_R since $j \ge i$ and $Y \subseteq V(G_{i-1})$, contradicting the minimality of X. Hence there exists an integer ℓ with $1 \le \ell \le a_j$ such that $s_{j'\ell} \notin X$ for all $j' \ge j$. Since $V(H_{j\ell})$ is dominated, X_j contains at least $n_j - 1$ vertices of $M_j = \bigcup_{x=1}^{a_j} (V(H_{jx}) - \{v_{jx1}\})$ (i.e., at least one vertex of each of $n_j - 1$ copies of K_{a_j}). We consider two cases, depending on whether $v_{jx1} \in X_j$ for some $x = 1, \ldots, a_j$ or not.

Case 1: $v_{jx1} \in X_j$ for some $x = 1, ..., a_j$.

Then X_j contains a dominating set D of \widetilde{H}_j of the form D_1 as described in Lemma 4(ii). Since $|X_j| > n_j$, there exists a vertex $v \in X_j - D$.

Subcase 1(a): $v = s_{jb}$ for some $b = 1, ..., a_j, b \neq \ell$.

If $b > a_{q-1}$ (which is only possible if j = q), then X is not minimal since \widetilde{H}_q is dominated by D and s_{qa_q} is not adjacent to any vertex of G_{q-1} ; hence $b \leq a_{q-1}$. (4)

As before, let $U_v = \{u \in V(G_R) - X | N_{G_R}(u) \cap X = \{v\}\}$. Since D dominates \widetilde{H}_j , $U_v \cap V(\widetilde{H}_j) = \phi$, and since Z dominates G_{i-1} if $Y \neq \phi$ ($G_{i'}$ if $Y = \phi$), $U_v \cap V(G_{i-1}) = \phi$ if $Y \neq \phi$ ($U_v \cap V(G_{i'}) = \phi$ if $Y = \phi$). (5)

Now suppose $u=v_{\alpha\beta\gamma}\in U_v$ for some $\alpha=1,\ldots,q$; $\beta=1,\ldots,a_\alpha$ and $\gamma=1,\ldots,n_\alpha$. Then $\alpha< j$ and $\beta=b$ by the construction of G_R . But then $v_{\alpha\beta'\gamma}\notin X$ for all $\beta'=1,\ldots,a_\alpha$ so that for each $\beta'=1,\ldots,a_\alpha$ there exists an $\alpha'\geq\alpha$ such that $s_{\alpha'\beta'}\in X$. But since (by (5)) $\alpha>i-1$ if $Y\neq\phi$ ($\alpha>i'$ if $Y=\phi$), this contradicts the minimality of X if $Y\neq0$ (the choice of i' if $Y=\phi$) and hence U_v consists entirely of vertices of the form $s_{yb},y=1,\ldots,q,y\neq j$. Let g be the smallest integer larger than i-1 if $Y\neq\phi$ (i' if $Y=\phi$) for which s_{gb} is defined. If g=q, then by (4), i-1=q-1 if $Y\neq\phi$ (i'=q-1 if $Y=\phi$) and so by (5), $U_v=\phi$ in which case X is not minimal. Therefore $g\leq q-1$. By the minimality of X or the choice of i' there exists at least one integer $c=1,\ldots,a_g$, $b\neq c$, such that $s_{g'c}\notin X$ for all $g'\geq g$. Since $V(H_{gc})$ is dominated, X contains at least n_g-1 vertices of M_g , and if $X\cap S_g=\phi$ then X also contains v_{gf1} for some $f=1,\ldots,a_g$. By the choice of g and the hypothesis of the theorem, $2\leq a_g\in I-\{a_g\}$ and hence

$$m_{a_g} > m_{a_{g+1}} + a_{g-1}$$
,

i.e.,

$$n_q > a_q$$
.

Therefore, $|X \cap V(H_{gg'})| \ge 2$ for at least one g', or $|X \cap V(H_{gg'})| = 1$ for all g' and $s_{gf'} \in X$ for at least one f'. In the former case, if $v_{gg'x'} \in X \cap V(H_{gg'})$, then $(X - \{v, v_{gg'x'}\}) \cup \{v_{gbx'}\}$ dominates G_R , proving that X is not 2-minimal. In the latter case, $(X - \{v, v_{gf'x'}\}) \cup \{v_{gbx'}\}$ dominates G_R .

Subcase 1(b): $v = v_{jbc}$ for some $b = 1, ..., a_j$ and some $c = 1, ..., n_j$.

As in Subcase 1(a), $U_v \cap V(\widetilde{H}_j) = \phi$ and so by the construction of G_R , U_v consists of vertices s_{yb} , $y = j + 1, \ldots, q$. Again, if j = q then $U_v = \phi$, hence $j \leq q - 1$. By the choice of j and the hypothesis of the theorem, $n_j > a_j$ so that $|X \cap V(H_{jj'})| \geq 2$ for at least one j'. Say $v_{jj'x'} \in X \cap V(H_{jj'})$. Then $(X - \{v, v_{jj'x'}\}) \cup \{v_{jbx'}\}$ dominates G_R .

Case 2: $v_{jx1} \notin X_j$ for all $x = 1, ..., a_j$.

Then $s_{jx} \in X_j$ for at least one $x = 1, ..., a_j, x \neq \ell$, since $v_{j\ell 1}$ is dominated and $s_{j'\ell} \notin X$ for all $j' \geq j$. Let D consist of s_{jx} together with the $n_j - 1$ vertices of M_j as described above. (Note that D is a dominating set of \widetilde{H}_j of the form D_2 of Lemma 4(iii).) Since $|X_j| > n_j$ there exists a vertex $v \in X_j - D$.

Subcase 2(a): $v = s_{jb}$ for some $b = 1, ..., a_j, b \neq x, \ell$.

Note that D dominates $\widetilde{H}_j - S_j$ and that $\langle S_j \rangle = \overline{K}_{a_j}$, hence $U_v \cap V(\widetilde{H}_j) = \phi$. We now proceed exactly as in Subcase 1(a) to show that X is not 2-minimal.

Subcase 2(b): $v = v_{jbc}$ for some $b = 1, ..., a_j$ and some $c = 2, ..., n_j$. Here U_v consists of vertices s_{yb} , y = j, ..., q and as in Subcase 1(b), X is not 2-minimal. We therefore conclude that X is not d-minimal, where $d = \max\{2, a_{i-1} + 1\}$.

Corollary 7. Let $i \geq 2$ and suppose $m_{a_j} > m_{a_{j+1}} + a_{j-1}$ for all $2 \leq a_j \in I - \{a_q\}$. Then $\Gamma_i(G_R) \leq m_i$ for all i = 2, ..., k.

Proof: By definition, $\Gamma_{j+1}(G_R) \leq \Gamma_j(G_R)$ for all $j \geq 1$. By Theorem 2,

$$\Gamma_{a_{j-1}+1}(G_R) \leq m_{a_j} \text{ for } a_j \geq 2.$$

Hence

 $\Gamma_{a_j}(G_R) \leq \Gamma_{a_j-1}(G_R) \leq \cdots \leq \Gamma_{a_{j-1}+1}(G_R) \leq m_{a_j} = m_{a_j-1} = \cdots = m_{a_{j-1}+1}$ so that for each $i = a_{j-1} + 1, \ldots, a_j$ and each j such that $a_j \geq 2$,

$$\Gamma_i(G_R) \leq m_i$$
.

It follows that $\Gamma_i(G_R) \leq m_i$ for all i = 2, ..., k.

Observe that it now follows from Corollaries 3 and 7 that $\Gamma_i(G) = m_i$ for all i = 2, ..., k.

6. The Upper Domination Number of G_R

It is evident from Lemma 4(iv)-(v) that G_R has minimal dominating sets of larger cardinality than the set D_1^* defined in Theorem 1 and we therefore still need to determine $\Gamma_1(G)$. We begin by remarking that if $a_q = 1$, then q = 1 and $m_1 > m_2 = \cdots = m_k = k$, while $n_1 = m_1 - m_2 + 1$ by definition. In this case G_R consists of K_{1,n_1} together with k-1 isolated vertices and it is obvious that

$$\Gamma_1(G_R) = k - 1 + n_1$$

= $k - 1 + m_1 - m_2 + 1$
= m_1 .

In what follows we therefore assume that $a_q \ge 2$. We now find an expression for m_1 in terms of the n_j 's, $j = 1, \ldots, q$.

Proposition 3. If $a_q \ge 2$, then

$$m_1 = k - 2 + \sum_{j=1}^q n_j.$$

Proof: Note that

$$n_1 = \begin{cases} m_1 - m_2 - a_q + 3 & \text{if } a_1 = 1 \\ m_{a_1} - m_{a_1 + 1} + a_1 & \text{if } a \ge 2. \end{cases}$$

Now,

$$k-2+\sum_{j=1}^{q}n_{j}=k-2+n_{1}+(m_{a_{2}}-m_{a_{3}}+a_{2}-a_{1})+\dots$$

$$+(m_{a_{q}}-m_{a_{q}+1}+a_{q}-a_{q-1})$$

$$=k-2+n_{1}+m_{a_{2}}-a_{1}-m_{a_{q+1}}+a_{q} \quad \text{(since } m_{a_{i}+1}=m_{a_{i+1}})$$

$$=n_{1}+m_{a_{2}}-a_{1}+a_{q}-2 \quad \text{(since } m_{a_{q+1}}=k).$$

If $a_1 = 1$, then $m_2 = m_{a_2}$ so that by the definition of n_1 ,

$$k-2+\sum_{j=1}^q n_j=m_1.$$

If $a_1 \ge 2$, then $m_2 = m_{a_1}$ and $m_{a_1+1} = m_{a_2}$ so that it follows from the definition of n_1 and the fact that $m_1 = m_2 + a_q - 2$ in this case that,

$$k-2+\sum_{j=1}^{q}n_{j}=m_{1}.$$

We now find a minimal dominating set of G_R with m_1 vertices. (Recall that $L=V(\overline{K}_{k-a_q})$ $(L=\phi)$ if $k>a_q$ $(k=a_q)$.)

Proposition 4. The set

$$\widehat{D}_1 = L \cup (S_q - \{s_{q1}\}) \cup (\cup_{j=1}^q V(H_{j1})) - \{v_{q11}\}$$

is a minimal dominating set of G_R containing m_1 vertices.

Proof: It is clear that \widehat{D}_1 dominates G_R and that

$$|\widehat{D}_1| = k - a_q + a_q - 1 + \sum_{j=1}^q n_j - 1 = k - 2 + \sum_{j=1}^q n_j = m_1$$
 (by Proposition 3).

Also each vertex in \widehat{D}_1 is an isolated vertex of $\langle \widehat{D}_1 \rangle = \overline{K}_{m_1}$ which means that \widehat{D}_1 is a minimal dominating set of G_R .

Corollary 8.
$$\Gamma_1(G_R) \geq m_1$$
.

Theorem 3. If X is a minimal dominating set of G_R , then $|X| \leq m_1$.

Proof: Suppose, to the contrary, that X with $|X| > m_1$ is a minimal dominating set of G_R . If there exists an integer i satisfying the conditions of Corollary 4, let

i' be the largest such integer; otherwise, let i'=0. If $i'\geq 1$ then, by Corollary $4, X\cap (V(G_{i'})-S_{i'})=\phi$. Let $X_j=X\cap V(\widetilde{H}_j)$ and $X_j^*=X_j-S_j$ for each $j\in Q$. Note that $|X_j^*|\geq n_j-1$ for each j>i' and by Corollary $4,|X_j^*|=0$ for each $j\leq i'$. Let $R_j\subseteq X_j^*$ be any set of n_j-1 vertices of M_j (as defined in Theorem 2) such that R_j consists of exactly one vertex of each of n_j-1 copies of $K_{a_i}, j>i'$, and let $R_j=\phi$ for $j\leq i'$.

If we let $r = |X - \bigcup_{j=1}^{q} R_j|$, then

$$r = \sum_{j=1}^{q} (|X_{j}| - |R_{j}|)$$

$$= \sum_{j=1}^{q} |X_{j}| - \sum_{j=1}^{q} |R_{j}|$$

$$\geq |X| - \sum_{j=1}^{q} (n_{j} - 1)$$

$$\geq m_{1} + 1 + q - \sum_{j=1}^{q} n_{j}$$

$$= k - 2 + 1 + q \quad \text{(by Proposition 3)}$$

$$\geq a_{q} + q - 1.$$
(6)

We now proceed to count the numberr of vertices in $X - \bigcup_{j=1}^q R_j$ in a different way and show that this number does not exceed $a_q + q - 2$, hence finding a contradiction to (6).

For each j such that $[\bigcup_{\ell=1}^{a_j} \{v_{j\ell 1}\}] \cap (X_j^* - R_j) \neq \emptyset$, choose a vertex $v \in [\bigcup_{\ell=1}^{a_j} \{v_{j\ell 1}\}] \cap (X_j^* - R_j)$ and let $F_j = R_j \cup \{v\}$. Then $F_j \subseteq X$ and by the definitions of R_j and F_j , F_j is a dominating set of \widetilde{H}_j of the form D_1 of Lemma 4(ii). If $s_{j\ell'} \in X$ for some $\ell' = 1, \ldots, a_j$, then since $X \cap [\bigcup_{\ell=1}^{a_j} \{v_{j\ell 1}\}] \neq \emptyset$, the contrapositive of Lemma 6 (ii) implies that $s_{j'\ell'} \notin X$ for all $j' \neq j$. Let there be exactly t_1 distinct integers j for which F_j is defined, with j the set of these integers j. Let j denote the number of distinct integers j such that j for some $j \in J$. Note that $0 \leq t_1 \leq q$ and $0 \leq t_2 \leq a_q$.

Next, suppose $v = v_{j\ell x} \in X_j^* - R_j$ for some $\ell = 1, ..., a_j$ and some $x = 2, ..., n_j$, or $v = v_{j\ell x} \in X_j^* - F_j$ if x = 1 and F_j is defined. Since $v_{j\ell x} \in X$ $(x = 1, ..., n_j)$ for some $\ell' \neq \ell$, it is clear that v is a non-isolate of $\langle X \rangle$ and that U_v consists of vertices of the form $s_{j'\ell}$, j' = j, ..., q. Consequently, for ℓ fixed,

$$X \cap \{s_{i\ell} | a_i \ge \ell\} = \phi \text{ and } X \cap V(H_{i\ell}) = \{v\}. \tag{7}$$

Furthermore, if $v' = v_{\eta \ell y}$, $\eta \neq j$ has the same property as v, suppose without losing generality that $j < \eta$ and let $s_{\eta' \ell} \in U_{v'}$. But then $j < \eta'$ and v is adjacent

to $s_{\eta'\ell}$ (by the construction of G_R), contradicting the fact that $s_{\eta'\ell} \in U_{\upsilon'}$. Hence if there are t_3 such vertices υ , then $t_3 \leq a_q$. It is also important to note that if $\upsilon_{j\ell x}$ is such a vertex, then for some $\ell' \neq \ell$, $\upsilon_{j\ell' x} \in R_j$ or $\upsilon_{j\ell' x} \in F_j$ if F_j is defined. By letting $R'_j = (R_j - \{\upsilon_{j\ell' x}\}) \cup \{\upsilon_{j\ell x}\}$ if $x \neq 1$ ($F'_j = (F_j - \{\upsilon_{j\ell' x}\}) \cup \{\upsilon_{j\ell x}\}$ if $x \neq 1$) and interchanging the roles of $\upsilon_{j\ell x}$ and $\upsilon_{j\ell' x}$, we see that for ℓ fixed,

$$X \cap \{s_{i\ell'}|a_i \ge \ell'\} = \phi, \quad X \cap V(H_{j\ell'}) = \{v_{j\ell'x}\}$$
(8)

and no $v_{\eta \ell' y}$ has the same property as $v_{j \ell' x}$. Hence for $\ell \neq \ell'$, at most one of $v_{j \ell x}$ and $v_{j \ell' x}$ has the required property.

Suppose further that X contains t_4 vertices $s_{j\ell}$ where $j \notin J$ and $s_{j'\ell} \notin X$ for all $j' \neq j$, and t_5 vertices $s_{j\ell}$ where $j \notin J$ and $s_{j'\ell} \in X$ for some $j' \notin J \cup \{j\}$. Suppose in the latter case that there are t_6 distinct values of ℓ such that $s_{j\ell} \in X$.

Note that $r = |X - \bigcup_{j=1}^{q} R_j| = \sum_{i=1}^{5} t_i$. It is also immediately obvious that

$$0 \le t_1 + t_4 + t_5 \le q \tag{9}$$

and we claim that

$$0 \le t_2 + t_3 + t_4 + t_6 \le \begin{cases} a_q - 1 & \text{if } t_3 > 0 \\ a_q & \text{otherwise.} \end{cases}$$
 (10)

Firstly, it is obvious that $t_2 + t_4 + t_6 \le a_q$; hence (10) holds if $t_3 = 0$. If $t_3 > 0$, it follows from the first parts of (7) and (8) that $t_2 + t_3 + t_4 + t_6 \le a_q - 1$ and so (10) also holds in this case.

We now prove that $\sum_{i=1}^{5} t_i \leq a_q + q - 2$. If $t_1 = q$, then $\bigcup_{j=1}^{q} F_j \subseteq X$ dominates G_q and hence $t_2 = \cdots = t_6 = 0$ by the minimality of X. Thus $\sum_{i=1}^{5} t_i = q \leq a_q + q - 2$ if $a_q \geq 2$. Suppose $t_1 = q - 1$. Since $t_5 \geq 2$ if $t_5 \neq 0$, it follows from (9) that $t_5 = 0$ (and hence $t_6 = 0$). But if $t_1 = q - 1$, then $t_2 + t_3 + t_4 + t_6 \leq a_q - 1$ even if $t_3 = 0$, for suppose $t_3 = 0$ and $t_2 + t_4 + t_6 = a_q$. By Corollary $t_1 = q - 1$. But $t_2 = q - 1$ is defined for each $t_3 = 1$. Since $t_4 = q - 1$. But $t_4 = q - 1$ is defined for each $t_4 = q - 1$. But $t_4 = q - 1$ is defined for each $t_4 = q - 1$. Since $t_5 = q - 1$ is that $t_7 = q - 1$ dominates $t_7 = q - 1$ is the minimality of $t_7 = q - 1$. It now follows that $t_7 = q - 1$ is $t_7 = q - 1$.

Finally, suppose $t_1 \le q-2$. If $t_5=0$ then by (10), $r \le a_q+q-2$. If $t_5 \ne 0$ (and thus $t_6 \ne 0$) and $t_3 \ne 0$, then (9) and (10) imply that

$$\sum_{i=1}^{5} t_i \leq q + t_2 + t_3 \leq q + a_q - 1 - t_4 - t_6 \leq a_q + q - 2.$$

Thus, suppose $t_3=0$ and t_5 , $t_6\neq 0$. If $t_1+t_5\leq q-1$, then $r\leq a_q+q-2$ follows from (9) and (10). If $t_1+t_5=q$ then $t_4=0$. We prove that $t_2+t_6\leq a_q-1$.

If, to the contrary, $t_2+t_6=a_q$, then for each integer $\ell=1,\ldots,a_q$ there exists an integer j such that $s_{j\ell}\in X$. In particular, $s_{qa_q}\in X$. If F_q is defined, then $N[s_{qa_q}]\subseteq N[F_q]$, contradicting the minimality of X. If F_q is not defined, then $q\notin J$, and since $t_1+t_5=q$ and $t_4=0$, this implies that $s_{ja_q}\in X$ for $j\neq q$ which is impossible by the construction of G_R . Hence $t_2+t_6\leq a_q-1$, implying that $t_2\leq a_q-2$ because $t_6>0$. Once again

$$r = t_1 + t_2 + t_5 \le a_q + q - 2$$
.

We have now shown for all possible values of t_1 that $r \le a_q + q - 2$, contradicting (6). We thus conclude that $|X| \le m_1$, whereby the theorem is proved.

Corollary 9.
$$\Gamma_1(G_R) = m_1$$
.

We summarise the preceding results as follows:

Theorem 4. Consider the sequence $R: m_1 \ge \cdots \ge m_k \ge m_{k+1} = k$. Let $K = \{1, \ldots, k\}$ and $I' = \{i \in K - \{1\} | m_i > m_{i+1}\}$. If $I' = \phi$ define I as

$$I = \begin{cases} \phi & \text{if } m_1 = m_2 \\ \{1\} & \text{otherwise.} \end{cases}$$

If $I' \neq \phi$, let $a' = \max_{i \in I'} \{i\}$; in this case we require that $m_1 \geq m_2 + a' - 2$. Define I as

$$I = \begin{cases} I' & if m_1 = m_2 + a' - 2 \\ I' \cup \{1\} & otherwise; \end{cases}$$

say $I = \{a_1, \ldots, a_q\}$ where |I| = q and $a_1 \leq \cdots \leq a_q = a'$. If $m_{a_j} > m_{a_{j+1}} + a_{j-1}$ for all $2 \leq a_j \in I - \{a_q\}$, then R is a domination sequence; in fact, if G_R is constructed as described above then $\Gamma_i(G_R) = m_i$ for all $i = 1, \ldots, k$ and $\gamma(G_R) = k$.

Corollary 10. Any sequence R of the form $m_1 \ge m_2 \ge m_3 = \cdots = k$ is a domination sequence.

Proof: The result follows immediately since R trivially satisfies the conditions of Theorem 5.

7. Concluding Remarks

That the result obtained in Theorem 4 is not the best possible can be seen by considering the sequence R given by

$$m_1 = 6$$
, $m_2 = m_3 = m_4 = 5$, $m_5 = k = 4$.

Here $I' = \{4\}$ and hence $a_q = 4$, and $m_1 = 6 < m_2 + a_q - 2 = 7$. Therefore R does not satisfy the conditions of Theorem 4. Nevertheless, R is the domination sequence of the path P_{12} (see [1] for the calculation of $\Gamma_i(P_n)$).

Acknowledgement

Research support from the Canadian National Sciences and Engineering Research Council is gratefully acknowledged. This paper was written while Dr. Cockayne enjoyed a visiting position at UNISA in 1987.

References

- 1. B. Bollobás, E. J. Cockayne and C. M. Mynhardt, *On generalised minimal domination parameters for paths*, Annals of Discrete Math (to appear).
- 2. E. J. Cockayne and C. M. Mynhardt, On the product of k-minimal domination numbers of a graph and its complement, J. Combin. Math. Combin. Comput. (to appear).
- 3. C. M. Mynhardt and E. J. Cockayne, k-Minimal domination numbers of cycles, Ars Combinatoria 23 (A) (1987), 195–206.
- 4. O. Ore, "Theory of Graphs", American Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962.