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Abstract. A dominating set X of a graph G is a k-minimal dominating set of G iff the
removal of any £ < k vertices from X followed by the addition of any £—1 vertices of G
results in a set which does not dominate G. The k-minimal domination number I'y(G)
of G is the largest number of vertices in a k-minimal dominating set of G. The sequence
R:my >mg >--->m > - > nofpositive integers is a domination sequence iff
there exists a graph G such that 'y (G) = m1,I2(G) = ma,...,.Ik(G) = my, ...,
and 4(G) = n, where 4(G) denotes the domination number of G. We give sufficient
conditions for R to be a domination sequence. -

1. Introduction

A set X of vertices of a graph G = (V, E) is a dominating set of G iff each
vertex in V — X is adjacent to at least one vertex in X . The domination number
~(G) (upper domination number I (G)) of G is the smallest (largest) number of
vertices in a minimal dominating set of G.

The concepts of minimality and maximality in general were extended in 1.
The application of this generalisation of minimality to domination parameters in
particular results in the following definitions: A dominating set X C Visak-
minimal dominating set of G iff for all £ € {1,..., k} for all Z-subsets Q of X
and all (£ — 1) subsets R of V, (X — Q) U R is not a dominating set of G.
The k-minimal domination number Tx(G) of G is the largest cardinality of a k-
minimal dominating set of G. The k-minimal domination numbers of all paths and
cycles are determined in [1] and [3] respectively, while the product of k-minimal
domination numbers of a graph and its complement is discussed in [2].

It is clear that for any graph G, ' 4

L(®)=Ti(G) 2T2(G) 2+ 2T&) > --- 21(G).
The sequence
A:TI(G) 2T2(G) 2 - 2T(G) 2 -+ 21(G)
is called the domination sequence of G. Further, the sequence

R:mlzmzz...kaz...Zn
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of positive integers is a domination sequence iff there exists a graph G such that
I'(G) = ml,rz(c;) =my,....,Ix(G) = mg,...,79(Q) = n

In this paper we begin the study of domination sequences of graphs. We first
deduce a simple necessary condition for a sequence R to be a domination sequence
and then find a sufficient condition for R to be such a sequence by explicitly con-
structing a graph having a given R as domination sequence. This supplies a partial
solution to the problem of characterising domination sequences, which seems to
be a very difficult problem in general.

2. Preliminary Results

We begin by stating a classical result of Ore [4, p. 206] which provides us with
a useful method of determining when a dominating set is a minimal dominating
set. Let Ng(U) (Ng[U1) denote the neighbourhood (closed neighbourhood) in a
graph G of asubset U of V(G). If U = {u}, we also write Ng(u) for Ng({u})
and Ng[u] for Ng[{u}].

Proposition 1. A dominating set X of a graph G = (V, E) is a minimal domi-
nating set of G iff for each = € X one of the following two conditions hold:

(i) =z is an isolated vertex of (X);

(ii) there exists a vertex y € V — X such that Ng(y) N X = {z}.

Although I'y(G) is defined for all positive integers k it is clear from the finite-
ness of G that the sequence A above can contain only finitely many distinct inte-
gers. In our next result we show that the maximum number of distinct integers in
A depends on the value of 7(G).

Proposition 2. If R : m; > ma > --- > my > --- > nis a domination
sequernce, then m; = nforall i > n+ 1.

Proof: Let G be a graph having R as its domination sequence and let X be a
dominating set of G with | X| = n. IfY is a dominating set of G with [Y| > n+ 1
and Y’ is any (n+ 1)-subset of Y, then (Y — Y') U X dominates G, showing
that Y’ is not (n+ 1)-minimal and consequently not i-minimal for i > n+ 1. It
follows that I';(G) < nforalli > n+ 1 and since v(G) = n, T(G) = nforall

i>n+ 1. |
We now devote the rest of this paper to the following question: For which pos-
itive integers k and my,...,mg, Mge1 Withmy > ..., > mg > mre1 = k does

there exist a graph G such that
YG) =kand T5(G) =m;, i=1,...,k?

We shall also need the following definition: An £-subset Q of a dominating set
X of a graph G is said to be stable (unstable) iff there does not exist (there exists)
an (£— 1)-subset R of V — X such that (X — Q) U R is dominating. Notice that a
dominating set is k-minimal iff for each 1 < £ < k, all Z-subsets of X are stable.
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3. Main Construction
Consider the sequence R : m; > --- > mg > mgs1 = k as above. Let

K={1,....k}and I'= {i € K — {1} : m; > my,, }. If I' = ¢ define I as

= { ¢ ifm) = my
~ | {1} otherwise.

If I' # ¢, leta’ = max;ep{i}; we assume m; > ma + o' — 2 since this is required
by the sufficiency condition, and define I as

{I’ ifmy=my+a -2
~ | I'u{1} otherwise.

Suppose that |I| = gand I = {ay,...,a4} Witha; < --- < a, = o’ and define
Q=1{1,...,q}. Foreachi € Q forwhicha; > 2,letn; = mg;—mq+1+8i—ai_1,
where a, is defined to be 0. If a; = 1 letn.= m; — mp — ag + 3 ifa; > 2, and
m=m; —my+1Iif ag = 1. Note that mg+1 = Maj+2 =+ = Mgy, (where
Ma,,, denotes m,1 = k), and thatn; > 2 forall o; € I.

For each i € Q define H; = K,, and construct H; as follows: Take a; copies
H;1,...,Hi, of H; with V(H;;) = {viia|X = 1,...,m} and join the vertices
of each H;; to the vertices of each Hy, j # £, j,€ = 1,...,a;, by the 1-factor
{vijrvier]r = 1,...,m}. Note that in this way »; disjoint copies of K, are formed.

Add aset S; = {s;1,..., Sis,;} Of a; independent vertices and join each s;; to all
vertices of H;; as well as to each vertex vie1, £ # j3 2,7 = 1,..., a;. The resulting
graph is H;.

Now form Gy by joining the graphs H; recursively as follows: Let Gy = H
and let G| be the graph obtained by joining H; to G;_; with the edges s;, sj» where
J <iandr < aj, and all edges from s;, to H;, where j < iand r < a;. Then

G, ifa, =k
Gr=14 GgUK,, ifa;<k
-K_k ifI = ¢

The construction of Gy is illustrated in Figure 1.

4. Lower Bounds for I';(Gg)

Our purpose is to impose suitable conditions on R so that it will be the domina-
tion sequence of Gz. In this section we formulate and prove various lemmas
concerning dominating sets of Gy and its subgraphs and finally establish that
Ii(GR) > m; foralli > 2. It is significant that no restrictions on the m;’s
are necessary to obtain this result.
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Figure 1: Illustration of construction with m; = 11, mp = 9,
m3=6,mg=ms=mg=k=35

Lemma 1. Foranyi € Qandanyj = 1,...,a;, V(H;;) is an a;-minimal, but,
if m; > a;, not an (a; + 1) -minimal dominating set of ﬁ;.
Proof: It is clear that D = V( H;;) dominates V(Hi),€ = 1,...,a; as well as
S;. Moreover, if | D| > a; then, since |S;| = a; and S; dominates fI;, no (a; + 1)-
subset of D is stable. We now show that D is a;-minimal.

For r < aj, let X be any r-subset of D and suppose, contrary to the required
result, that there exists an (r — 1)-subset Y U'Y" of V/( ;) such that

YCS§S,
Y' C U, V(Hy),
Y UY'U(D - X) dominates H;.

IfY = ¢, in order to dominate U, V( H;z) we must have |Y’| > r, a contra-
diction. If Y # ¢ then at least r — 1 vertices of at least one H;; are undominated
by Y U(D — X). Therefore |[Y'| > r— 1 and |[Y UY"| > r, a contradiction. |

It is important to realise that a dominating set X C U;;IV(H.-,-) of I?,' is not
necessarily contained in V ( Hj;) for some j. Some properties of such dominating
sets are given in Lemma 2 while further properties are discussed in Lemma 4(ii).
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Lemma2. Foranyi € Q and any dominating set X of H; with X C UL V(Hy)),
the following conditions hold:
@ |X]| > mn;
(ii) X is a;-minimal if and only if |X| = n;;
(iii) if |X| > m; then X is not a minimal dominating set.

Proof: Clearly, (i) and (iii) follow directly from the construction of H 5; the suffi-
ciency of (ii) can be proved similarly to Lemma 1 while (iii) implies the necessity
of (ii). 1

In order to find lower bounds for the upper domination numbers of G, we first
prove that I'p,(G;) > mq; — Mgy, + 4.

Lemma 3. Foranyi € {2,...,q}andany j = 1,...,a;_1, let D = V(Hjj)
and D; = DUS;_1. Further, let D, = V(H1j) forany j=1,...,01. Then each
D; is an o;-minimal but not (a; + 1) -minimal dominating set of G containing,
if a; > 2, precisely m,, — my,,, + a; Vertices.

Proof: Itis easy to see that | D;| = mg,—ma,,, +a; if a; > 2. Also, referring to the
construction of G g, it is clear that S;_; dominates G;_; and hence D; dominates
G;. Since S; dominates G; and |D;| > a; + 1, the removal of any a; + 1 vertices
from D; followed by the addition of S; yields a dominating set D' of G; with
|D'| = |Di| — 1, showing that D; is not (a; + 1)-minimal. We now show by
induction over 1 that D; is an a;-minimal dominating set of Gj.

Ifi = 1, then S;_; = ¢ and D; is a;-minimal by Lemma 1. For i > 2 suppose
that D;_; is an a;_; -minimal dominating set of G;_, for any set D;_; satisfying
the hypothesis of the lemma and consider any dominating set of G of the form
D; = DUS;_;. Forp < q; let X be any p-subset of D; and suppose | X ND| = r,
|X N S;_1| = t. The following vertices are not dominated by Z = D; — X:

(i) r vertices of H;; for each j = 1,..., a;, and possibly vertices of S;;
(i) allvertices of t copies of H;_; ift = a;_;, or the vertices other than v(;_1) ;1
of t copies of H;_ ift < aj_1;

(iii) the vertices in at least a;_g — a;—1 +t copies of H;_g, £ > 2, (since a;—1 —1

vertices of S;_; remain in D; and they dominate at most a;_; — t copies
of H;_g);

(iv) t vertices of S;_; and at least a;_g — a;_ + t vertices of S;_p,£ > 2.

LetY C V(Gi) be such that Z U'Y dominates the vertices in (ii)-(iv) above
and such that Y is minimal w.r.t. this property. Then Y N (U, V(Hyj)) = ¢,
Y N {Si(ai1+1), -+, Sie;} = ¢ and foreach j = 1,...,a;_;, at most one of s;; and
s(i-1); is contained in Y. We now consider two cases.

CaseI: [Y N(S;USi—1)|=c>t.
Then [Y N S;] = b, |Y N Si_1| = by with b+ b = c. In order to dominate the
vertices in (i) above with as few vertices as possible, a set Y’ has to be added
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to Z UY, where Y’ contains d vertices of S;, d € {0,...,a; — b} and 0, at
least r — 1, or r vertices in U;?;l V(H;j) depending on whether b+ d = a;, 1 <
b+d < a;0orb+ d = 0 respectively. Clearly,ifb+d =0orb+d = qa,
then [Y UY'| = [Y|+|Y'| >t+r=p If1 < b+d< a;andd # 0, then
[YUY'| >t+d+r—1>t+r. Further,ifd=0 and 1 < b < a;, then, since
r<ae;—tand D = V(H;) forsome j = 1,...,a;_;, at least one vertex s;; with
L€ {a;-1+1,...,a;} oravertex of U}, V(Hj;) is not dominated by ZUY UY"
if|[Y'N (U}, V(H;;))| = r— 1. Hence in this case Y/ needs to contain r vertices
in U;';IV(H;,-) sothat [Y UY'| > t+ r = p. It follows that X is stable, thus
settling this case.

Case2: [YN(S;US;i_1)|=c<t.

Then Y contains at least n;_; — 1 vertices of U;';l‘ V(H(i-1y;). Let Y’ be the set
obtained by substituting each vertex s;; of ¥ with s¢;_1);; note that |Y’| = |V].
Furthermore, let Y” be the set obtained by substituting n;_; — 1 vertices of Y’ N
(U5 V(H(-1);) with ;_; — 1 corresponding vertices of H;_1y;. Again |[Y"| =
[Y'| = |Y']. Notethat (ZNS;_;)UY" = B isadominating setof G;_,. Let D;_; =
V(H(i-11) US;i_2, where S, = ¢. By the induction hypothesis, D;_; is an a;_; -
minimal dominating set of G;_;. But then |B| > |D;_, |, for if | B| < | D;_,|, then
B contains at most a;_» vertices not in D;_; and can be obtained by removing
a;—2 + 1 < a;_ vertices from D;_; and adding a;_5 vertices, contradicting the
a;—1 -minimality of D;_;. But

|B| = a;_1 —t+|Y"]

and
|Di-1] = mary — mary+1 + a1
It follows that "
IY I 2 Moy — Mg,_y41 +1
>t+1.
Hence |Y'| > t+1 and as in Case 1,if Y'* is a set such that ZUY UY* dominates

Gi,thenY UY™| > t + r = pso that X is stable. This completes the proof of the
lemma, | |

If we take t = p < a;_; in the proof of the above lemma and define Dgy1 tobe
Sy, we get the following result:

Corollary 1. Forany i € Q, the set S; is an a;-minimal dominating set of G;.
|

Corollary 2. 7(Gpg) = k.

Proof: By Corollary 1, S, is an a,-minimal dominating set of G, and it contains
a, vertices. Hence 4(Gy) = a,. Clearly then, S, together with the k — a, isolated
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vertices of Gy is a k-minimal dominating set of G g containing k vertices so that
no set with fewer than k vertices can dominate Gg. [ ]

We are now ready to establish lower bounds for the upper domination numbers
of Gg. Let L = V(K—,) ifk > agand L = ¢ if k = a,.

Theorem 1. Forany i € Q, the set
D} =V(Hg) UV(Hgn) U---UV(Ha) USimi UL

is an a;-minimal but not (a; + 1) -minimal dominating set of Gg containing, if
a; > 2, precisely k + 3 3_(mq; — ma;+1) vertices.

Proof: Itis easy to see that D} dominates Gg, and simple arithmetic shows that
|Df| = k+ X} i(mg — mgp1) ifa; 2> 2. In Lemma 3 it is shown that D;
is not an (a; + 1)-minimal dominating set of G; and it follows that D} is not an
(a;+ 1)-minimal dominating set of G 5. Furthermore, by extending the techniques
employed in the proof of Lemma 3, it can be shown that D} is a;-minimal. 1

Corollary 3. Foreach i >2,Ty(Gg) > m;.

Proof: Leti > 2. Foreachi=g,+1,...,k, 8 UL is an i-minimal dominating
set of G with k = mq 41 = - - - = my vertices and therefore I;(Ggr) > m;.
Foreachj=1,...,gandeachi =a;_1 +1,...,0a;, Dj is an +-minimal domi-

nating set of Gz with

q
ID}| = k+ Y (Mo, — Maes1)
£=j

= k+ Mg, — Mge1 + -+ Mg, — Ma 41
=k+ Mg — Mgy, + -+ Mg, —k

= My,

Hence I';(GRg) > mi = m,, foreachi=aj_1 +1,...,q; andeachj=1,...,q.
| |

5. Upper Bounds for I';(Gg)

In this section we show that subject to certain conditions, I';(Gg) < m; for
each i = 2,..., k. We begin by considering, for each i € Q, all possible types of
minimal dominating sets of H; as listed below; although tedious it is not hard to see
that these cases exhaust all possibilities. An example of each type of dominating
set is given in Figure 2. Note that here D;, ..., D4 denote different sets than in .
Section 4.
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Lemma 4. For each i € Q the minimal dominating set of H; can be divided
into the following types:

®» S

(i) Dy C U, V(Hy;) with | Dy| = m; — note that in this case D, consists of

. exactly one vertex of each of n; copies of K,, and is a;-minimal (Lemma
2(ii)) but not necessarily (a; + 1) -minimal (as in Lemma 1);
(iii) D, consisting of w; — 1 vertices of M; = U,-=1(V( Hi;) — {vij1}) such
that Dy contains exactly one vertex of each of w; — 1 copies of K,, and
Dy, NV (Hy;) # ¢ foratleast a; — 1 j s, together with one vertex from S;
(representing the copy, if necessary, of H; not already represented) — in
this case D, is (a; — 1)-minimal but not necessarily a;-minimal (similar
to the proof of lemma 1);
(iv) Dj; satisfying the same conditions as D, above except that D3 NV (H;) /
: = ¢ forexactlya;—tj's,t =2,...,a;—1, and that D3 containst vertices
from S; corresponding to copies of H; not yet represented — note that
|D3| = m — 1+t and Ds is not 2-minimal.

(v) D4 = S{UM/}U M/ (disjoint union), where S} is a t-subset of S; for some
t € {1,...,a; — 1} and M] is an (a; — t) -subset of M; chosen from £
different copies of K,,, £ < a; — t, and such that exactly one element of
M is in each copy of H; which corresponds to a vertex of S; — S;.

Finally, M} is an (n; — 1 — £) -subset of M; containing one vertex from
each of the remaining (n; — 1 — £) copies of K,,. Further, each vertex of
M;' must be from a copy H;; of H; such that

(@) sij € S; — S; and the vertex already elected in Hi; N M] is the only
vertex of M; in its copy of K, or
() t =1 and Hy; is the unique copy of H; corresponding (o the vertex of

Si.
Here |Ds|=a;+m—1—£2< a;+m —2,and Dy is not 2-minimal if
t220r1'1"|D4nM;|>n,-~1. | |

Note that the choices of M and M/’ are interdependent, i.e. depending upon the
choice of M] it may be impossible to choose a set M}’ satisfying the conditions of
Ds.

The following two lemmas and their corollaries contain information on the
structure of dominating and especially minimal dominating sets of G g.

Lemma 5. Let X be a minimal dominating set of Gg. Let W = {1,...,a;}
andlet T C W, |T| = t. If there exists, foreach £ € W — T, an integer j > i
such that sjg € X, and | X N(V(G;) — Sy)| > t, then X is not (t + 1) -minimal.

Proof: Suppose X satisfies the conditions aboveand letY C X N(V(G;) — S;)
with |Y| > t. Let Y’ = {sy|€ € T} and consider Z = (X —Y) UY'. Then,
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(3 copies of K,;) P . (3 copies of KQ)

e

t=2 t=1
2=1

Figure 2: Minimal dominating sets (indicated by black vertices) of H;

for each £ € W there exists an integer j > i such that s;; € Z. We show that Z
dominates G g. '

Firstly, let v € V(G;) — Si. If v = sjig for some ;' < 4, then £ < a; and
there exists a j > 4 such that u = s;, € Z; note that u and v are adjacent. If
v = vjig for some j/ < iand some Zand 7, then £ < o; and u = 35 € Z for
some j > i dominates v. Hence each v € V(G;) — S; is dominated by Z. Now
letv € (V(GR) — V(G;)) U S; be adjacent to a vertex in Y. Then v = s for
some j' > i and some £ < a;. Butthen u = sj¢ € Z for some j > 1 and either
v = u or v is adjacent to u. Hence each v € V(Gp) is dominated by Z. But
|Z| < |X|— Y]+ |Y'] £ |X|—t— 1+t < |X|, proving that X is not (¢ + 1)
minimal. 1

The following result is a direct corollary of Lemma 5 using ¢ = 0, whereas
Corollary 5 follows from the proof of Lemma 5.

Corollary 4. Let X be a minimal dominating set of Gg. If, for some i € Q,
there exists for each £ = 1,...,a; an integer j > i such that s;; € X, then
XN(V(G) - 8) =¢. |

Corollary 5. If X is a dominating set of G which contains more than a; ver-
tices of G; for some i € Q, then X is not (a; + 1) -minimal.

Proof: LetY C X NV(G;) with|[Y| =e;+ 1 andletZ = (X —Y) US;i. As
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in the proof of Lemma 5, Z dominates G and since |Z| = |X| — 1, X is not
(a; + 1)-minimal. 1
Let S = U, S;. In Lemma 6 we show that a minimal dominating set X of G
can contain only certain subsets of S. Using this we obtain the upper bounds for
|X N S| in Corollary 6. .
For each v € X, a dominating set of a graph G, define U, by U, = {u €
V(G) — X|Ng(u) N X = {v}}.

Lemma 6. Let X be a minimal dominating set of Gg.

() If v= sy € X and u = vy € U, for some r, then X N S; = {sig} and
sjr ¢ X forall j > i.

(ii) If sjg, 8% € X for j # j', then each vertex v € X with v = s;,1 € Q, is
anon-isolate of (X) such that U, C {vi1, ...,V } and U,—{vian } # ¢.

Proof:

() If u = vy is not dominated by X — {v} then, by the construction of Gg,
(X-{vhHnS;= ¢ands,~, ¢ X forallj > 1.

(ii) We prove the contrapositive of (ii). Let v = s;; € X. If v is an isolated
vertex of (X') then clearly s;p ¢ X forall j # i. If v is a non-isolate of (X
then (by assumption) there exists a vertex u € (U, — {vii1, ..., Vi1 }) U
{vin}. If u € S, then u = s, for some r # 1, implying that sje ¢ X for
eachj=1,...,q,7 #4. Ifu & S, then u = v,y for some r < 1. Clearly,
sje ¢ X foreachj =r,...,q,j # i. Since u is not dominated by X — {v},
v ¢ X foreachp = 1,...,a,. But each v, p # £, is dominated by
X — {v} and therefore for each such p there exists an integer p' > r such
that sy, € X. By Corollary 4, X N (V(G,) — S;) = ¢ so that sjz ¢ X for
eachj =1,...,r — 1 and the result follows. |

Corollary 6. If X is minimal dominating set of G i and there exists an integer £
such that sy, sjg € X fori # j, then | X NS| < ag+q—2 foraq > 2; otherwise
X NS| < a,.

Proof: If there is no integer £ such that sy, sjz € X for i # j, then obviously
|X NS] < a,. Suppose there are r > 1 such integers £. If sy, sj¢ € X fori # j,
then by Lemma 6(ii), viz1 € U, (Where v = sy, say) for some z. By Lemma 6(i),
X N S; = {s4}. It therefore follows that | X N S;| = 1 for at least r 4’s and hence
r < g. We now consider two cases.

Casel: | XNS;|=1forgi’s.

Then | X NS|=¢< ag+g—2ifa, > 2.

Case2: [ XNS;|=1forti’swherer<t<gq-—1.

In this case there is a non-empty set J = {i € Q||X N S;| # 1} such that |X N
(UiesSi| < ag—r.Hence [ XNS|<t+e,—r< g+a,—2. ]
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We are now ready to formulate conditions that will ensure that I';(Gr) < my
foralli=2,...,k.

Theorem 2. Let a; > 2 and Suppose mq; > Mg, + aj_1 forall 2 < aj €
I — {a,}. If X is a minimal domination set of G g containing more than m,,
vertices, then X is not d-minimal, where d = max{2,a;_; + 1}.

Proof: Let X beaminimal dominating set of G with more than m,, vertices and
letY = XNV(Gi1) (where V(Gi_1) = ¢ perdefinition if i = 1). If[Y'| > a1
then, by Corollary 5, X is not (a;—; + 1)-minimal. Hence we may assume that
[Y| = a;_y — r, where 0 < r < a;_1, 50 that

|X =Y|>mg —aic1+7+1

q
=En,-+(k—aq)+r+l.

j=i

M

Assume first that Y # ¢ and suppose there is no r-subset W of X — Y such
that W U'Y dominates G;_;. Let W/ C X — Y with [W'| = v > r,bea
minimal subset of X — Y such that W/ UY dominates G;_. (Note that in this
case, r < a;_1.) Then W’ consists of vertices s;g, where j > dand1 < £< a;-1.
LetY N Si_y = W with [W"| = ",0 < r" < a;_1 — r. By the minimality of
W', at mostone of s;pand sjig, j # j' (,7' > i—1)is in W' UW" and it follows
thatr' + ' < a;_1. We may now apply Lemma 5 with ¢ = a;_; — r' — r". Note
that

IX N (V(Giz1) — Si-)) | = aieg =7 — 1" > ¢,

so that X is not (¢t + 1)-minimal. But

t+l=g;—7r—1"+1
<agig—r—1"

S a1,

hence X is not a;_;-minimal. We may therefore assume that there exists an r-
subset W of (X — Y) N S such that W UY dominates G;_1.

Next, if Y = ¢, let #/ be the largest integer with the property that for each
2=1,...,ay,there exists an integer £’ > 1’ such that sg¢ € X. Note thati—1 has
this property and therefore i—1 < 1’ < ¢. By Corollary4, XN(V(Gy) —Sy) = ¢
andif7 = i— 1,then X N V(Gi_1) = ¢. If i/ = g then X = S,. But then
|X| = o £ k < m,, foralli € Q, contrary to assumption. Consequently
i—1 < 1 < q. Let T with |T| = ay denote the set of vertices sgy € X as defined

267



above. Now, from (1),

q
IXI 2> ) i+ (k—ag) +aig + 1

j=i

q 1
> ) m+ Y mitag+l @
=i

j=i'+1

q
> ) m+ay+ 1 (by hypothesis and the definition of the n;’s).

j=i'+1
We now define Z as

- WUY ifY #¢
'{T CifY = ¢,

and, for j = 4,...,¢, welet X; = (X — Z) N V(Hj). Note that

IX| ='{ YhilXl+aia Y #4
E;=i’4’l Ile + Qg ifY = ¢.

Since | X| = |X — Y|+ |Y|, it now follows from (1), (2) and (3) that there exists
aninteger j > 1ifY # ¢ (G > 1'+ 1ifY = ¢) such that | X;| > n;.

Now suppose that for each integer £ with 1 < £ < a;, a vertex of the form s;i,
for some j' > j is contained in X. If Y = ¢, this contradicts the choice of i’ since
j >+ 1. IfY # ¢, then this implies that X — Y dominates G g since j > ¢ and
Y C V(Gi-1), contradicting the minimality of X. Hence there exists an integer
£with 1 < £< aj such that sj,, ¢ X forall j' > j. Since V(Hjg) is dominated,
X contains at least n; — 1 vertices of M; = UL, (V(Hj;) — {vjz1}) (i.e., atleast
one vertex of each of n; — 1 copies of K, ). We consider two cases, depending
on whether vj;; € X forsome z = 1,...,a; or not.

Case 1: vj;; € Xjforsomez = 1,...,a;.

Then X;; contains a dominating set D of H; of the form D; as described in Lemma
4(ii). Since | X;| > n;, there exists a vertex v € X; — D.

Subcase 1(a): v = sj forsomeb=1,...,a;,b # £

If b > a4—1 (which is only possible if j = ¢), then X is not minimal since H q 18
dominated by D and s, is not adjacent to any vertex of Gy_1; hence b < a,_1.
@

As before, letU, = {u € V(GR) — X|Ngy(u) NX = {v}}. Since D dominates
ij, U, N V( fI,-) = ¢, and since Z dominates G;_; ifY # ¢ (Gy ifY = ¢),
UuNV(Gi1) = ¢ifY # ¢ U, NV(Gy) = ifY = ¢). ®

3
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Now suppose u = vagy € U, forsome a = 1,...,¢; 8 = 1,...,0q andq =
1,...,m,. Then a < j and B = b by the construction of Gg. But then vog, ¢ X
forall #/ = 1,...,aq so that for each 8/ = 1,..., a, there exists an o' > asuch
that syp € X. Butsince (by (5)) a > i—1ifY # ¢ (a > i if Y = ¢), this
contradicts the minimality of X if Y # O (the choice of ¢ if Y’ = ¢) and hence
U, consists entirely of vertices of the form sy, y = 1,...,¢,y # j. Let g be the
smallest integer larger thani — 1 if Y # ¢ (i’ if Y = ¢) for which s is defined.
Ifg =g, thenby@),i—1=¢—1ifY # ¢ =¢g—1ifY = ¢)andso
by (5), U, = ¢ in which case X is not minimal. Therefore g < ¢ — 1. By the
minimality of X or the choice of ¢’ there exists at least one integerc = 1,...,ag,
b # c, such that sy ¢ X forall g’ > g. Since V(Hy) is dominated, X contains
at least n, — 1 vertices of M, and if X NS, = ¢ then X also contains vg
for some f = 1,...,a,. By the choice of g and the hypothesis of the theorem,
2 < ag € I — {a,} and hence

Mg, > Mgy, + 8g_1,

ie.,

ng > ag.
Therefore, | X NV (Hgg)| > 2 for at least one g', or |X NV (Hgg)| = 1 for all
g' and s, € X for at least one f'. In the former case, if vy € X N V(Hyy),
then (X — {v, vygz }) U {vgs } dominates G g, proving that X is not 2-minimal.
In the latter case, (X — {v,vgp2}) U {vger } dominates Gp.
Subcase 1(b): v = vj; forsome b= 1,...,a;andsomec=1,...,n;.
Asin Subcase 1(a), U,NV ( H 7) = ¢ and so by the construction of G g, U, consists
of vertices sy, y = j+1,...,q. Again,if j = gthenU, = ¢,hence j < ¢—1. By
the choice of j and the hypothesis of the theorem, n; > a; sothat | XNV (Hj;)| >
2 for at least one j'. Say v;;» € X NV (Hjp). Then (X — {v,vjj}) U {vjsr'}
dominates G'g.
Case 2: vj;; ¢ X;forallz=1,...,aq;.
Then s;; € X, foratleastone z = 1,...,a;, z # £, since vjg is dominated and
sje ¢ X forall j' > j. Let D consist of s;, together with the n; — 1 vertices of
M; as described above. (Note that D is a dominating set of Hj of the form D; of
Lemma 4(iii).) Since | X ;| > n; there exists a vertex v € X; — D.
Subcase 2(a): v = s; forsomeb=1,...,a;,b # z,£.
Note that D dominates ﬁ,- — S; and that (S;) = fa,., hence U, NV ( f[,-) =¢. We
now proceed exactly as in Subcase 1(a) to show that X is not 2-minimal.

Subcase 2(b): v = vjc forsomeb=1,...,a; andsomec=2,...,n;
Here U, consists of vertices sy, y = J,...,q and as in Subcase 1(b), X is not
2-minimal.
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We therefore conclude that X is not d-minimal, where d = max{2,a;_1 + 1}.
|

Corollary 7. Let i > 2 and suppose Ma; > My, + aj-1 forall 2 < a; €
I—{a,}. ThenTy{(GR) < m; foralli=2,... k.

Proof: By definition, I';,; (Ggr) < I';(Gp) forall j > 1. By Theorem 2,

r‘a,._‘...l(GR) < My, for a; > 2.

Hence
Ioj(GR) <To;1(GR) < -+ < Ty 1+1(GR) < gy =g,y = -+ = mg,_ 1
so that for eachi = a;_; + 1,...,a; and each j such thata; > 2,
Li(Gr) < mi.
It follows that I;(GRr) < m;foralli=2,... k. 1

Observe that it now follows from Corollaries 3 and 7 that I';(G) = m; for all
1=2,...,k.
6. The Upper Domination Number of Gy
Itis evident from Lemma 4(iv)-(v) that G has minimal dominating sets of larger
cardinality than the set D} defined in Theorem 1 and we therefore still need to
determine I'; (G). We begin by remarking that if a,=1,theng=1and m; >
my = --- = my = k, while n; = m; — my + 1 by definition. In this case Gr
consists of K , together with k — 1 isolated vertices and it is obvious that
Fl(GR) =k—1+mn
=k—1+m1——m2+1
=m.
In what follows we therefore assume that a, > 2. We now find an expression
for m; in terms of the m;’s, j = 1,...,q.

Proposition 3. If a, > 2, then
9
m =k—2+ E ;.
j=1
Proof: Note that

my—my —ag+3 ifa; =1
n = .
Mg, — Mag+1 + a1 ifa>2.
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Now,

q
k=24 m = k—2+m + (my — Mgy + 02 —a1) + ...
j=1
+ (Mg, — Mag+1 + 8g — 0g-1)
=k—2+m + mg, —a1 — Mg, +ag (SiNCE Mys1 = Ma,,,)
=m +mg —a1 +0g—2 (since m,,, = k).

If a; = 1, then my = m,, so that by the definition of n;,

q
k—2+ Eni=m1.
j=1

Ifa; > 2,then my = m,, and mg, +1 = m,, so that it follows from the definition
of m and the fact that m; = my + a, — 2 in this case that,

q
k—2+ Z‘Iy= mi.
=1

|
We now find a minimal dominating set of G with m; vertices. (Recall that
L=V(Kka,) (L=¢)ifk>aq(k=ap).)

Proposition 4. The set
Dy = LU(S, — {sa}) U(UL,V(Hj1)) — {vau}

is a minimal dominating set of Gg containing m, vertices.

Proof: It is clear that 131 dominates G and that

q q
|Dy| = k_aq+aq_l+z'nj—l= k—2+2n,-=m1 (by Proposition 3).

j=1 . j=1

Also each vertex in D), is an isolated vertex of (D1) = K, which means that D,
is a minimal dominating set of Gg. |
Corollary 8. I (GR) > m;. |
Theorem 3. If X is a minimal dominating set of G, then | X| < m;.

Proof: Suppose, to the contrary, that X with |X| > m, is a minimal dominating
set of G'g. If there exists an integer 4 satisfying the conditions of Corollary 4, let
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i be the largest such integer; otherwise, let ¢/ = 0. If i/ > 1 then, by Corollary
4, X N (V(Gy) — S#) = ¢. Let X; = X NV(H;) and X} = X; — S; for each
J € Q. Note that |X}| > n; — 1 for each j > i’ and by Corollary 4, | X}| = 0
for each j < 4'. Let R; C X be any set of n; — 1 vertices of M; (as defined in
Theorem 2) such that R; consnsts of exactly one vertex of each of n; — 1 copies
of K,;,j > i,andlet R; = ¢ forj < 1.

If we let ¥ = |X — Ui, Ry|, then

q
r=3 (X - IR;])
5 ‘
=2 1% =) IR,
j=1 j=1
> |X| - E(n, -1) ©

]_

q
Smi+leg—Y m

j=1
=k—2+1+q (byProposition 3)

>a,+g—1.

We now proceed to count the numberr of vertices in X — Uj_, R; in a differ-
ent way and show that this number does not exceed o, + ¢ — 2, hence finding a
contradiction to (6).

For each j such that [Up’, {v;a}] N (X; — R;) # ¢, choose a vertex v €
[UZil{vja}] N (X; — R;) and let F; = R; U {v}. Then F; C X and by the
definitions of R; and F;, F; is a dominating set of Hj of the form D; of Lemma
4(ii). If s;p € X forsome£' = 1,...,a;, then smceX N [Ug l{u,a}] # ¢, the
contrapositive of Lemma 6 (ii) 1mphes that syp ¢ X for a]l J' # j. Let there
be exactly t; distinct integers j for which Fj is defined, with J the set of these
integers j. Let t denote the number of distinct integers £ such that sjz € X for
somej € J. Notethat0 <t; < gand0 <t < aq.

Next, suppose v = vjp, € X — R; for some £ = 1,...,a; and some z =
2,...,mj,0rv = vjp; € X7 — Fyif z =1 and F; is defined. Since vje; € X
(z =1,...,n;) for some £ # ¢, it is clear that v is a non-isolate of (X) and that
U, consists of vertices of the form s, j' = j, ..., q. Consequently, for £ fixed,

X N {sila; > 2} = ¢ and X NV (Hje) = {v}. @

Furthermore, if v = vy, n # j has the same property as v, suppose without
losing generality that j < 7 and let s,z € Uy. But then j < 7' and v is adjacent
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10 syy¢ (by the construction of & g), contradicting the fact that s,yg € Uy. Hence if
there are t5 such vertices v, thents < a,. Itis also important to note that if vjg; is
such a vertex, then for some £' # £, vjez € R; Of vjgs € F; if Fj is defined. By
letting R; = (Rj - {v,-g,}) U {vjh} if z # 1 (F]’ = (F] — {‘ngz}) U {‘sz,} if
z = 1) and interchanging the roles of vje; and vjg., we see that for £ fixed,

Xn {Swla,' > 2’} =¢, XNV(Hje)= {”jl’z} ®)

and no v,e, has the same property as vjg;. Hence for £ # 2', at most one of vjp;
and vjg, has the required property.

Suppose further that X contains t4 vertices s;z where j ¢ J and s ¢ X for
all j/ # j,and ts vertices sz where j ¢ J and s;;¢ € X for some 7'¢JuU{j}
Suppose in the latter case that there are t¢ distinct values of £ such that s;, € X.

Note that r = |X — UL R;| = 30, tie

It is also immediately obvious that

0Lti+ta+ts<g ®

and we claim that

ag—1 ift3 >0

10
aq otherwise. (10)

0Lty +ta+tstis S{

Firstly, it is obvious that t; + t4 + t¢ < ag; hence (10) holds if t3 = 0. If
t3 > 0, it follows from the first parts of (7) and (8) thatt; + t3 + ¢4 +t¢ < ag— 1
and so (10) also holds in this case.

We now prove that }:,L t; < ag+q—2. Ift; = g, then U}=1Fj cX
dominates G, and hence t = --- = t¢ = 0 by the minimality of X. Thus
Ef=lt,~ =g<a,+g—2ifa, > 2. Supposet; = g— 1. Since ts > 2 if
ts # 0, it follows from (9) that ts = O (and hence t¢ = 0). Butift; = g—1,then
ta+t3+ts+te < ag—1evenifts = 0, for suppose t3 = 0 andt; + 14+t = aq.
By Corollary 4, XN(V(G1) —S1) = ¢. Hence F; is defined foreach j = 2,...,9
(sincet; = g—1). Butsg,, € X ifta +t4+16 = a4 and N[sg,] C N[F,] so that
X — {34, } dominates G, contradicting the minimality of X. Since ts.= t¢ = 0,
itnow follows thatt; + &2 + t3 + 84 < g—1+a,—1,ie,r<ag+g—2.

Finally, suppose t; < ¢ — 2. Ifts = 0 thenby (10),r < ag+ ¢ —2.1Ifts #0
(and thus tg # 0) and t3 # O, then (9) and (10) imply that

5
Sti<qttatts Sgrog—1—ta—tg <agtg—2.

i=1

Thus, supposets = 0 andts,t¢ # 0. Ift;+ts < g—1,thenr < ag+q—2 follows
from (9) and (10). If t; + ts = g thent4 = 0. We prove that t; + i < g — 1.
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If, to the contrary, ¢ + t¢ = a,, then for each integer £ = 1,..., a, there exists
an integer j such that s;, € X. In particular, s,,, € X. If F is defined, then
Nlsg,] C N[F,], contradicting the minimality of X. If Fy is not defined, then
g ¢ J,andsincet; +ts = gand t4 = 0, this implies that s;,, € X for j # ¢
which is impossible by the construction of Gg. Hence t; + t¢ < a, — 1, implying
thatt; < aq — 2 because tg > 0. Once again

r=ti+la+its <ag+qg-—2.

We have now shown for all possible values of t; thatr < a, + ¢ — 2, contra-
dicting (6). We thus conclude that | X| < m,, whereby the theorem is proved.
|

Corollary 9. I'; (Gg) = m;. 1

We summarise the preceding results as follows:
Theorem 4. Consider the sequence R : mq > --- > my > mpe = k. Let
K={l,...,k}and I' = {i € K — {1}|m; > my1}. If I' = ¢ define I as

I= { ¢ if m1 = my
"L {1} otherwise.
If I' # ¢, let o' = max;ep{i}, in this case we require that my > my + o' — 2.
Define I as .
,_{I’ ifm=my+a -2
"l ru{1} otherwise;

say I = {a1,...,a,} where |I| = gand a; < --- < a5 = d. If Mg, >
My, +aj1 forall 2 < aj € I—{ay}, then R is a domination sequence; in fact,
if Gp is constructed as described above then T;(Gg) = m; forall i = 1,... k

and v(Gpg) = k. ]
Corollary 10. Any sequence R of the form my > my > m3 = --- =k isa
domination sequence.

Proof: The result follows immediately since R trivially satisfies the conditions of
Theorem 5. |

7. Concluding Remarks

That the result obtained in Theorem 4 is not the best possible can be seen by
considering the sequence R given by

m =6, my=m3z=ms=5, ms=k=4.

Here I' = {4} and hence a; = 4,and m; = 6 < my + a, — 2= 7. Therefore R
does not satisfy the conditions of Theorem 4. Nevertheless, R is the domination
sequence of the path Py, (see [1] for the calculation of T;( B,)).
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