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Abstract. Let k,n be positive integers. Define the number f(k,n) by f(k,n) =
min {max {|S;],§ = 1,..., k}}, where the minimum is taken overall k-tuples S , . .., Sk
of cliques of the complete graph K,, which cover its edge set. Because there exists an
(n, m, 1)-BIBD if and only if f(k,n) = m, fork = ﬁ%’}y the problem of evaluat-
ing f(k,n) can also be considered as a generalization of the problem of existence of
balanced incomplete block designs with \ = 1.

In the paper the values of f(k,n) are determined for small k and some asymptotic
properties of f are derived. Among others, it is shown that for all k lim,_,., Z&2
exists.

1. Imntroduction

One of the natural ways of covering graphs is by means of their cliques. There
are a variety of invariants connected with this and probably [1] was the first paper
concerning this topic (for recent papers see, for example, [2], [4]. More detailed
information can be found in the survey papers [3], [5].) In contrast to the above
mentioned papers we will confine ourselves to covering complete graphs by a
prescribed number of cliques and will search for the coverings where the order
of the largest cliques is as small as possible. This problem is, at the same time,
a generalization of the problem of the existence of balanced incomplete block
designs.

Let s = {G1,---,Gi} be a collection of k cliques of the complete graph
K,. As usual, it will be said that S covers K, or that S is a (k, n)-covering
if U, cick B(G:) = E(K,). The order of the largest clique in S will be denoted
by ¢(S), that is, c(S) = max{|V(G;)|,i=1,---,k}. For k and n natural num-
bers we define the number f(k,n) by f(k,n) = min ¢(S), where the minimum
is taken over all ( k, n) -coverings.

The numbers f(k,n) can also be thought of as a generalization of some other
concepts. For example, it is not difficult to see that there exists a (n, m, 1)-BIBD
(that is, there exists a decomposition of K, into subgraphs isomorphic to K,,) if

and only if f(k,m) = m, where k = %1 This means that the evaluation of
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f(k,n) for all pairs (k, n) is a difficult problem as it includes the problem of the
existence of (n, m, 1)-BIBD’s which has been intensively studied but is still far
from being completely solved.

In this paper the values f(k,n), for small k, are determined and several as-
ymptotic properties of f are derived. Among others, it is shown that for any k
1im 0o £E8 exists.

2. Preliminaries

In order to avoid ambiguity and formal inaccuracy throughout the paper we will
understand by K,, the complete graph on a fixed set of n vertices. We now intro-
duce a concept which will enable us to define a similarity relation on the family
of all coverings with a given number of cliques.

For a collection S = {G, - - - , G} of cliques of K, we define a set A by A =
{A:: 2 € V(G)},where A; = {j : z € V(Gj)}. We say that the collection S is
of type A. For A € Alet V(A) = (\;ea V(Gi). Clearly e 4 V(A) = V(K,).
* Two (k,n)-coverings S and T of types A = {Ai : i € I},B={B; : j € T},
respectively, will be called similar if there exists bijections f : {1,--- ,k} —
{1,---,k},g : I — Jsuchthatx € A; if and only if f(z) € By, z €
{1,---,k}, i € I. Note that the relation “to be similar t0” is an equivalence
relation.

A (k,n)-covering S = {G,--- ,G4} is called minimal if f(k,n) = ¢(S)
and omission of any vertex from one of the G; results in a collection of cliques
which does not cover K,,. Clearly, any ( k, n)-covering S with ¢(S) = f(k,n)
contains a minimal ( k, n) covering. In the following Lemmas several properties
of minimal coverings, which we will make us of when determining the values of
f, are stated.

Lemma 2.1. Let S = {Gy,---,Gy}, k > 3, be aminimal (k,n)-covering of
type A = {A; : i € I} and the partial orderingon A andon B= {V(G;) : 1 <
i < k} be set inclusion. Then

P1) B is an antichain, (that is, no two elements of B are comparable),

P2) U,-GA‘ V(Gj) =V(K,) forie I,

P3) A is an antichain,

P4) A;NA; #0 fori,jel,and

PS5) 1< |A;| < k fori € 1. Moreover, if f(k—1,n) > f(k,n), then

P6) foreveryj,1 < j <k, thereexist s,t € I suchthats # tand j € A,NA;.

Proof: Property P1 follows immediately from the minimality of S.

Let v be a vertex of K,,, v € V(A4;). Since S covers K, each edge vw, w €
V(K,) — {v} must occur in one of the G}, j € A;; and this implies P2.

To prove P3 suppose that for some ¢,j € I, A; C A;. Lett € A; — A;and 2
be a vertex of V(4;).
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The edge zw, w € V(K,) is covered by some G, m € A;. Thus, S’ =
{Gy,--- ,G}}, where G, = G, s # t, G} = Gy — z is also a (k, n) -covering,
which contradicts the minimality of S.

Let v and w be vertices from V (A;), V(A4;), respectively. The edge vw can
be covered only by a clique Gy, where t € A; N A;. Hence A; N A; # 0, for any
1,/ € I and P4 follows.

Assume |A;| = 1 for some i € I. Then, for A; = {j}, G; = K, and by
minimality of S, this implies k£ = 1, a contradiction. If |4;| = k for some i € I,
then according to P3 A contains only one set and consequently all the G; equal
K,. However, this contradicts the minimality of S and P5 is proved.

Since |V(Gj)| > 1, each of the sets A,, y € V(Gj), contains j. There are
at least two such sets unless Ay = A; forallz,y € V(G,). But then the clique
G could be deleted and we would have f(k — 1,7n) = f(k,n), a contradiction.
Now the proof is complete.

Lemma 2.2. Let nand k be natural numbers, k > 3, andlet A = {A; : i € I}

be the type of a minimal (k,n)-covering S. Then

Bl) f(k,m) > [B2], and

B2) f(k,m) > [®M], wherem = min{|4;| : i € I},and M = max {|V(4))]| :
i€ 1,|Ai=2}.

Proof: Denote by G1,-- -, Gk the cliques of S. From the definition of m and the
fact that S comprises a covering of K, every vertex of K, belongs to at least m
of the G;. Thus }_, <ick V(G;) > m.nand consequently

% <max{|V(G)|,i=1,--- ,k} = (8) = f(k,n).

In order to prove B2 assume without loss of generality that for A; = {1,2},
[V(A1)| = M. In view of P2 we have V(G,) U V(G,;) = V(K,) and so
n=|V(Ka)| = [V(GUV(G2)| = [V(G)|+|V(G2)|-|[V(G1)NV(G2)| £
2.f(k,n) — M and B2 follows

To finish this section we give a simple sufficient condition for a collection of &
cliques to be a ( k, n)-covering.

Lemma 2.3. Let S = {G1,--- ,Gk} be a collection of k cliques of K, of type
A = {Ai: i€ I} such that

U V(G =V(K.), and AinA; #0 for ijel.
1<i<k
Then S is a (k,n) -covering.

Proof: The fact that |J, .;., V(G;) = K, guarantees that the G; cover all the
vertices of V(K,) while A; N A; # O guarantees that S covers all the edges of
K,.
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3. A linear programming problem

Consider a ( k,n)-covering S of type A = {4;,-- -, At}. Weassign to S a linear
programming problem P(S) in the following way. Letz = (z1,--- ,z¢,y) bea
(t+1)-vector of unknowns and let A = (aij) bea(kx(t+1))-matrix witha; 41 =
—1fori=1,--- ,k,anda;; = 1,if i € A;, otherwise a;; = 0 for1 < j < ¢,
1 < 1 < k. Minimize the objective functiong(z) =0-z1+ ---+0- 3y + y =y,
where the constraints on the problem are Az < 0,z >0 andz; + -- -+ 3y = n.

It is easy to see that P(.S) has a solution. We will denote by y(S) the minimum
value of the objective function g and by inty(S) the minimum value of g for
integral vector z.

Theorem 3.1. Let S be a(k,n)-covering. Then
f(k,m) < y(S) + 2%,

and there exists a (k,n)-covering T' with ¢(T) = inty(S). Moreover, if S is
minimal, then

[y($)] < f(k,m) = inty(S).

Proof: LetSbea(k,n)-coveringoftype A = {A1,---, A} andlet(zy, -+ ,z¢t,9)
be a feasible integral solution of P(S). Consider a decomposition By, - - - , B; of
V(K,) suchthat|Bj| = z;,j = 1,--- ,t. ThenthecollectionT = {Hy,-- - , Hy}
of cliques of K, given by V ( H;) = UB;, where the union is taken over all j with
i€ Aj,i=1,.-- kiseither of type A or of type B; B being a subfamily of A.
(Note the latter case happens when some of the z equal 0.) So by Lemma 2.3 T
is a (k,n)-covering. Clearly, c(T") < y and we get

f(k,m) < inty(S). 3.1

Clearly, if (z;,--- ,z:,y) is a minimal feasible integral solution, then ¢(T") =
yinty(S). Further, if (z,,- - - , 7, y) is a minimal feasible vector of P(S), that is,
y=y(8),then(|z1],-- -, [Ze-1],m— Y1 cice—1 [1], [y] + 1 — 1) is an integral
feasible vector, where |A| = t < 2¥, as A is asystem of subsets of {1,2,--- , k}.
Thus inty(S) < [y] +2*¥ — 1 < y(S) + 2* and the first inequality follows from
3.1.

Now let S be a minimal ( k, n)-covering. Put z} = |V (4;)|,i=1,.--,t,and
y' = ¢(S) = f(k,n). Itis aroutine matter to check that (z,--- ,z},y') is an
integral feasible vector of P(S). Thus, inty(S) < f(k,n) and together with
(3.1) and the obvious fact that [y(S)] < inty(S) we get the second inequality.

Now we establish a relationship between two similar coverings from the view-
point of the corresponding linear programming problems.
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Theorem 3.2. Let S and T be (k,n)- and ( k, m) -coverings, respectively, of
the same type. Then  is a feasible vector of P(S) ifand only if 7 is a feasible

vector of P(T). In particular, ¥5) = ¥D)

Proof: Denote by A = {A;,---,A:} the type of S, by B = {By,---,B;} the
type of T'. Because S and T are similar it is possible to rearrange the cliques of T'
and the sets of B in such a way that B; = A;,1 = 1,--. ,¢. This means that the
constraints on P(S) and P(T) differ from each other only in the last condition.
Instead of zy + - - -+ z; = nin P(S) wehave zy+- - -+ z; = m in P(T). Therefore
(z1,- -+, 3, y) is a feasible vector of P(S) if and only if (2z,,--- , 21, By)
is a feasible vector of P(T). Consequently, y(T)) = 2y(S), which yields the
required assertion.

4. Values of f(k,n) for small k

It is easy to see that f(1,m) = n,m > 2. Assume S = {G1,G2}isa(2,n)-
covering. But then |[V(G;)| < n, i = 1,2, implies that the edge 1z, of K,,
where z; € V(K,) — V(G;), 1 = 1,2, is not covered. Thus, also in this case,
f(2,7n) = n,n> 2. The first non-trivial value of f(k, n) is that when k = 3.

Theorem 4.1. Let n be a natural number. Then
i) f(3,m)=[%n] forn>3,

i) f(4,n) =[3n] forn>13,

iii) f(5,m) = [3n] forn>39.

Proof: Throughout this proof S = {G1, - - - , G} will be aminimal ( k, n) -covering
oftype A = {A; : i € I}. Puta; = |{A; : i € I,|]A;] = t},and by =
Yianpt [V(A) |t =1, k. Clearly, 37, ¢ bt = m and

Zigearth  pop @1

In all three cases, k = 3,4, 5, we will first construct a ( k, ) -covering in order to
obtain an upper bound on f( k, n) and, at the same time, to show that f(k—1,n) >
f(k,n) (that is, that the assumptions of P6 in Lemma 2.1 are fulfilled). Then by
inspecting the set systems with properties P1-P6 and subsequently solving the
corresponding linear programming problems associated with some of them we
will show that f( k, n) equals this upper bound.

i) k=3 andn> 3.
Let T = {G1,G2,G3} be a collection of cliques of K, of type B = {B; =
{1,2},B; = {1,3},B3 = {2,3}}, where |V(B;)| = [=*L]. From Lemma
23 T is a (3,m)-covering and o(T) = [%n]. Therefore, f(3,n) < [%n] <
f (2 ) n) . '
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Consider a minimal (3, 7n)-covering S = {G1,G2,G3} of type A = {4; :
i € I}. Applying P5 we obtain |4;| = 2, i € I, and according to P3 and P6,
A = {{2,3},{1,3},{2,3}}. The minimum value of the objective function of
P(S) is £n and is attained by the vector (§n, §n, $n, $n). By Theorem 3.1
f(k,m) > [%n], which establishes part ).

i) k=4andn>13.
LetT = {G1,--- , G4} beacollection of cliques of type B= {B; = {1,3},B; =
{2,3},Bs = {1,2,4},Bs = {3,4}}, where [V(B))| = [%54],i = 1,2,4,
|V(Bs)| = [2%L]. Following Lemma 2.3, T is a (4, n)-covering and o(T) =
[2n], which implies f(4,m) < [#n] < 7(3,n). Consider a minimal (4,n)-
covering S = {G1,G2,G3,Gs} of type A = {A; : i € I}. The proof of the
reverse inequality will be broken into two cases. First, let a; < 3. From P5 it
follows that2 < |4;| < 3,1 € I. By inequality (4.1) and the upper bound already
obtained, we have
2 +3k _[3
LR
As3(by+bs3) = 3m, thisimplies3n—4 [3n] < by. Thus,fora; < 3 andn> 4,

- In-4 gu

according to B2 we have ¢(S) = f(4,n) > 5 > [%n] and hence

f(4,n) = [%n] . On the other hand, suppose a2 > 3. From P4 the intersection of
any two of the A; is not empty, and so A contains exactly three sets A, Az, A3 of
cardinality two. In order to satisfy P6 A has to contain another set and owing to P3
we must have (), ¢;¢3 Ai # 0. Thus, S and all the minimal (4, n) -coverings are
similar to the covering T'. The minimum value of the objective function of P(S)
is equal to 2n and is attained by the vector (§m, $n, $n, $n, 3n). Theorem 3.1
finishes the proof of this part.

iiiy k=5andn>39.
Consider a collection T = {G1,--- ,Gs} of cliques of type B = {B; = {1,2},
B, ={1,3},B3={2,3,4},Bs = {2,3,5},Bs = {1,4,5}},where|[V((B1)| =
[35], IV(B2)| = [52], [V(Bo)| = [252], [V(Ba)| = [252], [V(Bs)| =
n—Y1cica V(B

ByLemma23 T isa(5,n)-covering withc(T) = [3n]. Therefore £(5,7) <
[$n] < f(4,m). Consider a minimal (5, n)-covering § = {G1,G2,--+,Gs}
of type A = {Ai : i € I}. Inview of P4 we have a; < 4. In order to prove that
f(5,m > [%n] we will distinguish five cases according to the value of a3 .

a) az = 0. Then m = min;es |4;] > 3 and by B1 ¢(8) = £(5,n) > [3n] >

3n]. '

b) k =.I 1. AccordingtoPS wehave 2 < |A;| < 4,andhence by +b3 +bs4 = n.
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With respect to (4.1) we obtain 2b23k23b < [S5] orpy > 3n—5 [34].
From B2 we geto(S) = f(5,n) > [2%] > [2n— 3 [34]].

¢) az = 2. In this case to fulfill propositions P1-P6 it must be thatas = 0 and
S is similar to a covering of type . The minimum value of the objective func-
tion of P( S) equals §nandis attained by vector (& n, in, 2n, Zn, 3n, 3n).

d) ap = 3. Let A, A, A3 are the sets of A of cardinality 2, which have (in
order to satisfy P4) pairwise nonempty intersections. But now P3 and P6
cannot be satisfied simultaneously.

e) ap = 4. FromP4 the intersection of all the A; of cardinality two is nonempty
and it then follows that S is similar to a covering of type A = {{1,2},
{1,3},{1,4}, {1,5}, {2,3,4,5}}. The minimum integer value of the
objective function of P(S) is [4n] and therefore ¢(S) = [#n] > [3n].
The proof of Theorem 4.1 is complete.

The methods used in the proof of Theorem 4.1 are not suitable for £ > 5.
Therefore, we will not obtain all the values of f(k,n) in the cases £k = 6 and
k=1.

Theorem 4.2. Let n be a natural number. Then
i) [2] <f(6,m) < [2]+ e, n>4,wherer, =1 forn=2 (mod4), and
otherwise r, = 0, and
i) [3n] < f(7,m) < [3n] + sp,n> 7, where s, = 1 forn= 2 (mod 7),
and otherwise s, = 0.

\

Proof: Let 8§y = {G1,---,Gs}, S2 = {G1,---,G7} be collections of cliques
of K, of types A = {41 = {1,4,5}, A2 = {1,2,6}, A3 = {2,3,5}, A4 =
{3,4,6}}, B = {B, = {1,2,6}, B, = {1,3,5}, By = {1,4,7}, B4 =
{2,3,7},Bs = {2,4,5},Bs = {3,4,6}, By = {5,6,7}} (Bis aFano plane),
respectively. Further,let Y, ;s [V(AD| = 1,31 cic7 [V(Bo) | = n [V (4p)| -
[V(4)|< 1,1 <i<j<4,0<|V(B)|-|V(B)|<1,1Li<jLT.
Then, according to Lemma 2.3, S; is a (6, n)-covering with ¢(S)) = [g] + 71,
and S; isa(7,m)-covering with ¢(S2) = [3n] +s,; thus giving the upper bounds
as stated in i) and ii).

To prove the lower bounds consider aminimal (6 , n) -covering ((7, n) -covering)
of type A = {A; : j € J}. Suppose first that there is in a set of cardinality 2.
Then, in accordance with B2

n+ M n+1
f(k,n)z[ . ]z[ . ] 42)

If |A;] > 3 foreach j € J, then B1 implies f(6,n) > [22] > [2n] = [2],
f(7,m) > [22] > [2n]. In view of equation (4.2) we arrive at the desired
conclusion.
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5. Asymptotic properties of f
In order to study the values of f(k,n) for n — oo(k — oo) we introduce one
more concept.

Let S = {S;}{2,, where S; is a minimal ( k, ;) -covering. Then the sequence S
will be called k-minimal if {n;}$2, is strictly increasing and the coverings S; are
similar.

For any k > 1 there exists a k-minimal sequence (see, e.g. the proof of Theo-
rem 5.2).

For a k-minimal sequence S = {S;} we put y(S) = ’L(mi)- where y(S;) is as
defined in Section 3. In view of Theorem 3.2, the function y(S) is well defined.

Theorem 5.1. If S and T are two k-minimal sequences, then y(S) = y(T).

Proof: Suppose y(S) > y(T). Then there exists ny such that for n > ny,
n.y(S) > n.y(T) + 2. Let S be a minimal ( k, n)-covering in S with n > np
and let T be a (k,n)-covering, which is similar to the coverings in 7. Then by
Theorems 3.1 and 3.2 we get

Fk,m) < 9(T) + 2% = ny(T) + w* < ny(S) = y(S) < f(k,m),
which contradicts our assumption.
The next assertion shows that lim,,_, f(—'::l')— exists for arbitrary k.

Theorem 5.2. Let S be a k-minimal sequence. Then
im £
n—o0 n

y(S).

Proof: Suppose S = {S;}$2, isa k-minimal sequence, where S; covers K, . From

i=1

Theorem 3.1 we obtain y(S;) < f(k,m) < y(Sy) + 2%, or L2 = y(5) <
L‘—'f.'{-’-"i < y(S) + %‘ Thus we have lim;_, f—(—',‘:ﬂ = y(S). With respect to
Theorem 5.1 all that remains to be shown is that for any k there exists np and a
collection {S; : j € J} of k-minimal sequence such that J is finite and for ev-
ery n > mp at least one of S; contains a ( k, n)-covering. Consider a sequence
T = {Ta}2,, where T, is a minimal (k, n)-covering. Decompose T into sub-
sequences such that two coverings belong to the same subsequence if and only
if they are similar. As the type of a ( k, n)-covering is a collection of subsets of
{1,...,k} we have a finite number of subsequences. Omitting those which are
finite yields a suitable collection of subsequences and the proof is complete.

The following assertion shows that the sequence &,‘;ﬁ contains a constant in-
finite subsequence.

Theorem 5.3. Let lim o, £&2 = t. Then foran infinite number of , f(k,n) =
t.n.

Proof: First we prove an auxiliary statement.
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Lemma 54. Let S be a (k,no)-covering. Then there exists a sequence T, =
{T:}g2,, where T; is a (k,n) -covering and {m;}2, is strictly increasing, such
that 9%'0- = ’%l fori=1,2,....

Proof of Lemma: Let S = {S,}32,, » where Sy, is a (k, n)-covering of the same
type as S. If £ is a minimum feasible vector of P(S), then from the proof of
Theorem 3.2, ;:—5: is a minimum feasible vector of P(S,). Since z is rational
(as all the coefficients in P(S) are), then for infinitely many =, the vector 27 is
integral. This means that for these values of n, int y(S,) = y(S,) = %y( S) and
applying Theorem 3.1 we get the sequence {7;}.

Now we can proceed to the proof of Theorem 5.3. Suppose there is ny such
that f(k,mp) < t.np. Let S be a minimal ( k, np)-covering. Then, of Theo-
rem 3.2, y(S) < f(k,m) < t.np. For the sequence S, = {T;}2,,t > ﬂmﬂ =
o« > [km) and consequently lim; o, {552 < 4) < ¢ which contradicts
lim; oo £&2 = ¢. Therefore

flkym) >tm (5.1)

foralln > 2.

Let S be a k-minimal sequence. Then, for a (k,np)-covering S € S, ‘% =1.
Further, for the sequence Ty = {T;}%;, 9-(,%")- = %’- =t. So &,‘;ﬂ < ﬁfi =t
which together with (5.1) yields f(k, n;) = t.n;. The fact that {n;}2, is increas-
ing infinite sequence establishes the assertion.

We would like to end the paper by confirming the expected fact that for large
k{&r‘;ﬂ %, tends to 0.

n=1
Theorem 5.5. im0 (lim o £52)) = 0.

Proof: Put lim, .o 252 = ¢;. Clearly, f(ki,m) > f(k2,m), for ki < k.
Therefore c;, > ¢,. In addition, ¢, > 0, and hence lim,_,, c; exists. Now we
will show that there is a subsequence of {ck }32, which converges to zero.

Consider a positive integer v, v = 1 (mod 6) and put k = %%~ Then there
exists a (v, 3, 1)-BIBD containing & blocks which induces a ( k,n)-covering S
with ¢(S) = 3. Let {S,}2, be a sequence of ( k, n) -coverings which are similar
to S. Following Theorem 3.2 we get 3; = *’@ = L(fé) and subsequently (Theorem
3.1) f(k,m) < 2n+ 2% in view of Theorem 3.1. Thus ¢, < 2 and immediately
cr = 2D — 0 asv — oo and v = 1 (mod 6).
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