On Hamiltonian Line Graphs

Zhi-Hong Chen

Department of Mathematics Wayne State University Detroit Mi 48202

Abstract. Let G be a 3-edge-connected simple triangle-free graph of order n. Using a contraction method, we prove that if $\delta(G) \geq 4$ and if d(u) + d(v) > n/10 whenever $uv \in E(G)$ (or whenever $uv \notin E(G)$), then the graph G has a spanning eulerian subgraph. This implies that the line graph L(G) is hamiltonian. We shall also characterize the extremal graphs.

Introduction.

We follow the notation of Bondy and Murty [3], except that graphs have no loops. The line graph L(G) of graph G is a graph whose set of vertices is the set E(G) of edges of G; two vertices e_1 and e_2 of L(G) are adjacent if and only if e_1 and e_2 have a common vertex in G. For $v \in V(G)$, we define the neighborhood N(v) of v in G to be the set of vertices adjacent to v in G. A bond is a minimal nonempty edge cut. We shall use P to denote the Petersen graph.

A graph is eulerian if it is connected and every vertex has even degree. An eulerian subgraph H is called a dominating eulerian subgraph of G if $E(G-V(H))=\emptyset$. A graph G is called supereulerian if it has a spanning eulerian subgraph H. For a graph G, let O(G) denote the set of vertices of odd degree in G. A graph G is called collapsible if for every even set $X\subseteq V(G)$ there is a spanning connected subgraph H_X of G, such that $O(H_X)=X$. Thus, the trivial graph K_1 is both supereulerian and collapsible. Denote the family of supereulerian graphs by SC, and denote the family of collapsible graphs by CC. Obviously, $CC\subseteq SC$, and collapsible graphs are 2-edge-connected. Examples of graphs in CC include the cycles C_2 , C_3 , but not C_1 if $t \ge 4$.

Let G be a graph, and let H be a connected subgraph of G. The contraction G/H is the graph obtained from G by contracting all edges of H, and by deleting any resulting loops. Even when G is simple, G/H may not be.

In [5], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs H_1, H_2, \cdots, H_c . Define G_1 to be the graph obtained from G by contracting each H_i into a single vertex v_i' , $(1 \le i \le c)$. Since $V(G) = V(H_1) \cup \cdots \cup V(H_c)$, the graph G_1 has order c and $V(G_1) = \{v_1', v_2', \cdots, v_c'\}$. We call the graph G_1 the reduction of G and call H_i the preimage of v_i' in G. In this paper we also say that G can be contracted to G_1 if G_1 is the reduction of G.

Any graph G has a unique reduction G_1 [5]. A graph is collapsible if and only if its reduction is K_1 . We shall use d(v) and $d_1(v)$ to mean the degree of a vertex v in G and G_1 , respectively. A graph is *reduced* if it is the reduction of some other graph.

Theorem A (Catlin [5]). Let G be a graph.

- G is reduced if and only if G has no nontrivial collapsible subgraphs.
- (b) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is collapsible.
- (c) Let H be a collapsible subgraph of G. Then G is superculerian if and only if G/H is superculerian.

In this note, we will discuss some best possible conditions for a triangle-free graph such that its line graph is hamiltonian.

There are some prior results on hamiltonian line graph of simple triangle-free graph.

Theorem B (Bauer [1]). Let $G \subseteq K_{n,m}$ be bipartite, where $m \ge n \ge 2$. If $\delta(G) > m/2$, then L(G) is hamiltonian.

Theorem C (Lai [10]). Let G be a 2-edge-connected triangle-free simple graph on n > 30 vertices. If $\delta(G) > \frac{n}{10}$, then L(G) is hamiltonian.

Remark: Several authors have studied the same kind of questions for simple graphs (see [2], [4], [5], [6], [7], [9] and [11]).

We shall use the following

Theorem D (Harary and Nash-Williams [8]). The line graph L(G) of a simple graph G with at least three edges contains a hamiltonian cycle if and only if G has a dominating eulerian subgraph.

Theorem E (Chen [6]). Let G be a 3-edge-connected simple graph of order n. If every bond $E \subseteq E(G)$ with |E| = 3 satisfies the property that each component of G - E has order at least n/10, then exactly one of the following holds:

- (i) $G \in SC$:
- (ii) n = 10 s for some integer s, and G can be contracted to P (i.e. $G_1 = P$) such that the preimage of each vertex of P is a collapsible subgraph of G on exactly s = n/10 vertices.

Main Results.

Theorem 1. Let G be a 3-edge-connected simple triangle-free graph of order n. If $\delta(G) \ge 4$ and if every $uv \in E(G)$ satisfies

$$d(u) + d(v) \ge \frac{n}{10}, \tag{1}$$

then exactly one of the following holds:

- (i) $G \in SL$;
- (ii) n = 10 m for some integer $m \ge 8$, and G can be contracted to P such that the preimage of each vertex v_i ($1 \le i \le 10$) of P is either $K_{t,s}$ or $K_{t,s} e$ for some e, where t and s are dependent on i, t + s = m = n/10 and $\min\{t, s\} \ge 4$.

Proof: By (c) of Theorem A, and since P is not superculerian, the conclusions (i) and (ii) are clearly mutually exclusive.

Let E be a bond of G with |E| = 3, and let H be a component of G - E. For any $e \in E(G)$, let n_e denote the number of edges of E adjacent in G to e. By $\delta(G) \ge 4$ and |E| = 3, we have |V(H)| > 1. Hence, H has an edge, say xy. By $\delta(G) \ge 4$ and |E| = 3, and since G is simple,

$$4+4 \le d(x)+d(y) \le 2(|V(H)|-1)+n_{xy} \le 2|V(H)|+1,$$

and so $|V(H)| \ge 4 > 3 = |E|$. Then H has a vertex, say u, that is not incident with any edge of E. By $d(u) \ge \delta(G) \ge 4 > |E|$, u has a neighbor in H, say v, that is also not incident with any edge of E, and so $N(v) \subseteq V(H)$ and $N(u) \subseteq V(H)$. Since G is triangle-free, $N(u) \cap N(v) = \emptyset$. Hence, by (1),

$$|V(H)| \ge |N(u)| + |N(v)| = d(u) + d(v) \ge \frac{n}{10}$$

By Theorem E, either $G \in SL$, or n = 10 m for some $m \ge 8$ and G can be contracted to P such that all preimages H_1, H_2, \dots, H_{10} have order m = n/10.

Suppose G can be contracted to $G_1 = P$. Let $V(P) = \{v'_1, v'_2, \cdots, v'_{10}\}$. Thus $d_1(v'_i) = 3$ for $1 \le i \le 10$. The corresponding maximal collapsible subgraphs are H_1, H_2, \cdots, H_{10} . Each H_i $(1 \le i \le 10)$ is joined to the remainder of G by a bond consisting of the $d_1(v'_i) = 3$ edges that are incident with v'_i in P. Then from above we can see that each H_i $(1 \le i \le 10)$ has u_i and v_i in $V(H_i)$ such that

$$V(H_i) = N(v_i) \cup N(u_i)$$
 and $N(u_i) \cap N(v_i) = \emptyset$.

Since only $d_1(v_i') = 3$ edges of G have one end in H_i and by (1), it follows that H_i is $K_{t,s}$ or $K_{t,s} - e$ for some $e \in E(K_{t,s})$, where $t = |N(u_i)|$ and $s = |N(v_i)|$, and so $t + s = |V(H_i)| = n/10$ and $\min\{t, s\} \ge \delta(G) \ge 4$.

Theorem 2. Let G be a 3-edge-connected simple triangle-free graph of order n. If $\delta(G) \ge 4$ and if

$$d(u) + d(v) \ge \frac{n}{10},\tag{2}$$

whenever $uv \notin E(G)$, then exactly one of the following holds:

- (i) $G \in SL$;
- (ii) n = 20 s for some integer $s \ge 4$, and G can be contracted to P in such a way that the preimage of each vertex of P is either $K_{s,s}$ or $K_{s,s} e$ for some edge e.

Proof: Let E be a bond of G with |E|=3, and let H be a component of G-E. From the proof of Theorem 1, we know that there is an edge, say uv, such that $N(v) \subseteq V(H)$ and $N(u) \subseteq V(H)$. Since G is triangle-free, $N(v) \cap N(u) = \emptyset$. Hence

$$|V(H)| \ge |N(u)| + |N(v)|.$$
 (3)

Case 1 $(n \le 80)$. Since $\delta(G) \ge 4$, by (3),

$$|V(H)| \ge d(v) + d(u) \ge 2\delta(G) \ge 8 \ge \frac{n}{10}$$
.

By Theorem E, it is easy to see that the theorem holds.

Case 2 $(n \ge 81)$. Since $\delta(G) \ge 4$ and |E| = 3, either N(u) or N(v) has at least two vertices x and y which are not adjacent to any edges of E and then $N(x) \subseteq V(H)$ and $N(y) \subseteq V(H)$. We may assume that x and y are in N(u). Since G is triangle-free, $xy \notin E(G)$. By (2),

$$2 \max\{|N(x)|,|N(y)|\} \ge |N(x)| + |N(y)| = d(x) + d(y) \ge \frac{n}{10}.$$

We may assume

$$|N(x)| \ge \frac{n}{20}. (4)$$

Since $n \ge 81$, $|N(x)| \ge 5$ and so we can find $w, z \in N(x)$ such that w and z are not adjacent to any edges of E and then $N(w) \subseteq V(H)$ and $N(z) \subseteq V(H)$. Since G is K_3 -free, $wz \notin E(G)$. By (2),

$$2 \max\{|N(w)|, |N(z)|\} \ge |N(w)| + |N(z)| = d(w) + d(z) \ge \frac{n}{10},$$

and so we may assume

$$|N(z)| \ge \frac{n}{20}. (5)$$

Since $z \in N(x)$ and G is triangle-free, $N(x) \cap N(z) = \emptyset$. Since $N(x) \subseteq V(H)$, and $N(z) \subset V(H)$, by (4) and (5),

$$|V(H)| \ge |N(x)| + |N(z)| \ge \frac{n}{20} + \frac{n}{20} = \frac{n}{10}.$$
 (6)

Therefore, by Theorem E, either $G \in SL$, or G can be contracted to P such that the preimages H_1, H_2, \dots, H_{10} of vertices of P have order $\frac{n}{10}$.

Suppose that G can be contracted to P. Let $V(P) = \{v_1', v_2', \cdots, v_{10}'\}$. The corresponding maximal collapsible subgraphs are H_1, H_2, \cdots, H_{10} . From above and (6), and since $|V(H_i)| = n/10$, we can see that for each i ($1 \le i \le 10$), $V(H_i) = N(x_i) \cup N(z_i)$ for some $x_i, z_i \in V(H_i)$ with $N(x_i) \cap N(z_i) = \emptyset$ and $|N(x_i)| = n/20$, $|N(z_i)| = n/20$. Since only $d_1(v_i') = 3$ edges have exactly one end in H_i and by (2), H_i is either $K_{s,s}$ or $K_{s,s} - e$ for some $e \in E(K_{s,s})$, where e = n/20.

Corollary 3. Let G be a 3-edge-connected simple triangle-free graph on $n \ge 61$ vertices. If

$$\delta(G) \geq \frac{n}{20},$$

then either $G \in SC$ or n = 20 s for some integer $s \ge 4$ and G can be contracted to P in such a way that the preimage of each vertex of P is either $K_{s,s}$ or $K_{s,s} - e$ for some $e \in E(K_{s,s})$.

Proof: The inequalities $n \ge 61$ and $\delta(G) \ge n/20$ imply that $\delta(G) \ge 4$ and (2) holds in Theorem 2. Hence Corollary 3 follows.

Remark: Let t and s be two integers with t+s=43 and $\min\{t,s\}\geq 4$. Let G be the graph obtained by taking the union of bipartite graph $K_{t,s}$ and the Blanuša snark, and by identifying a pair of vertices, one from each component. Then G is a 3-edge-connected simple triangle-free graph of order n=60 and

$$\delta(G)=3\geq\frac{n}{20},$$

and so for any two vertices u and v in G (no matter whether $uv \in E(G)$ or not),

$$d(u)+d(v)\geq 6\geq \frac{n}{10}.$$

But the reduction of G is the Blanuša snark, which is a nonsuperculerian triangle-free cubic graph on 18 vertices, and so the graph G does not satisfy any conclusions of Theorem 1, 2 and Corollary 3. One can see that other reduced nonsuperculerian cubic graphs of order $n \leq 60$ can also be used to construct such graphs G. This shows that the condition $\delta(G) \geq 4$ in Theorem 1 and Theorem 2 is necessary and $n \geq 61$ in Corollary 3 is best possible in some sense.

By Theorem D and Theorem 1 or 2, we have the following

Corollary 4. Let G be a 3-edge-connected simple triangle-free graph of order n. If $\delta(G) \geq 4$ and if

$$d(u)+d(v)>\frac{n}{10},$$

whenever $uv \in E(G)$ (or whenever $uv \notin E(G)$), then L(G) is hamiltonian.

Acknowledgement.

The author wishes to thank Paul A. Catlin for his many helpful suggestions.

References

- 1. D. Bauer, On hamiltonian cycles in line graphs, Stevens Research Report, PAM No. 8501, Stevens Institute of Technology, Hoboken, NJ.
- 2. A. Benhocine, L. Clark, N. Kőhler, and H. J. Veldman, On circuits and pancyclic line graphs, J. Graph Theory 10 (1986), 411–425.
- 3. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American Elsevier, New York, 1976.
- 4. R. A. Brualdi and R. F. Shanny, *Hamiltonian line graphs*, J. Graph Theory 5 (1981), 307–314.
- 5. P. A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988), 29-45.
- 6. Z.-H. Chen, Supereulerian graphs and the Petersen graph, Submitted.
- 7. Z.-H. Chen, A degree condition for spanning eulerian subgraphs, Submitted.
- 8. F. Harary and C. St. J. A. Nash-Williams, On spanning and dominating circuits in graphs, Can. Math. Bull. 20 (1977), 215–220.
- 9. H.-J. Lai, Eulerian subgraphs in a class of graphs, Ars Combinatoria (to appear).
- 10. H.-J. Lai, Contractions and Hamiltonian line graphs, J. Graph Theory 12 (1988), 11-15.
- 11. X.-W. Li, On S-circuits of graphs, Preprint.