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Abstract. Let G be a 3-edge-connected simple triangle-free graph of order n. Using a
contraction method, we prove that if §(G) > 4 and if d(u) + d(v) > n/10 whenever
uv € E(G) (or whenever uv & E(G)), then the graph G has a spanning eulerian sub-
graph. This implies that the line graph L(G) is hamiltonian. We shall also characterize
the extremal graphs.

Introduction.

We follow the notation of Bondy and Murty-[3], except that graphs have no loops.

The line graph L(G) of graph G is a graph whose set of vertices is the set E(G)
of edges of G; two vertices e; and e; of L(G) are adjacent if and only if e; and
e; have a common vertex in G. For v € V(QG), we define the neighborhood
N(v) of vin G to be the set of vertices adjacent to v in G. A bond is a minimal
nonempty edge cut. We shall use P to denote the Petersen graph.

A graph is eulerian if it is connected and every vertex has even degree. An
eulerian subgraph H is called a dominating eulerian subgraph of G if E(G —
V(H)) = 0. A graph G is called supereulerian if it has a spanning eulerian
subgraph H. For agraph G, let O(G) denote the set of vertices of odd degreein G.
A graph G is called collapsible if forevery evenset X C V(@) there is a spanning
connected subgraph Hx of G, such that O( Hx) = X. Thus, the trivial graph K,
is both supereulerian and collapsible. Denote the family of supereulerian graphs
by SC, and denote the family of collapsible graphs by CC. Obviously, CC C SC,
and collapsible graphs are 2-edge-connected. Examples of graphs in CC include
the cycles C», Cs3, butnot C; ift > 4.

Let G be a graph, and let H be a connected subgraph of G. The contraction
G/ H is the graph obtained from G by contracting all edges of H, and by deleting
any resulting loops. Even when G is simple, G/ H may not be.

In [5], Catlin showed that every graph G has a unique collection of maximal
collapsible subgraphs Hy, H, - - - , H.. Define G to be the graph obtained from
G by contracting each H; into a single vertex v}, (1 < 1 < ¢). Since V(G) =
V(H))U---UV(H.), the graph G, has order c and V(G1) = {v},v},--- ,v.}.
We call the graph G the reduction of G and call H; the preimage of v} in G. In
this paper we also say that G can be contracted to G; if G is the reduction of G.
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Any graph G has a unique reduction G; [5]. A graph is collapsible if and
only if its reduction is K;. We shall use d(v) and d;(v) to mean the degree of
a vertex v in G and G, respectively. A graph is reduced if it is the reduction of
some other graph.

Theorem A (Catlin [5]). LetG be a graph.

(@ @ is reduced if and only if G has no nontrivial collapsible sub-
graphs.

(b) Let H beacollapsible subgraph of G. Then G is collapsible if and
only if G/ H is collapsible.

() Let H be a collapsible subgraph of G. Then G is supereulerian if
and only if G| H is supereulerian. 1

In this note, we will discuss some best possible conditions for a triangle-free
graph such that its line graph is hamiltonian.

There are some prior results on hamiltonian line graph of simple triangle-free
graph.

Theorem B (Bauer [1]). LetG C K, be bipartite, wherem > n > 2. If
8(G) > m/2, then L(G) is hamiltonian, 1

Theorem C (Lai [10]). LetG be a 2-edge-connected triangle-free simple graph
onn > 30 vertices. If6(G) > 10 then L(G) is hamiltonian. |

Remark: Several authors have studied the same kind of questions for simple graphs
(see [2], [4], [5], [6], [7], [9] and [11]).

We shall use the following

Theorem D (Harary and Nash-Williams [8]). The line graph L(G) of a simple
graph G with at least three edges contains a hamiltonian cycle if and only if G has
a dominating eulerian subgraph. ]

Theorem E (Chen [6]). Let G be a 3-edge-connected simple graph of order n.
Ifevery bond E C E(G) with|E| = 3 satisfies the property that each component
of G — E has order at least n/ 10, then exactly one of the following holds:

i) Gesc;
(i) =n = 10s for some integer s, and G can be contracted to P (i.e.

G\ = P) such that the preimage of each vertex of P is a collapsible
subgraph of G on exactly s = n/10 vertices. ]
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Main Results.

Theorem 1. Let G be a 3-edge-connected simple triangle-free graph of order n.
If6(G) > 4 and ifevery uwv € E(G) satisfies

noo.

d(u) +d(v) > 75,

@

then exactly one of the following holds:
(i) Gesc;
(ii) = = 10m for some integer m > 8, and G can be contracted to
P such that the preimage of each vertex v; (1 < 1 < 10) of P is
either K, or Ky s — e for some e, wheret and s are dependent on
i,t+s=m=n/10 andmin{t,s} > 4.

Proof: By (c) of Theorem A, and since P is not supereulerian, the conclusions (i)
and (ii) are clearly mutually exclusive.

Let E be a bond of G with |E| = 3, and let H be a component of G — E.
For any e € E(G), let n, denote the number of edges of E adjacent in G to e. By
8(G) > 4 and |E| = 3, we have [V(H)| > 1. Hence, H has an edge, say zy.
By 6(G) > 4 and |E| = 3, and since G is simple,

444 <d(z)+d(y) <2A[VH) | = 1) + nay < 2[V(H)| + 1,

and so [V(H)| > 4 > 3 = |E|. Then H has a vertex, say u, that is not incident
with any edge of E. By d(u) > 86(G) > 4 > |E|, u has a neighbor in H,
say v, that is also not incident with any edge of E, and so N(v) C V(H) and
N(u) C V(H). Since G is triangle-free, N(u) N N(v) = . Hence, by (1),

n

[VCE)| 2 IN(w)] + [N()] = d(u) + d(v) > 15-

By Theorem E, either G € SC, or n = 10m for some m > 8 and G can be
contracted to P such that all preimages Hi, Ha, --- , Hyo have order m = n/10.

Suppose G can be contracted to Gy = P. Let V(P) = {v{, vy, --,vjo}-
Thus di(v}) = 3 for1 < i < 10. The cormresponding maximal collapsible
subgraphsare Hy, H,,--- , Hio. Each H; (1 < i < 10)is joined to the remainder
of G by a bond consisting of the d;(v}) = 3 edges that are incident with v in P.
Then from above we can see that each H; (1 < 1 < 10) has u; and v; in V( H;)
such that

V(H;) = N(v;) UN(u;) and N(u;) N N(v) = 0.

Since only d; (v}) = 3 edges of G have one end in H; and by (1), it follows that
H;is Ky, 0r K, —eforsomee € F(K,), wheret = |N(u;)|and s = [N(v;)],
andsot+ s = |[V(H;)| = n/10 and min{t,s} > §(G) > 4. 1
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Theorem 2. LetG be a 3-edge-connected simple triangle-free graph of order n.
If6(G) > 4 and if
d(w) +d(v) > 5. @
whenever uwv ¢ E(QG), then exactly one of the following holds:
i) GeSC;
(iiy n=20s forsome integer s > 4, and G can be contracted to P in
such a way that the preimage of each vertex of P is either K, 5 or
K, , — e for some edge e.

Proof: Let E be a bond of G with |E| = 3, and let H be acomponent of G — E.
From the proof of Theorem 1, we know that there is an edge, say uv, such that
N(v) CV(H)and N(u) C V(H). Since G is triangle-free, N(v) NN (u) = @.
Hence

[V(H)| > [N(u)| + [N(v)]. 3)

Case 1(n< 80). Since 8(G) > 4,by (3),

[V(H)| > d(v) + d(u) >26(G) >8 > %.

By Theorem E, it is easy to see that the theorem holds.

Case 2 (n > 81). Since §(G) > 4 and |E| = 3, either N(u) or N(v) has
at least two vertices £ and y which are not adjacent to any edges of E and then
N(z) C V(H) and N(y) C V(H). We may assume that = and y are in N(u).
Since G is triangle-free, zy ¢ E(G). By (2),

2 max{IN(=)|,IN(9)[} 2 IN(2)| + IN(9)| = d(z) + d(y) > 75
We may assume
n
IN(2)| 2 55 @

Since n > 81, |[N(z)| > 5 and so we can find w, 2 € N(z) such that w and 2z
are not adjacent to any edges of E and then N(w) C V(H) and N(z) C V(H).
Since G is K3-free, wz ¢ E(G). By (2),

2 max{|N(w)|, IN(2)1} 2 [N(w)| + [N(2)| = d(w) + d(2) > 1.

and so we may assume
n
N 255 Q)
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Since z € N(z) and G is triangle-free, N(z)NN(z) = 0. Since N(z) C V(H),
and N(z) C V(H), by (4) and (5),

n n n

|V(H)|2|N($)|+|N(2)|2§0-+ﬁ='ﬁ- ©
Therefore, by Theorem E, either G € SC, or G can be contracted to P such that
the preimages Hy, Ha, - - - , Hyo of vertices of P have order 5.

Suppose that G can be contracted to P. Let V(P) = {v{, v}, -+ ,vjo}. The
corresponding maximal collapsible subgraphs are Hy, Ha, -+ , Hio. From above
and (6), and since |V (H;)| = n/10, we can see that for each i (1 < 7 < 10),
V(H;) = N(z;) UN(z;) for some z;, 2; € V(H;) with N(z;) NN(2) = § and
IN(z:)| = n/20, [N(2)| = n/20. Since only d;(v]) = 3 edges have exactly
one end in H; and by (2), H; is either K,, or K,, — e for some e € E(K,,),
where s=n/20. [ |

Corollary 3. LetG be a 3-edge-connected simple triangle-free graph onn > 61
vertices. If n

then either G € SC orm = 20 s for some integer s > 4 and G can be contracted
to P in such a way that the preimage of each vertex of P is either K s or K s — e
forsomee € E(K,,).

Proof: The inequalities » > 61 and §(G) > n/20 imply that §(G) > 4 and (2)

holds in Theorem 2. Hence Corollary 3 follows. [ ]
Remark: Lett and s be two integers witht + s = 43 and min{t,s} > 4. LetG
be the graph obtained by taking the union of bipartite graph K , and the Blanua
snark, and by identifying a pair of vertices, one from each component. Then G is
a 3-edge-connected simple triangle-free graph of order n= 60 and

n
G(G) —,3 2> %v

and so for any two vertices u and v in G (no matter whether uv € E(G) or not),
n
10°
But the reduction of G is the Blanu3a snark, which is a nonsupereulerian triangle-
free cubic graph on 18 vertices, and so the graph G does not satisfy any conclusions
of Theorem 1, 2 and Corollary 3. One can see that other reduced nonsupereulerian
cubic graphs of order n < 60 can also be used to construct such graphs G. This
shows that the condition §(G) > 4 in Theorem 1 and Theorem 2 is necessary and
n > 61 in Corollary 3 is best possible in some sense.
By Theorem D and Theorem 1 or 2, we have the following

d(u) + d(v) >6 >
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Corollary 4. LetG be a 3-edge-connected simple triangle-free graph of order n.
If6(G) >4 andif

n

E)

whenever uv € E(G) (or whenever uv ¢ E(Q)), then L(G) is hamiltonian. 1

d(u) +d(v) >
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