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Abstract. We prove that if G is a 1-tough graph with n = |V(G)| > 13 such that
the degree sum of any three independent vertices is at least (3n — 14) /2, then G is
hamiltonian. :

Introduction

We consider only finite undirected graphs without loops or multiple edges. For
any notation and terminology not defined here we refer the reader to [3].

Let w(G) denote the number of components of a graph G. Chviétal [4] defined
G tobe 1-tough if w(G—S) < S| for any subset S of V(G) withw(G—S) > 1.
By 0 (@), or just o, we denote min {Ef;l d(v) | {v1,..., v} is anindependent
set of vertices in G} (k > 2).

The following is a well-known result due to Jung [5].

Theorem 1 ([5]). Let G be a 1-tough graph on n > 11 vertices such that o >
n— 4. Then G is hamiltonian,

The purpose of the present paper is to prove the following generalization of
Jung’s theorem conjectured by Bauer, Morgana, Schmeichel and Veldman (see
(1] and [2]).

Theorem 2. Let G be a 1-tough graph on » > 13 vertices such that o3 >
(3n—14) /2. Then G is hamiltonian.

We will show that our result is, in a sense, best possible. For an integer s we
set H, = K,V ((s — 1) - K; + F), where F denotes the graph depicted in
Figure 1. The graph H,, is nonhamiltonian and 1-tough, and it is easy to see that
o3(Hy) > (3 -|V(H,)| - 15)/2.
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Preliminaries

If C is acycle in a graph G, we denote by 6 the cycle C with a given orientation.
If u,v € V(C), then uZ'v denotes the consecutive vertices on C from u t0 v in
the direction specified by C. The same vertices, in reverse order, are given by

v C u. We write uv € Pc(@) if u and v are connected by a path of length at least
2 with all internal vertices in V(G)\V(C). We use u* to denote the successor of

won C and u™ to denote its predecessor. If S C V(C), thenS* = {z* |z € S}
and S~ = {z~ | z € 8}. For z € V(G), let N(z) be the set of all vertices of G
adjacent to . ‘

Our proof of Theorem 2 heavily relies on the following two lemmas which were
established in [1] (the second is implicit in [1, Theorem 9]). As usual, we call a
cycle C in a graph G dominating if every edge of G has at least one of its vertices
onC.

Lemma 1 ([1]). Let G be a 1-tough graph on n > 3 vertices with o3 > n,
and let C be a longest cycle in G. Then C is a dominating cycle. Moreover, if
v € V(G)\V(C) and A = N(v), then (V(G)\V(C)) U A* is independent in
G.

Lemma 2 ([1]). Let G be a nonhamiltonian 1-tough graph on n > 3 vertices
with o3 > n. Then G contains a longest cycle C such that max{d(z) | = €
V(G\V(O)} > 03/3.

For the rest of this section, suppose that G is a nonhamiltonian 1-tough graph
satisfying the hypothesis of Theorem 2. By Lemma 1 every longest cycle in G
is dominating, and by Lemma 2 there exists a longest cycle C in G such that
t:= max{d(z) | z € V(G)\V(C)} > (3n—14)/6;leth € V(G)\V(C)
with d(h) =t.
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We orient C and accordingly enumerate the vertices of N(h) = {u,,..., ut}.
Since C is a longest cycle, we clearly have u} # ug) (i = 1,...,t, indices
modulo ¢t).

Fori=1,...,twesetz; = u,y; = uj; and L; = z.-ay.-. Moreover, we let
X={z1,...,n},Y ={y1,...,,}and Z = X nY.

Standard arguments yield the following lemma.

Lemma 3. Let u;,u; € N(h) with i # j. Then there is no vertex w on z,-'c"z,-
(y,-ay;) such thatz;w, z;w~ € E(G)UPc(G) (yiw, yjw* € E(G)UP(Q)).

Lemma 4.

@ L V(L) =1) = [V(C)|-2d(h) < 3.
®) |Z]>d(h) -3 >2.

Proof:
(a) Subtract2d(h) > (3n— 14)/3 from [V(C)| < n— 1.
(b) By (), the cardinality of {i € {1,...,t} | [V(L;)| > 2} is at most 3. Thus
|Z| > d(h) —3 > 2 since d(h) > (3n— 14)/6 and n > 13. 1

Lemma . Leti,j € {1,...,t},4 # j, such that z;y; € E(G) U Po(QG), and
suppose that some z € Z satisfies d(z) > d(h). Then
@ N(z) =N(h),

(b) =z lieson ujy 314;,
(C) Tjlj+l ¢ E(G) and Zj2+ ¢ E(G)

Proof:

(@ ByLemmal,XU(V(G)\V(C)) andYU(V(G)\V(C)) are independent
vertex sets of G, hence |[V(L;)| > 2 and |[V(L;)| > 2. By Lemma 4(a),
[V(C)|-2d(h) < 3,hence N(2) C N(h) usingLemma 3. Since d(z) >
d(h), it follows that N(2) = N(h).

(b) This immediately follows from Lemma 3 since uj.; € N(2) by (a).

(¢) By Lemma 3, z;u;,, ¢ E(QG) since z;y; € E(G) U Po(G). If z;2* €
E(G), thenthecycle hu; C z* z; 6yjz;au;z5uj+1 h contradicts the max-
imality of C. [ |

Lemma 6. There are indices i,j € {1,...,t},i # j such that z;y; € E(G).

Proof: We show that there is a pair i # j of indices such that z;y; € E(G) U

P¢(G); the assertion then follows from the second statement in Lemma 1.
Assume the contrary of our assertion, and let p,q € {1,...,t},p # ¢, v €

V(Lp), and w € V(L,) such that vw € E(G) U Pc(G). Those vertices must
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exist since G is 1-tough, and we may assume that w lies on :z:;’ 514;. Applying
Lemma 4(a), we see that

[V(Lp) |+ [V(L)| < [V(C)| —2d(h) +2 < 5.

Thus [V(L,)| < 2 and [V(L,)| < 4. Now, if a, is a vertex on z, Cw™ and a;

is a vertex on w* 6%, then Lemma 3 implies that ajaz ¢ E(G) U Pc(G) since
v € {Zp,yp} and a1 = 7, Or a3 = y,. Moreover, if V(L,) = {z,, w,w*,y,}
(without loss of generality), then v = z, = yp, hence z,w* ¢ E(G) U Pc(G),

since otherwise the cycle huwlﬁwz,w" au,,h would be a longer cycle than C.
But this contradicts the 1-toughness of G because the graph G — (N (h) U {w})
has at least t + 2 components. [ |

Lemma 7. Suppose C and h have been chosen such that d(h) > (3n— 14)/6
is as small as possible. Then at least one z € Z satisfies d(z) > d(h).

Proof: First observe that, if some z € Z satisfies d(z) > (3n— 14)/6, then

d(z) > d(h) by the choice of C and h, since hz* Czhisa longest cycle in
G. Thus, taking o3 > (3n— 14) /2 into account, we are done if |Z| > 3. By
Lemma4(a), this holds if h has degree atleast6. If d(h) < 6,thend(h) = 5 since
d(h) > (3n— 14)/6 and » > 13. By Lemma 4(b), |Z| > 2. Hence we may
assume Z = {z1,22},d(21) < 4 andd(2;) < 4. We obtain (3n— 14)/2 <
o3 < d(h) + d(z) + d(2) < 13, hence n < 13. On the other hand, since
|Z| = 2 and d(h) = 5, |V(C)| = 2d(h) + 3. This implies n > |[V(C)|+ 1 =
2d(h) + 3+ 1 = 14, a contradiction. [ ]

Proof of Theorem 2

The proof is by contradiction. Suppose there exists a nonhamiltonian 1-tough
graph on n > 13 vertices for which o3 > (3n— 14) /2. By Lemma 1 every
longest cycle in G is dominating, and by Lemma 2 there exists a longest cycle C
in G such that some b € V(G)\V(C) satisfies d(h) > (3n—14) /6. Among all
longest cycles in G with this property let C be chosen such thath € V(G)\V(C)
with d(h) = ¢ has minimum degree.

We orient C and accordingly enumerate the vertices of N(h) = {ui,...,u:}.

Fori=1,...,twesetz;=uf,y;=u;,andL; = z;ay;,whcre the indices are
to be understood modulo t. Moreover, welet X = {z1,...,7:},Y = {y1,..., ¢}
and Z =X nNY.

By Lemma 7 there exists some z € Z withd(z) > d(h),and by Lemma 6 there
are indices 1,j € {1,...,t},4 # j, such that  is adjacent to y;. Assuming that
the vertices of N( h) are labeled such that z = x;, we conclude that i < j since,

by Lemma 5(b), the vertex z = x; lies on u;,qau,-. Let 1 and j be chosen such
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that 1 is as large as possible; then Lemma 5(b) implies that none of the vertices of
Y'\{y;} is adjacent to z;, hence N(z;) N ((X UY)\{y,;}) = 0. By Lemma 5(c),
zjuj+v1 ¢ E(G) and z;2* ¢ E(G) for every z € Z satisfying d(2) > d(h).
It follows that if » € {1,...,t}, then z; has at most |V'(L,)| — 1 neighbors on

2, C tiy+1 unless |V(L,)| = 1 and d(z,) < (3n— 14) /6. Thus, if Z denotes the
set of all vertices in Z having degree less than (3n— 14) /6, we have

t
d(z;) < |21+ Y V(L) - 1)

i=1

since, by Lemma 1, z; has no neighbors outside C. Note that |Z] < 2 since
03 > (3n— 14)/2 by hypothesis, and that 3¢, ([V(L;)| - 1) = |V(O)| -
2d(h) < m—1 — 2d(h). Thus if a;,a, are distinct vertices of G such that
{z;, a1, a2} is an independent vertex set of G, then

(3n—14) /2 < 03 < d(z;)+d(a1)+d(az) <|Z|+(n—1)—-2d(h)+d(a;)+d(az).
0]
We distinguish three cases.
Case1: |Z| = 0. Setting a; = h and a3 = z; in (1), we obtain (3n— 14)/2 <
n— 1 using d(z1) = d(h). But then n < 12, contradicting the hypothesis.
Case2: |Z| = 1. LetZ = {21}. Thend(31) < d(h) — 1, and again we arrive at
the contradiction (3n— 14) /2 < n— 1 by setting a; = h and a3 = 2; in (1).
Case 3: |Z| = 2. In this case we choose the two vertices of Z as a; and a;. Then
d(a;) < d(h) —1andd(az) < d(h) —1,and (1) yields (3n—14)/2 < n—1.
This contradiction completes the proof of Theorem 2. |
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