On Tricovers of Pairs by Quintuples:
v =0 (mod 4)

A.M. Assaf
Central Michigan University

W.H. Mills R.C. Mullin
Institute for Defense Analyses University of Waterloo

Abstract

A tricover of pairs by quintuples of a v-set V is a family of 5-subsets
of V (called blocks) with the property that every pair of distinct ele-
ments from V occurs in at least three blocks. If no other such tricover
has fewer blocks, the tricover is said to be minimum, and the number of
blocks in a minimum tricover is the covering number Cy(v, 5, 2), or sim-
ply Ca(v). It is well known that Cs(v) > [v[3(v — 1)/4]/5] = Bs(v),
where [z] is the least integer not less than z. It is shown here that if
v =0 (mod 4) and v > 8, then C3(v) = Bs(v).

1 Introduction

Let V be a finite set of cardinality v. A (k,t)-cover of indez X is a family
of k-subsets of V' (called blocks) with the property that every ¢-subset of V
occurs in at least A of the blocks. The covering number Cy(v, k, t) is defined
to be the number of blocks in a minimum (as opposed to minimal) (k, t)-cover
of index A of V.

Forv>k>t>0,let

Ba(v,kyt) = [v[(v=1)...[(v =t + 1)A/(k =t +1)].../(k = 1)]/K].

Then the quantity By(v, k,t) is a lower bound for Cy(v, k, t) (see [31]). Many
researchers have been involved in determining the covering numbers known
to date (see bibliography). Our interest here is in the case k = 5, t = 2,
A = 3, v = 0(mod 4). For simplicity, let C3(v,5,2) be denoted by Ci(v)
and Bj(v,5,2) be denoted by B3(v). We adopt the convention that C3(4) =
B;3(4) = 3. Covers with ¢ = 2 and A = 3 are called tricovers of pairs, or
pair tricovers. For k = 5, these are then tricovers of pairs by quintuples. It
was shown in [2] that if v = 1(mod 4), then C3(v) = Bs(v)+ 1 for v=9 or
17(mod 20), and C3(v) = B;(v) otherwise.
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2 Some designs useful in constructing tri-
covers

In this section, we require several other types of combinatorial configurations.
For the definitions of balanced incomplete block design (BIBD) and resolv-
able balanced incomplete block design RBIBD with parameters (v, k, ), the
reader is referred to [18].

Definitions of pairwise balanced design (PBD), group divisible design
(GDD) and transversal design (T D) can be found in [36]. Strictly speaking,
the definitions given there are for the index A = 1. To extend these to general
index ), the requirement that the pairs which occur in precisely one block
of each of these configurations is to be replaced by the requirement that
each such pair occur in precisely A blocks. For the existence of transversal
designs, our authority is [5] unless another reference is given. Similarly, for
the existence of resolvable balanced incomplete block designs and balanced
incomplete block designs, see [18].

For group divisible designs, we use the notation GDD(gy" g3 - - g7*, K, A)
to represent such a design with n; groups of size g;,i = 1,2,..., s, whose block
sizes lie in the set K, and whose index is A.

For future reference, we note that there exists a T'D(6,n) for all positive
integers n with the exception of n € {2,3,4,6} and the possible exception of
n € {10, 14, 18,22, 26, 30, 34,42}, see [4], (5], (1], [30], [33] and [34]. We also
use the notation PBD((k,w"),v] to denote a pairwise balanced design on v
points which has a unique block of size w and all other blocks of size k.

We also require the notion of an incomplete tricover. An incomplete
tricover IT(v,w) is a triple (V, W, F) where V is a v-set, W is a w-subset of
V, and F is a family of 5-subsets (blocks) of W, where F contains exactly

Bs(v) — Bs(w) blocks, with the property that every pair of (V x V)\(W x W)
occurs in at least three blocks and no pair of W x W appears in any block.
Clearly if there exdsts an IT(v,w), and if C3(w) = Bs3(w), then Cs(v) =
Bs(v). The importance of incomplete tricovers lies, in part, in the following
lemma.

Lemma 2.1 Let u,v and w be non-negative integers congruent to 0 (mod
4), with v # 0 (mod 20) and w = v (mod 5). Suppose that there ezists

(i) an IT(v,w), and
(i) a GDD((v — w)*u*,{5},3), and suppose that
() Cs(u+w) = By(u + w).
Then C3(a(v — w) + u + w) = Bs(a(v — w) + u + w).
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Proof. Let D denote the GDD in (ii). Let G;1,G;,...,G, be the groups
of size v — w of D, and G* be the group of size u. Let W be a set of w
points disjoint from the point-set of D. For i = 1,2,...,a, replace the group
G; by the blocks of an incomplete tricover (G; U W, W, F;), and replace G*
by the blocks of a minimum tricover of G* U W. The result is a tricover of
(UL, G:) U G* U W with B;(a(v — w) + v + w) blocks.

=1

Indeed, the number of blocks in the GDD((v — w)*u?, {5}, 3) is

3a(a — 1)(v — w)? + 6au(v — w)'
20

We note that if z = 0 (mod 4) then Bs3(z) = [3z2/20]. Moreover 3v? =
3w? (mod 20). It follows that IT(v,w) has

[3v/20] — [3w?/20] = (3v* — 3w?)/20
blocks. Thus our construction has a total of

3a(a — 1)(v — w)? + 6au(v — w) + a(3v? — 3w?)

20 o + B3(u +w)
_ 3a(v — w)(av — aw + 2u + 2w) + ‘.3(11. + w)’.'
T 20 20

blocks. In particular 3a(v—w)(av—aw+2u+2w)/20 is an integer. Therefore

Bi(a(v-w) +u+w) = [Uemwkiuiw)l

20

r 3a(v—w)(a(v—10)+2u+2w)+3(u+w)? ']
20

Sc(v—w)(av;:w+2u+ 2w) + rs(u;;i’*l ,

which is the number of blocks in our construction. o

For future use, we discuss the following notation. Suppose {g1,92,---, 9%}
is a subset of Zy, the cyclic group of order 2¢, and S is a set of indeterminates
where s = |S| divides 2¢. Then there is a bijection between the members of §
and the cosets of the subgroup G consisting of multiples of s in Z3;. Suppose
that these cosets are Cy,Ca,...,C,, and let the corresponding members of S

be ¥1,¥2,...,Y,. Then the notation
< g1, 92y -5 9% > US (mod 2t)
denotes ihe collection of blocks of size k + 1 of the form

{gl+h1 92+h1 ...,g:.+h}U{yj}
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where k € C; and h ranges through Z;;. Note that each y; is contained in %
blocks. Further, the notation

< 91,9290 > U S (alf orbit)
denotes the collection of blocks
{o1 +h, ga+hy .. ig+h}U{y}
where h € C; and h assumes values in {0,1,2,...,t — 1}. Also
< 91,92y >+, 1ES

denotes the set < gy +1, g2 + 4,...,9k +1 >, i € S, and {00;}} denotes the
set {00g, O0at1y- -+ 3008}

3 Tricovers of orders v =0, 4 (mod 20)

The following construction combines other designs to construct tricovers.
Theorem 3.1 Ifv > 8 and v =0 or 4(mod 20), then C3(v) = Bs(v).

Proof. Let v be any integer as described in the hypothesis, and let D,
be a (5,2) cover of index 1 on v — 2 points which contains By(v — 2,5,2)
blocks (such is shown to exist in [16] and [26]). Without loss of generality,
take the point-set of the design V = {1,2,...,v — 2}. Also let D; be a
BIBD(v + 1,5,1) on the point-set W = VU {v — 1, v, v + 1}, and again
without loss of generality, let {1,2,3,v,v + 1} be a block of this design. In
this block, change v + 1 to v — 1, and in all other blocks of D, change v + 1
to v. Again let D3 be a BIBD(v + 1,5,1) on the point-set W, and without
loss of generality, let {1,2,3,v — 1,v + 1} be a block of this design. In this
block change v + 1 to v, and in all other blocks of D3 change v+ 1to v —1.
Then the blocks of Dy, together with the modified blocks of D; and D3, form
a tricover. Here D, contributes [(v? —2v)/20] blocks and each of D; and Dy
contribute (v? + v)/20 blocks for a total of [3v?/20] = B;(v) blocks. o

4 Tricovers of order v = 8(mod 20)

The following lemma is useful for the case v = 8(mod 20).

Lemma 4.1 If there exists ¢ PBD[{5,9*},20s + 9], then C3(20s + 8) =
33(208 + 8).

Proof. Let D, be a BIBD(20s+5,5,1) defined on theset V = {1,2,...,20s+
5}. Let P be a partition of V which includes the triple {20s+1,20s+2,20s +
3}, the pair {20s+4,20s+5}, and which is such that all other parts of the par-
tition are of size 4. Adjoin a new point 20s + 6 to each part of P, then adjoin
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these blocks to D,. Let the resulting collection of blocks be denoted by D,.
Let D3 be a PBD[{5,9},20s+9] defined on the set W = {1,2,...,20s+9},
and let the points of the set S = {20s + 1,20s + 2,...,20s + 9} be those
which occur in the block B of size 9, and let D, be the set of blocks
obtained by deleting B from Dj;. Let E; be the collection of blocks ob-
tained from D, by replacing 20s + 9 by 20s + 8, and let E; be the col-
lection of blocks obtained from D4 by replacing 20s + 9 by 20s + 7. Let
Y = W\{20s+9}, Z = S\{20s + 9}, and T = Y\ Z. Then the blocks of E,
and E, together contain every pair of T x {20s + 7,20s + 8} exactly three
times and every other pair of (Y x Y)\(Z x Z) exactly twice. Denote this
collection of blocks by Ej.
Consider the following set F of eight blocks:

20s+1 20s+2 20s+3 20s+6 20s+7
20s+1 20s+2 20s+4 20s+5 20s +7
20s+3 20s+4 20s+35 20s+6 20s+7
20s+1 20s+2 20s+3 20s+6 20s+38
20s+1 20s+2 20s+4 20s+5 20s+38
20s+3 20s+4 20s+5 20s+6 20s+38
20s+1 20s+2 20s+6 20s+7 20s+38
20s+3 20s+4 20s+5 20s+7 20s+38

These blocks contain every pair of Z x Z at least twice, and every pair
including either 20s + 7 or 20s + 8, with the exception of the pair {20s +
7,20s + 8} occurs at least three times. Also each of the pairs {20s +1,20s +
6}, {20s + 2,20s + 6} and {20s + 3,20s + 6} occurs at least three times.

Let H denote the total collection of the blocks of D;, E; and F together.
Delete the block

20s+1 20s+2 20s+3 20s+6,

and replace the block
20s+4 20s+5 20s+6

by the block
20s+4 20s+5 20s+6 20s4+7 20s+8.

The result is a tricover of {1,2,...,20s + 8} which contains B3(20s + 8)
blocks. Indeed, the BIBD(20s + 5,5,1) contributes 20s? + 9s + 1 blocks
to D,, and the partition contributes another 5s + 2 blocks, to yield a total
of 20s? + 14s + 3 blocks (including one block each of sizes 3 and 4) in D,.
Further, the PBD[{5,9"}, 20s + 9] contributes 20s? + 17s blocks to each of
E, and E;, and since there are eight blocks in F, the total number of blocks
in DU E;UE,UF is 605 + 48s + 11. However, at the end, a block of size 4
is deleted, and the block of size 3 is replaced by a block of size 5, for a total
of 60s? + 48s + 10 = B3(20s + 8) blocks. o

35



Corollary 4.1.1 Ifv = 20s + 8, where s > 0, and v ¢ {28,48}, then
Cz(‘v) = Bz(‘v).

Proof. The required PBDs are constructed in [9]. o
Lemma 4.2 There erist incomplete tricovers IT(32,8) and IT(48,12).

Proof. For the construction of an IT(32,8), consider the following set of
144 blocks defined on the set Zz4:

01 2 6 (mod24) 7 12 15 22 (mod 24)
3 4 11 16 (mod24) 9 13 19 21 (mod 24)
5 8 18 20 (mod 24) 10 14 17 23 (mod 24)

In these blocks, each pair of distinct residues occurs in at least three blocks.
Moreover each translate of the initial set of blocks is a resolution class, that
is, a set of blocks which contains each residue exactly once. Such a tricover
is said to be resolvable.

Let W = {z1,23,...,Zs}, and V = Z, U W. Partititon the set of resolu-
tion classes above into eight parts, each containing three resolution classes.
Adjoin z; to all blocks of the ith part, i = 1,2,...,8. The resulting set of
144 blocks is an IT(32,8).

For the construction of an IT(48,12), we again construct a resolvable
tricover with block-size 4 on a set of thirty-six points, which has 36 resolution
classes. Let the point set be S = {(3,7) : 1 € GF(9), j € Z,}. Now consider
the following set of 9 blocks:

(1,0) (w?,0) (w*,0) (w®0) mod(—,4)
(w,O) (ws» 0) (ws,o) (w7v0) mOd(_14)
(0,0) (0,1) (0,2) (0,3)

where w is a primitive element in GF(9). This constitutes a resolution class,
and the set of translates D; of this class through (GF(9),—) yields nine
resolution classes. Let T be a resolvable transversal design T D(4,9) with the
four groups G; = {(¢,j) : i € GF(9)}, for j = 0,1,2,3. Take each of the
blocks of T' three times to obtain a set of 27 resolution classes. Adjoin these
blocks to those of the 9 resolution classes above.

The points of W = {z,,23,...,Z12} can be added to these 36 resolution
classes of 9 blocks each as in the above case to obtain an IT(48,12). o

Lemma 4.3 Ifv € {28,48}, the C3(v) = Bi(v).

Proof. For v = 28, proceed as follows. In [24], a (5,2)-cover D, on 27 points,
with index A = 1 which has 38 blocks including a minimum sub-cover of seven
points, is constructed. If we assume that the point-set is {1,2,...,27}, then
we may assume without loss of generality that the blocks of the sub-cover
are:
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By: 12345
By: 12367
By: 4567

We delete the block Bj from the blocks of D,, and call the resulting set of
blocks D,.

Further, in [28] a (5,2)-cover D3 on 29 points, with index A = 2 (i.e.,
a bicover) which has 82 blocks, including a minimum sub-bicover of seven
points, is constructed. If the point-set of D3 is W = {1,2,...,29}, then
without loss of generality, the blocks of the sub-bicover are

B,: 8 9 10 11 12
Bg: 8 9 10 11 13
Bg: 8.9 10 11 29
B;: 8 9 12 13 29
Bg: 10 11 12 13 29

Further, this design is constructed by adjoining each point in the sub-bicover
to all the blocks of a corresponding 2-resolution class of a BIBD(22,4,2),
- say Dy, on X = W\{8,9,10,11,12,13,29}, (a 2-resolution class is simply a
set of blocks of D which contain every element of the BIBD exactly twice).

Examining the 2-resolvable BIBD(22,4,2) generated on the point-set
Z3 x Zq in Lemma 3.6 of [28], taking 8 = 2, we see that the 2-resolution class
corresponding to a = 0 contains the following blocks:

E : (1,2) (1,5) (0,1) (0,6)
E;: (2,3) (2,4) (0,1) (0,6)
Ey: (2,1) (2,6) (1,3) (1,4)
E.: (2,1) (2,6) (0,2) (0,5)
Es: (1,1) (1,6) (2,2) (2,5)
Eqs: (0,3) (0,4) (2,2) (2,5)

Since we are free in the construction of D3 to label the above set with mem-
bers in X in any way we choose which is consistent with the choice of elements
in the sub-bicover, let us do so in such a way to form the blocks:

By: 4 5 14 28
By: 15 16 14 28
Bu HE 7 17 18
By,: 6 7 19 20
Bis: 1 2 3 21
B]4 22 23 3 21

where each element of X in the set of blocks corresponds to the member of
23 %27 in the corresponding position in the list of blocks {E; : ¢ =1,2,...,6}.

Without loss of generality, we may assume that it is this 2-resolution class
to which the element 29 is adjoined.
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Replace blocks By, Byg,..., B4 by the blocks

Bu : 4 5 6 14 28
Big: 7 14 15 16 28
Br[ : 4 6 7 17 18
B]g : 5 6 7 19 20
Byp: 2 3 14 21 28
Byp: 1 3 21 22 23

Now replace the element 29 by the element 28 in all of the unmodified
blocks of Dj.

Note that the pairs in the set of elements {8,9,10,11} occur at least once
in D;, and three times in D;. Moreover, since none of these elements occurs
in the modified blocks of D; prior to the replacement of 29 by 28, each pair
of {8,9,10,11} x {28} occurs at least four times in Dj, so from the point of
view of tricovers, the block Bg: 8 9 10 11 28 can be deleted. The resulting
set of 118 blocks is then a tricover of 28 points, so C3(28) = B3(28).

For v = 48, since there exists an IT(48,12) as shown in Lemma 4.2, it is
sufficient to show that C3(12) = B3(12). Let the point-set for such a tricover
be Z;; U {oo}.

Then the set of blocks

01
01
yield a tricover with B;(12) blocks. a

Theorem 4.4 Ifv = 20s + 8, where s > 0, then C;3(v) = B;(v).

The result follows from Corollary 4.1.1 and Lemma 4.3. o

5 Tricovers for Orders v = 12(mod 20)

The strategy in this section is to determine C3(v) for several small values of
v, and to use these recursively to complete the spectrum.

Lemma 5.1 Let m and t be positive integers such that 0 < t < 5m. If
Cs(4t) = Bs(4t), then C3(100m + 4t) = C3(100m + 4t).

Proof. Hanani [13, Theorem 3.11], has shown that there exists a GDD((5m)%, {6}, 3)
for m > 1. By deleting all but ¢ of the points which occur in one of the
groups, and inflating each point by a factor of 4 (using GDD(4¢, {5},1), where
i = 5,6, which can be obtained from a BIBD(21,5,1) and a BIBD(25,5,1)),
a GDD((20m)"%(4t)!, {5},3) is obtained. By replacing each group G of size
20m by the blocks of a tricover of the points of G with B;3(20m) blocks
(such exists by Lemma 3.1), and the group G’ of size 4t by the by the
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B;(4t) blocks of a minimum tricover of the points of G’ (such exists by
hypothesis), a tricover of 100m + 4t points with B3(100m + 4¢) blocks is ob-
tained. Indeed, the GDD((20m)®(4t)!, {5},3) contributes 1200m? + 120mt
blocks, and since B3(20m) = 60m?, the tricovers substituted on the five
groups of size 20m contribute another 300m? blocks, and the tricover on the
group of size 4t contributes another Bs(4t) = [12t?/5] blocks, for a total
of B3(100m + 4t) = 1500m? + 120mt + [12t?/5] blocks. Hence, under the
hypothesis, C3(100m + 4t) = B,(100m + 4t). o

Lemma 5.2 There ezists an IT(32,8), IT(52,8), IT(72,8) and IT(92,12).
Further C3(12) = B3(12). Therefore, Cs(v) = Bs(v) forv € {12,32,52,72,92}.

Proof. For v = 12, as mentioned earlier, the blocks

0135 10 (mod 11)
0 1 3 8 oo (mod1l1)

form a tricover of Z;; U {oo} which has 22 = B3(12) blocks.

For v = 32, an IT(32,8) was exhibited in Lemma 4.2. Since C3(8) =
33(8) then 03(32) = 03(32).

For v = 52, we construct an IT(52,8) as follows. Let W = {001,003,...,008}
and V = Z,,U W. Then the 396 blocks

<0,9,22,31 > U{ocor,008} (half orbit)
<0,5, 22, 27 > U{OO;, 000} (ha.lf orbit)
<0,1,19,30 > U{oos}t  (mod 44)
<0,3,6,21 > U{co7,00s} (mod 44)
<0,5,12,25,> U{oos, 006} (mod 44)
<0,7,16,27 > U{co3,004} (mod 44)
<0,7,19,30 > U{oo1,002} (mod 44)

<0,4,10,18,20 > (mod 44)
<0,5,13,17,28,> (mod 44)
<0,1,2,4,10 > (mod 44)

form an IT(52,8). Again, since C3(8) = Bs(8), then C3(52) = B3(52)-

For v = 72, we proceed as follows. Let X = {1,2,...,64} and W =
{z1,22,..-,28}, and V = X UW. Let D, be a resolvable BIBD(64,4,1)
design on X. Such a design has 336 blocks which fall into 21 resolution
classes which can be combined in sets of three to produce 3-resolution classes
C1,Cs,...,Cr. To each block of C;, adjoin =z;, ¢ = 1,2,...,7. Now adjoin
to these blocks the 416 blocks of a BIBD(65,5,2) on the set X U {zq}. Let
P be a partition of X into 4-sets. To each of these 4-sets, adjoin zs, then
adjoin these 16 blocks to those previously obtained for a total of 768 blocks.
The result is an IT(72,8).
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For v = 92, we construct an IT(92, 12) as follows. Let W = {00;, 003,..., 0012},
and V = 73, U W. Then the 1248 blocks

<0,16,32,48,64 > +1, 1 € Zy6; 3 times
<0,11,33,50 > U{oo;}!  (mod 80)
<0,11,33,50 > U{oo;}? (mod 80)
<0,11,33,50 > U{oo;}i?  (mod 80)
< 0, 3, 13, 68 > U{mu, wu} (mod 80)
<0,3,13,68 > U{oog, 0010} (mod 80)
<0,3,13,68 > U{co7,008} (mod 80)
<0,5,31,40 > U{oos, 006}  (mod 80)
<0,5,31,40 > U{co03,004} (mod 80)
<0,5,31,40 > U{oo;,002}  (mod 80)

<0,1,20,24,38 > (mod 80), 3 times
<0,2,8,29,36 > (mod 80), 3 times
form an IT(92,12). a

Lemma 5.3 [fv = 20s + 12, where s > 0 and v < 500, then Cs3(v) = B,(v).

Proof. The proof is given by covering various intervals. For 0 < v < 100,
see Lemma 5.2. For v = 112, apply Lemma 5.1 with m =1 and ¢ = 3.

The group divisible designs required for the application of Lemma 2.1
below are easily obtained by inflating truncated transversal designs by a
factor of 4, and duplicating blocks, unless otherwise indicated.

For 132 < v < 152, use Lemma 2.1 and the fact that there exists an
IT(32,8). In this case, we use the T'D3(6,6) created by Hanani [13, page
279], and inflate by a factor of 4 using ingredients of index A = 1 to obtain
a GDD(24°4!,{5},3) and a GDD(24%, {5}, 3).

For 172 < v < 192, we first construct an IT(36,4). A (5,2)-cover of index
1 on 36 points with 65 blocks was constructed by Rolf Rees and is exhibited
in [27, Lemma 5.4]. This cover has one block of size 4. If the block of size
4 is deleted, and three copies of the remaining blocks are taken, the result
is an IT(36,4). We use a T'D3(6,8) to construct GDD(32%4?, {5},3)’s with
u = 8 and 28, and apply Lemma 2.1.

For 212 < v < 232, apply Lemma 5.1 with m =2 and ¢ = 3 and 8.

For v = 252, proceed as follows. Take a BIBD(66,6,1), say D, and let
z be a distinguished point of D, which lies on a distinguished block B. By
deleting z, we obtain a set of thirteen disjoint blocks of size 5, which will act
as groups. Delete two more points of B to obtain a GDD(5'?3!,{5,6},1)
and inflate the result by a factor of 4 to obtain a GDD(20'212%, {5},1),
and triplicate the blocks to produce a GDD(20'212!, {5}, 3) which has 8784
blocks. Now replace each group G of size 20 by the blocks of a tricover of
G with C5(20) = 60 blocks for a total of 9504 blocks, and replace the group
G* of size 12 by the blocks of a tricover of G* with C;5(12) = 22 blocks. The
resulting set of 9526 blocks form the required tricover.
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For v = 272 and 292, the construction is similar to the preceding. Let D
be a resolvable BIBD(65,5,1), and let C be a distinguished class of the 16
resolution classes of D. Let Cy,C,,...,C, be s other resolution classes of D,
and let X = {z,,23,...,2,} where s = 3 or 8, and no z; is in point set of D.
Adjoin z; to each block in class C;, i = 1,2,...,s, and take the blocks of C
together with X as the groups of a GDD(5'%s!,{5,6},1) and proceed as in
the case v = 252.

For v = 312, apply Lemma 5.1 with m =3 and ¢ = 3.

For 332 < v < 392, apply Lemma 2.1 with ¢ = 5,v = 72,w = 8, and
u € {4,24,44, 64}.

For 412 < v < 492, apply Lemma 2.1 with ¢ = 5,v = 92,w = 12, and
u € {0, 20,40, 60,80}. o

The main result of this section is given in the following theorem.

Theorem 5.4 Ifv = 20s + 12, where v > 0, then C3(v) = Bs(v).

Proof. The cases of v < 500 were handled in Lemma 5.3. All other
cases follow by applying Lemma 5.1, noting that Ci(v) = Bs(v) for v €
{12, 32, 52,72, 92}. a

6 Tricovers of orders v = 16(mod 20)

A minimum (5,2) cover D of index A = 1 on w = 20s + 18 points with point-
set W = {1,2,...,w} is said to be utilitarian if it contains a subset of points
Z ={1,2,...,11,12,13,w — 2,w — 1,w} and a subset of blocks of the form

123 w—-2 w 123 10 a
456 w—-1 w 456 11 b
789 w—-1 w-2

where no pair from {w — 2,w — 1,w} occurs in any other block, a may be
identical with b, but neither a nor b lies in Z, and the pairs {10,a}, {11,5}
and {12, 13} each occur in at least two blocks of D.

Lemma 8.1 If there ezists a utilitarian cover of w = 20s + 18 points, where
s # 0, then C3(v) = By(v) where v =w — 2.

Proof. Let D, be a BIBD(20s+15,5,2) on the point-set V* = {1,2,...,v—
1}. Without loss of generality, we may assume that D, contains the block

B,: 7891213.

Let D, be a utilitarian cover of order 20s + 18 which contains the distin-
guished blocks
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By: 123 v+1 v+2
Ba: 456 v U+2
By: 789 v v+1

Bg: 123 10 a
Bs: 456 11 b

Wherever v+ 1 and v+ 2 occur outside of these distinguished blocks, replace
each symbol by v. Further replace v+1 by v and v+2 by a in block By, v+2
by b in block B; and v+ 1 by 13 in B,. Further replace 13 by v in block B,
a by v in block By and b by v in block Bg. Then the modified blocks of D,
and D, together form a tricover of V = {1,2,...,v} which contains B,(v)
blocks. Indeed, the BIBD denoted by D, contains 40s? + 58s + 21 blocks,
and the utilitarian design D; contains 20s? 4 38s + 18 blocks, which yields a
total of B3(20s + 16) = 60s? + 96s + 39 blocks. m]

Lemma 6.2 Suppose that there ezists a PBD[{5,9°},20s+ 17] where s > 1.
Then there ezists a utilitarian design on w = 20s + 18 points.

Proof. Let D; be such a PBD. Let W* = {1,2,...,w— 1} be the point-set
of D, and without loss of generality, assume that the block of size 9 is

By: 141516 17 18 19 20 21 22.

Since s > 1, there is a block disjoint &oxﬁ B,. Without loss of generality,
let it be
By: 789 w—-2 w-1.

Now D; contains 20s? + 33s + 11 blocks, and B, or B; meet 70s — 10 blocks,
so, since s > 2, there exist two blocks which are disjoint from B, and B,.
Without loss of generality let these be

By: 123 10 a
By: 456 11 b

where a and b need not be distinct.

We partition W*\B, into 5s 4+ 2 sets of size 4, assuring that {1,2,3,
w—2} and {4, 5,6, w—1} are parts of the partition, and that 12 and 13 occur
together in the same part of the partition. Also if a # b, let {10,11,q,b}
be a part of the partition, and if a = b let {7,10,11,a} be a part of the
partition. Add a new symbol w to each part of the partition, and adjoin
these blocks and the blocks of a minimum cover of By U {w} to the blocks of
D,. Then delete the block B;. The result is a utilitarian cover of w points.
Indeed, there are 20s% + 33s + 11 blocks in D, including one of size 9 which
is deleted. When taken with the 5s + 2 blocks generated by the partition and
the 6 blocks of the minimum cover a total of By(20s + 18) = 20s? + 38s + 18
blocks is obtained. a
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Corollary 6.2.1 Ifw = 20s + 18, where s > 2, then there erists a
utilitarian cover of order w.

Proof. The required PBDs are shown to exist in [9].
Theorem 6.3 Let v = 20s + 16, where s > 0. Then Cs(v) = Bs(v).

Proof. In view of the preceding lemmas, it remains only to show that the
theorem is true for v € {16, 36}.

For v = 16, let the point-set be (23 x Zs) U {oo}.

Then the required blocks are constructed as follows:

On ({0} x Zs) U {oo} construct the four blocks of a (5,2) minimum bicover
of six points.

Then take the following 35 blocks:

< (0,0), (1,2), (1,4), (2,0),00 > mod(—,5)
<(0,0), (1,1), (2,3), (2,4),00 > mod(—,5)
< (0,0), (0,1), (1,0), (2,0), (2,3) > mod (-, 5)
< (0,0), (0,2), (1,3), (1,4), (2,1) > mod(—,5)
< (0,0), (1,0), (1,1), (1,2), (2,1) > mod(—,5)
<(0,0), (1,3), (2,0), (2v2)’ (2’3) > mod(-—,5)
< (0,0), (1,0), (1,3), (2, 1), (2,2) > mod(—,5)

This set of 39 blocks forms the required tricover.

For v = 36, it is shown in [27, pp. 211-12] that C,(36) = 65. Ta.lung
three copies of such a cover shows that C3(36) = 195.

7 Conclusion

We have shown that if v = 4s, where s > 1, then the tricovering number

o) = 121Xy,
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