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Abstract. It is well known that there exist complete k-caps in PG(3,q) with & >
(g® + g + 4)/2 and it is still unknown whether or not complete k-caps of size k <
(¢? + g + 4)/2 and q odd exist. In this paper sufficient conditions for the existence of
complete k-caps in PG(3,q), forgoddg > 7 and k < (g2 + g+ 4)/2, are established
and a class of such complete caps is constructed.

1. Introduction and Notation

In PG(n, q), projective space of n dimensions over the field GF(q), consider a
set K of size k such that no three points of K are collinear. The set K is called
a k-cap and when n = 2, a k-arc. A k-cap in PG(n, q) is complete if it is not
contained in a (k + 1) -cap.

The properties of k-caps were first described by B. Segre [6] in 1959, who
also indicated a number of interesting open problems; see also Tallini [7] and
Hirschfeld [3] for their statistical and coding theoretical connections.

For notation and background material on PG(n, q), elliptic quadrics and k-caps
we follow [2] and [4].

We now give some known lower bounds for the number of points on a complete
k-cap (see [4, n. 18]):

(1.1) if K is a complete k-cap in PG(3,q),thenk > /Zg+ 1.
(1.2) in PG(3, q), there exists a complete k-cap with

(¢ +q+49/2 <k< (¢ +3¢+6)/2.
(1.3) in PG(3, ¢q) with g = —1 (mod 4), there exists a complete k-cap with
k=(g*+q+4)/2.

The problem of determining k-caps with k < (g% +q+4) /2 was first considered
by B. Segre [6].

This problem has generated quite a bit of interest and research. See e.g. [4]
18.5. A complete k-cap with k < (g> + g + 4)/2 has been constructed by V.
Abatangelo (1984) for g even and ¢ > 255 [1], but for ¢ odd our problem is still
unsolved.

In this paper we give a first example of complete k-caps of PG(3,q), with
g=7and k < (¢ + g+ 4)/2, and a sufficient condition for the existence of
complete k-caps of PG(3,q),forg > 7 oddand k < (g% + g+ 4)/2 is found.
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2, The Setting

We begin with some relevant definitions which appear for the first time.
Let C be a non singular conic of PG(2,g), with ¢ > 7 odd. The number ¢

is (C, h)-constructable if given any pair of distinct points E, I of PG(2, q) \C

such that:

(2.1) E is an external point of C and [ is an internal point of C,

(2.2) the polar e of E does not contain I,

(2.3) the line B through the points £ and I is a O-secant of C, then there exist
h — 4 distinct points, Py,..., P,_4 of C\{C1,C,}, where C; = t; N C,
i=1,2,andt,,t, are the 1-secants of C through E such that the set

(24) Hy(C,E,Iy={P,...,Pi4,C1,Cs, E, I}isacomplete h-arc of PG(2, ).

It is well known that (see [2, n. 10]) a complete h-arc in PG(2, q), g odd, other
than a conic is such that

(25) h<q—\/g/4+7/4 and (h(h—3)/2) +2 > q.

A triple (E, P,Q) of PG(3,q), with ¢ > 7 odd, is called constructable if the
following (2.6)—(2.9) hold:

(2.6) E is anon singular elliptic quadric of PG(3,¢),

(2.7) P and Q are two distinct points of PG(3, ¢) \ E such that the line PQ is a
O-secant of E,

(2.8) every secant plane, say o;,1 = 1,...,¢— 1, of E through PQ intersects E
in a non-singular conic, say C;, such that, if P is an external (internal) point
of C;, then Q is an internal (external) point of C;,

(2.9) the polar plane of P (of Q), say mp (mq), does not contain Q(P).

It is easy to see that there exist constructable triples ( E, P, Q) in every projec-
tive space PG(3,q),q > 7 odd.

Remark. Let Cp = {m2 N E}\{T1T> } and let Cq = {'iI'Q n E}\{T1T2 }. Itis not

difficult to see that |Cp| = |Cq| = ¢ — 1 and that Cp N Cy is the empty set. Thus,

if L is the set of lines of type A;B;, with A; € Cp and B; € Cq, then
(2.10) |L|=(g- D2
Since 7; is the polar plane of T3, P,Q € 5,1 = 1,2, andnp Naig N E =
{T1, T}, from (2.8), we have that
(2.11) ABijNTy ¢ {PQU@pUmg}, m=1,2.
Our aim is to demonstrate the follow results.

Theorem 1. Let (E, P,Q) be a constructable triple of PG(3,q),q > 7 odd.
If ¢ is (C, h) -constructable, then the set K defined as

q-1

U Hh(ci)PaQ) U {TI,TZ}

i=1

is a complete k-cap of PG(3,q) andk = (¢— 1)(h—2) + 4.
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Corollary. If q is (C, h) -constructable with h < (q* +5q—8) /(2q—2), with
g > 7 odd, then there exists a complete k-cap in PG(3,q) with k < (¢ +q+
4)/2. ’

Theorem 2. In PG(3,7) there exist complete k-caps with k < (g% +q+4) /2.

Remark. Since a h-arc, with h < 6, is never complete (see [2]) the problem of
constructing complete k-caps in PG(3, 5) cannot be solved with our method. For
g = 5, our problem will be dealt in a following paper.

3. Proof of Theorem 1

With our notation, it follows immediately that PG(3,q) = U?;ll o;U{numn}
and that o; N K = Hy(C;, P, Q) is acomplete h-arcof oy,i=1,...,¢— 1.
Thus each point P of 0y, = 1,...,¢ — 1, lies in at least a 2-secant of K. To
show that K is a complete k-cap it suffices to prove that every point Z of n Un
lies in (at least) a 2-secant of K.
The proof shall be given in several steps.
(I) Since P, Q liein (i = 1,2), every point Z of PQ) lies in at least a 2-secant
of K.
(II) If P is an external point of C;, then |[7p NC;| = 2 and, by 2.8, ;g N C; = ¢.
In this case denote by X; p and by Y; p the points of wp N C;. Thus the lines
PX; p and PY; p are tangent to C;. From (2.4), this implies that

X pandY;p liein Hy(C;, P,Q).

Since T; is conained in 7p, ¢ = 1,2, it turns out that #p can intersect exactly
(g —1)/2 of the conics Cj, j = 1,...,q — 1, since |vp N E| = g + 1, it follows
that the non-singular conic C(P) = wp N E is contained in K.

(II) With a similar argument we can prove that C(Q) = mg N E is contained in
K.

(IV) Since C(P)((Cq)) is a complete arc of wp (of wg), by (II) (by (IID)) it
follows that every point of 7p N 7; (of g N %) (i=1,2) lies in (at least) a
2-secantof K.

(V) LetS;betheset PQU {mp N7} U {mg N5} (= 1,2). Itis easily to see
that | S;| = 3¢.

(VI) Letm,i = 1,2, be the tangent planes of E through the O-secant PQ, let
Ti=xNE@=1,2)1etCp = {np N EN\{T1,T3}, and Cq ={mgn
E}\{Tl,Tz}. IfAl,Az lie in Cp,Bl,Bz lie in CQ and A,'Bj f Ath,
then A;Bj N Ty # AnBk N T, Withm, 4,7 = 1,2,

To proof this, we observe that we can choose a frame for PG(3, g) such that:
Ty = (1,0,0,00, > = (0,1,0,0), P = (0,0,0,1),Q = (0,0,1,0) and
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U = (1,1,1,1), where U is a point of ng N E\{T1,T>}. With respect to this
frame, E is represented by

(3.1) 2azy+ b2? + 2czt + di2 = 0.

Thus wp:cz+ dt = 0 and nq: bz + ct = 0.
From (2.8), it follows that U ¢ arp and this implies that

(32) c#—d
Since U € wq, we have that
(33) c=-b andso c#0 and b#0,a#0.

Furthermore, U € E implies that

(349 d+2c+2a+b=0
and, from (3.3), we have that
3.5 d+c+2a=0.

From (3.3) and (3.5), it follows that E can be represented by

(3.6) (1-2v)t2 — 2zt +2vzy+ 22 =0, which 1-2v#0,

where v denotes (a/b).

Furthermore, we have that in PG(3, q)
B T ft—z=0
(3.8 mQ:t—2=0,

where f denotes 1 — 2v.
It is easy to see that each point of g N E can be represented by

(3.9) Ai=(i,i71,1), i=1,...,¢-1
and that each point of np N E can be represented by

(3.10) Bi=(fi Y, i,f,D), j=1,...,q—1.
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Let A;B,, and A; By, be two distinct lines and suppose that they contain the same
pointV = (=, ¢/, 2/, t') of PG(3, g). From (2.11), it follows thatt' # 0 and, if V
lies in n, then ' = 0. From (3.9) and (3.10), after a straightforward calculation
of the cartesian equations of our lines A;B,, A; By, we find that the following
hold:

(3.11) mi! —nj~l1=0

(3.12) il jl=n—m,
and that, necessarily, we have
(3.13) il #n; £m.

Now, we consider the system of the previous linear equations. If we have that

the rank of its matrix
.{fm -mn
M.(l _1)

is < 2, then we obtain that n = m. But this implies that 1 = j and thus 4;B, =
AjBy, which is a contradiction. It follows that rank of M’ = 2 and that the only
solution of our system is given by

(3.19) il=njl=m,

which is a contradiction (see (3.13)).

So our two lines do not contain a same point in 7.

A similar argument proves that the our lines do not contain a same point of 7.
This proves (VI).

(VII) Itremains to show that each point of 7;\S; lies in (at least) a 2-secant of K.
To show this, we observe that |7;\S;] = (¢ — 1)2,4,; = 1,2. Thus, from
(2.10), we have that |L| = |77\ S;|. Hence, from (VI) and (2.11), each point
of 77\ S; lies in exactly a 2-secant A,, B,, of K and our Theorem 1 is proved.

Our Corollary follows immediately from technical details and its proof will be
omitted. . '
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4. Proof of Theorem 2
This follows immediately from Theorem 1 and the next Lemma.

Lemma. If g = 7, then q is (C, 6) -constructable for all non-singular conics C
of PG(2,q).

Proof: Let C be any non-singular conic of PG(2,q), ¢ > 7 odd. Let E and I
be two points of PG(2, ¢)\C such that (2.1)~(2.3) hold. Let A = ¢; N C and let
B=1tNC,werethet;,i = 1,2, are the two tangents to C through E. Choose a
new frame for PG(2, q) as follows:

A=(1,0,0), B=(0,1,0), E=(0,0,1) and I = (1,1,1).

Since ¢ is odd, using homogeneous coordinates, the conic C can be represented
by
zy—kt2=0

where k is a nonsquare of GF(q).

Let A' = {IANC}\{A} and let B’ = {IBNC}\{B}. Since the polar of E is
the 2-secant AB, we have that ] ¢ AB, A' # B and B’ # A. We are now ready
to prove that
(4.1) if B ¢ A'B', then g is (C, 6)-constructable.

Let E' = {A'ENC)}\{A'} and let E" = {B'ENC}\{B'}. Since E ¢ A'B',
itis easily proved thatin GF(7),ork =3 ork = 5,and soor E' = (4,6, 1) and
E'"=(6,4,1)orE' =(2,6,1) and E" = (6,2,1).

From aresult of Lunelli-Sce on complete 6-arcs of PG(2,7) [5], ineither case,
the 6-arc {A, B, E, I, E', E"} is a complete arc.

Finally, if B € A'B’, then the conic C is given by zy + t> = 0. Hence, C
contains the following two distinct points: X = (2,3,1) andY = (4,5,1).
Thus, from the same result [5], the 6-arc {A, B, E, I, X,Y'} is a complete arc and
our Lemma is proved.

From Theorem 1 and from our Lemma, we can to construct complete k-caps of
PG(3,7) with k = 28. But, if ¢ = 7, then (¢> + ¢ + 4) /2 = 30, thus we have
proved our Theorem 2.
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