Complete k-Caps in PG(3,q) with $k < (q^2 + q + 4)/2$

G. Faina

Dipartimento di Matematica Università di Perugia Via Vanvitelli 06100 Perugia Italy

Abstract. It is well known that there exist complete k-caps in PG(3,q) with $k \ge (q^2 + q + 4)/2$ and it is still unknown whether or not complete k-caps of size $k < (q^2 + q + 4)/2$ and q odd exist. In this paper sufficient conditions for the existence of complete k-caps in PG(3,q), for q odd $q \ge 7$ and $k < (q^2 + q + 4)/2$, are established and a class of such complete caps is constructed.

1. Introduction and Notation

In PG(n, q), projective space of n dimensions over the field GF(q), consider a set K of size k such that no three points of K are collinear. The set K is called a k-cap and when n = 2, a k-arc. A k-cap in PG(n, q) is complete if it is not contained in a (k + 1)-cap.

The properties of k-caps were first described by B. Segre [6] in 1959, who also indicated a number of interesting open problems; see also Tallini [7] and Hirschfeld [3] for their statistical and coding theoretical connections.

For notation and background material on PG(n, q), elliptic quadrics and k-caps we follow [2] and [4].

We now give some known lower bounds for the number of points on a complete k-cap (see [4, n. 18]):

- (1.1) if K is a complete k-cap in PG(3,q), then $k > \sqrt{2q} + 1$.
- (1.2) in PG(3,q), there exists a complete k-cap with

$$(q^2 + q + 4)/2 \le k \le (q^2 + 3q + 6)/2$$
.

(1.3) in
$$PG(3,q)$$
 with $q \equiv -1 \pmod{4}$, there exists a complete k-cap with $k = (q^2 + q + 4)/2$.

The problem of determining k-caps with $k < (q^2 + q + 4)/2$ was first considered by B. Segre [6].

This problem has generated quite a bit of interest and research. See e.g. [4] 18.5. A complete k-cap with $k < (q^2 + q + 4)/2$ has been constructed by V. Abatangelo (1984) for q even and q > 255 [1], but for q odd our problem is still unsolved.

In this paper we give a first example of complete k-caps of PG(3,q), with q=7 and $k<(q^2+q+4)/2$, and a sufficient condition for the existence of complete k-caps of PG(3,q), for $q \ge 7$ odd and $k<(q^2+q+4)/2$ is found.

This work was supported by the National Research Council and by the Italian M.U.R.S.T.

2. The Setting

We begin with some relevant definitions which appear for the first time.

Let C be a non singular conic of PG(2,q), with $q \ge 7$ odd. The number q is (C,h)-constructable if given any pair of distinct points \tilde{E} , I of $PG(2,q)\setminus C$ such that:

- (2.1) \tilde{E} is an external point of C and I is an internal point of C,
- (2.2) the polar e of \tilde{E} does not contain I,
- (2.3) the line $\tilde{E}I$ through the points \tilde{E} and I is a 0-secant of C, then there exist h-4 distinct points, P_1, \ldots, P_{h-4} of $C \setminus \{C_1, C_2\}$, where $C_i = t_i \cap C$, i = 1, 2, and t_1, t_2 are the 1-secants of C through \tilde{E} such that the set
- (2.4) $H_h(C, \tilde{E}, I) := \{P_1, \dots, P_{h-4}, C_1, C_2, \tilde{E}, I\}$ is a complete h-arc of PG(2, q). It is well known that (see [2, n. 10]) a complete h-arc in PG(2, q), q odd, other than a conic is such that
- (2.5) $h \le q \sqrt{q}/4 + 7/4$ and (h(h-3)/2) + 2 > q.

A triple (E, P, Q) of PG(3, q), with $q \ge 7$ odd, is called *constructable* if the following (2.6)–(2.9) hold:

- (2.6) E is a non singular elliptic quadric of PG(3,q),
- (2.7) P and Q are two distinct points of $PG(3,q)\setminus E$ such that the line PQ is a 0-secant of E.
- (2.8) every secant plane, say σ_i , i = 1, ..., q 1, of E through PQ intersects E in a non-singular conic, say C_i , such that, if P is an external (internal) point of C_i , then Q is an internal (external) point of C_i ,
- (2.9) the polar plane of P (of Q), say π_P (π_Q), does not contain Q(P).

It is easy to see that there exist constructable triples (E, P, Q) in every projective space PG(3,q), q > 7 odd.

Remark. Let $C_P = \{\pi_2 \cap E\} \setminus \{T_1 T_2\}$ and let $C_Q = \{\pi_Q \cap E\} \setminus \{T_1 T_2\}$. It is not difficult to see that $|C_P| = |C_Q| = q - 1$ and that $C_P \cap C_Q$ is the empty set. Thus, if L is the set of lines of type $A_i B_j$, with $A_i \in C_P$ and $B_j \in C_Q$, then

 $(2.10) |L| = (q-1)^2.$

Since τ_i is the polar plane of T_i , $P,Q \in \tau_i$, i = 1,2, and $\pi_P \cap \pi_Q \cap E = \{T_1,T_2\}$, from (2.8), we have that

 $(2.11) A_iB_j \cap \tau_m \notin \{PQ \cup \pi_P \cup \pi_Q\}, m = 1, 2.$

Our aim is to demonstrate the follow results.

Theorem 1. Let (E, P, Q) be a constructable triple of $PG(3, q), q \ge 7$ odd. If q is (C, h)-constructable, then the set K defined as

$$\bigcup_{i=1}^{q-1} H_h(C_i, P, Q) \cup \{T_1, T_2\}$$

is a complete k-cap of PG(3,q) and k = (q-1)(h-2) + 4.

Corollary. If q is (C, h)-constructable with $h < (q^2 + 5q - 8)/(2q - 2)$, with $q \ge 7$ odd, then there exists a complete k-cap in PG(3,q) with $k < (q^2 + q + 4)/2$.

Theorem 2. In PG(3,7) there exist complete k-caps with $k < (q^2 + q + 4)/2$.

Remark. Since a h-arc, with h < 6, is never complete (see [2]) the problem of constructing complete k-caps in PG(3,5) cannot be solved with our method. For q = 5, our problem will be dealt in a following paper.

3. Proof of Theorem 1

With our notation, it follows immediately that $PG(3,q) = \bigcup_{i=1}^{q-1} \sigma_i \cup \{\tau_1 \cup \tau_2\}$ and that $\sigma_i \cap K = H_h(C_i, P, Q)$ is a complete h-arc of σ_i , $i = 1, \ldots, q-1$.

Thus each point P of σ_i , $i = 1, \ldots, q - 1$, lies in at least a 2-secant of K. To show that K is a complete k-cap it suffices to prove that every point Z of $\tau_1 \cup \tau_2$ lies in (at least) a 2-secant of K.

The proof shall be given in several steps.

- (I) Since P, Q lie in τ_i (i = 1, 2), every point Z of PQ lies in at least a 2-secant of K.
- (II) If P is an external point of C_i , then $|\pi_P \cap C_i| = 2$ and, by 2.8, $\pi_Q \cap C_i = \phi$. In this case denote by $X_{i,P}$ and by $Y_{i,P}$ the points of $\pi_P \cap C_i$. Thus the lines $PX_{i,P}$ and $PY_{i,P}$ are tangent to C_i . From (2.4), this implies that

$$X_{i,P}$$
 and $Y_{i,P}$ lie in $H_h(C_i, P, Q)$.

Since T_i is conained in π_P , i = 1, 2, it turns out that π_P can intersect exactly (q-1)/2 of the conics C_j , $j = 1, \ldots, q-1$, since $|\pi_P \cap E| = q+1$, it follows that the non-singular conic $C(P) = \pi_P \cap E$ is contained in K.

- (III) With a similar argument we can prove that $C(Q) = \pi_Q \cap E$ is contained in K.
- (IV) Since $C(P)((C_Q))$ is a complete arc of π_P (of π_Q), by (II) (by (III)) it follows that every point of $\pi_P \cap \tau_i$ (of $\pi_Q \cap \tau_i$) (i=1,2) lies in (at least) a 2-secant of K.
- (V) Let S_i be the set $PQ \cup \{\pi_P \cap \tau_i\} \cup \{\pi_Q \cap \tau_i\}$ (i = 1, 2). It is easily to see that $|S_i| = 3q$.
- (VI) Let τ_i , i=1,2, be the tangent planes of E through the 0-secant PQ, let $T_i = \tau_i \cap E$ (i=1,2) let $C_P = \{\pi_P \cap E\} \setminus \{T_1,T_2\}$, and $C_Q = \{\pi_Q \cap E\} \setminus \{T_1,T_2\}$. If A_1,A_2 lie in C_P,B_1,B_2 lie in C_Q and $A_iB_j \neq A_hB_k$, then $A_iB_j \cap \tau_m \neq A_hB_k \cap \tau_m$, with m,i,j=1,2.

To proof this, we observe that we can choose a frame for PG(3,q) such that: $T_1 = (1,0,0,0), T_2 = (0,1,0,0), P = (0,0,0,1), Q = (0,0,1,0)$ and

U = (1, 1, 1, 1), where U is a point of $\pi_Q \cap E \setminus \{T_1, T_2\}$. With respect to this frame, E is represented by

$$(3.1) 2axy + bz^2 + 2czt + dt^2 = 0.$$

Thus π_P : cz + dt = 0 and π_Q : bz + ct = 0.

From (2.8), it follows that $U \notin \pi_P$ and this implies that

$$(3.2) c \neq -d.$$

Since $U \in \pi_Q$, we have that

(3.3)
$$c = -b$$
 and so $c \neq 0$ and $b \neq 0$, $a \neq 0$.

Furthermore, $U \in E$ implies that

$$(3.4) d+2c+2a+b=0$$

and, from (3.3), we have that

$$(3.5) d+c+2a=0.$$

From (3.3) and (3.5), it follows that E can be represented by

(3.6)
$$(1-2v)t^2-2zt+2vxy+z^2=0, \text{ which } 1-2v\neq 0,$$

where v denotes (a/b).

Furthermore, we have that in PG(3,q)

$$\pi_p: ft - z = 0$$

$$\pi_Q: t-z=0,$$

where f denotes 1 - 2v.

It is easy to see that each point of $\pi_Q \cap E$ can be represented by

(3.9)
$$A_i = (i, i^{-1}, 1, 1), \quad i = 1, \dots, q-1$$

and that each point of $\pi_P \cap E$ can be represented by

(3.10)
$$B_j = (fj^{-1}, j, f, 1), \quad j = 1, \dots, q-1.$$

Let A_iB_n and A_jB_m be two distinct lines and suppose that they contain the same point V=(x',y',z',t') of PG(3,q). From (2.11), it follows that $t'\neq 0$ and, if V lies in τ_1 , then y'=0. From (3.9) and (3.10), after a straightforward calculation of the cartesian equations of our lines A_iB_n , A_jB_m , we find that the following hold:

$$mi^{-1} - nj^{-1} = 0$$

(3.12)
$$i^{-1} - j^{-1} = n - m,$$

and that, necessarily, we have

$$(3.13) i^{-1} \neq n, j^{-1} \neq m.$$

Now, we consider the system of the previous linear equations. If we have that the rank of its matrix

$$M:\begin{pmatrix} m & -n \\ 1 & -1 \end{pmatrix}$$

is < 2, then we obtain that n = m. But this implies that i = j and thus $A_i B_n = A_j B_m$ which is a contradiction. It follows that rank of M = 2 and that the only solution of our system is given by

$$i^{-1} = n, j^{-1} = m,$$

which is a contradiction (see (3.13)).

So our two lines do not contain a same point in τ_1 .

A similar argument proves that the our lines do not contain a same point of τ_2 . This proves (VI).

(VII) It remains to show that each point of $\tau_i \backslash S_i$ lies in (at least) a 2-secant of K. To show this, we observe that $|\tau_j \backslash S_i| = (q-1)^2$, i, j=1, 2. Thus, from (2.10), we have that $|L| = |\tau_j \backslash S_i|$. Hence, from (VI) and (2.11), each point of $\tau_j \backslash S_i$ lies in exactly a 2-secant $A_m B_n$ of K and our Theorem 1 is proved.

Our Corollary follows immediately from technical details and its proof will be omitted.

4. Proof of Theorem 2

This follows immediately from Theorem 1 and the next Lemma.

Lemma. If q = 7, then q is (C, 6)-constructable for all non-singular conics C of PG(2, q).

Proof: Let C be any non-singular conic of PG(2,q), $q \ge 7$ odd. Let \tilde{E} and I be two points of $PG(2,q)\setminus C$ such that (2.1)–(2.3) hold. Let $A=t_1\cap C$ and let $B=t_2\cap C$, were the t_i , i=1,2, are the two tangents to C through \tilde{E} . Choose a new frame for PG(2,q) as follows:

$$A = (1,0,0), B = (0,1,0), \tilde{E} = (0,0,1) \text{ and } I = (1,1,1).$$

Since q is odd, using homogeneous coordinates, the conic C can be represented by

$$xy - kt^2 = 0$$

where k is a nonsquare of GF(q).

Let $A' = \{IA \cap C\} \setminus \{A\}$ and let $B' = \{IB \cap C\} \setminus \{B\}$. Since the polar of \tilde{E} is the 2-secant AB, we have that $I \notin AB$, $A' \neq B$ and $B' \neq A$. We are now ready to prove that

(4.1) if $\tilde{E} \notin A'B'$, then q is (C, 6)-constructable.

Let $E' = \{A'\tilde{E} \cap C\} \setminus \{A'\}$ and let $E'' = \{B'\tilde{E} \cap C\} \setminus \{B'\}$. Since $\tilde{E} \notin A'B'$, it is easily proved that in GF(7), or k = 3 or k = 5, and so or E' = (4, 6, 1) and E'' = (6, 4, 1) or E' = (2, 6, 1) and E'' = (6, 2, 1).

From a result of Lunelli-Sce on complete 6-arcs of PG(2,7) [5], in either case, the 6-arc $\{A,B,\tilde{E},I,E',E''\}$ is a complete arc.

Finally, if $\tilde{E} \in A'B'$, then the conic C is given by $xy + t^2 = 0$. Hence, C contains the following two distinct points: X = (2,3,1) and Y = (4,5,1). Thus, from the same result [5], the 6-arc $\{A,B,\tilde{E},I,X,Y\}$ is a complete arc and our Lemma is proved.

From Theorem 1 and from our Lemma, we can to construct complete k-caps of PG(3,7) with k=28. But, if q=7, then $(q^2+q+4)/2=30$, thus we have proved our Theorem 2.

References

- 1. Abatangelo, V., Un nuovo procedimento per la costruzione di calotte complete di PG(3, q), q pari, Rend. Mat. Sem. Brescia 7 (1984), 19-25.
- Hirschfeld, J.W.P., Projective geometries over Finite Fields, Oxford Math. Monographs (1979), Clarendon Press, Oxford.
- 3. Hirschfeld, J.W.P., *Maximum Sets in Finite Projective Spaces*, London Math. Soc. L.N. Series 82 (1983), Cambridge Univ. Press, Cambridge.

- 4. Hirschfeld, J.W.P., Finite Projective Spaces of Three Dimensions, Oxford Math. Monographs (1985), Clarendon Press, Oxford.
- 5. Lunelli, L. and Sce, M., Sulla ricerca dei k-archi completi mediante una calcolatrice elettronica, Conv. Int.: Reticoli e Geometrie Proiettive (Palermo-Messina 1957) (1958), Cremonese, Roma.
- 6. Segre, B., Le geometrie di Galois, Ann. Mat. Pura. Appl. 48 (1959), 1-97.
- 7. Tallini, G., Le geometrie di Galois e le loro applicazioni alla statistica e alla teoria delle Informazioni, Rend. Mat. e Appl. 19 (1960), 379-400.