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Abstract. Let H(V, E) be r-uniform hypergraph. Let A C V be a subset of vertices
and define deg y(A4) = |{e € E: AC €}

We say that H is (k, m) divisible if for every k-subset A of V(H), deg g(A) =0
(mod m). (We assumethat1 < k < 1).

Given positive integers r > 2, k > 1 and g a prime power, we prove that if H isr-
uniform hypergraph and |E| > (¢—1) (";') then H contains a nontrivial subhypergraph
F which is (k, ¢)-divisible.

Several variations of this result are discussed.

1. Introduction.

Let H(V, E) be r-uniform hypergraph and f: E(H) — Zy, be a mapping from
the edge set of H t0 Z,, — {0}. Let A C V be a set of vertices and define the
degree of A by deg g(A) = Y 4c. f(e), where we assume from now on that
1<k<r.

We say that H is (k, n, m)-divisible if deg z(A) = n (mod m) for every k-
subset A of V. (Of course, with respect to f in the background). Those for f = 1
and r = 2, H is (1,1,2)-divisible means that every vertex v of H has an odd
degree.

Some special cases of the following questions were posed (ina slightly different
form), by A. Bialostocki in connection with his work on the Zero-sum Ramsey
Numbers, and by Y. Roditty to whom I am indebted for telling me the problems
[BD1, BD2, BD3, BCR].

Problem 1; Given r, k, n, m and r-uniform hypergraph H , and a mapping f: E(H)
— Z* . Find a (k,n, m)-divisible subhypergraph F' with a maximum number of
vertices.

Problem2: Given r, k, n, m and r-uniform hypergraph H, and amapping f: E(H)

— Z*. Find a (k, n, m)-divisible subhypergraph F' with a maximum number of
edges.

Problem 3: Givenr, k,n, m and r-uniform hypergraph H , and amapping f: E(H)
— Z*,. Find a (k,n, m)-divisible subhypergraph F' with a maximum number of
edges and such that also } . f(e) =0 (mod m).

The tools necessary to deal with such problems were developed few years ago
by Alon, Friedland, and Kalai [AFK], where among many interesting results they
proved the assertion of the theorem mentioned in the abstract in the case of graphs.

The main tool in [AFK] which we need here is the following extension and
variation of Chevalley’s theorem [BS].
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Theorem A. [AFK] Let g = p* be a prime power and n be a positive in-
teger. For 1 < i< m let o = (a\”,... ,a{") bea vector with integer coordi-
nates. Suppose m > (g — 1)n then there exists a subset ¢ # I C {1,2,... ,m}
s.L. the following congruences hold

(% E{aj.":ief}so (mod g) for j=1,2,...,n
Moreover, if 37, af” = 0 (mod p) fori=1,2,...,m and m > (q —

j p—l
Dn+ g— q then (%) holds.

Using this theorem they proved in [AFK] the following result.
Theorem B. [AFK] Let q = p? be a prime power and set

h( )_{(q—l)n p odd prime

PPV g-1n—g =21
then every graph G on n vertices and h(n,q) + 1 edges contains a nonempty
(1,0, g) -divisible subgraph (a subgraph in which the degree of any vertex is di-
visible by q, and the edge set of this subgraph is not empty).

The last notion we need before stating our results is the notion of a dense set.
A set F of positive integers is called dense if the following holds

1) 1€F, 2) n¢gF=>n-1¢€F.
2. Results on Problem 1.

We first give some initial results concerning Problem 1. We begin with some
theorems on graphs. Our first result concemns dense sets.

Theorem 1. Let G be a connected graph on at least two vertices, and let F be
adense set. There is a subgraph H C G, |H| > |G| — 1, such that deg yv € F
forevery v e V(H).

Proof: We prove the assertion of the theorem by induction on =, the number of
vertices in a spanning tree T" of G.

For n = 2 the assertion is true. Let T be a spanning tree on n+ 1 vertices.
If already in T', deg rv € F for every v € V(T) we are done. Otherwise, take
an endpoint v and the remotest vertex u from v for which degru ¢ F. Certainly
u is not an endpoint because in this case degru = 1 € F. Delete the edge e,
adjacent to v on the unique path from u to v. We obtain two subtrees H, K and
suppose u € V(H). Now in H, deg yw € F for every w € V( H), including v,
because deg yu = degru — 1 and F is dense. The other vertices in H were left
unchanged.

Apply induction on K (or, otherwise, K is a single vertex) and we are done. |

Remark: The proof of Theorem 1 implies an O( E) algorithm to find a subgraph
HCG,|H|>|G|—1,and deg gv € F. F adense set. Yet a sharper result can
be proved if F' is the set of odd integers.

322



Theorem 2. Let G be a connected graph on at least two vertices, then
(i) if |G| = 1 (mod 2) then there exists H C G, |H| = |G| — 1, s.t.
degyv=1 (mod 2) foreveryv € V(H),
(i) If |G| =0 (mod 2) then there exists H C G, |H| |G| s.t. deggv =1
(mod 2) forevery v € V(H).

Proof: Observe that F, the set of odd positive integers is a dense set. Hence, by
Theorem 1 there exists a subgraph H C G, |H| > |G| — 1 s.t. deggv = 1
(mod 2) forany v € V(H).

(i) If|G] =1 (mod 2) then because of parity consideration there is no sub-

graph H s.t. |H| = |G| anddeg yv = 1 (mod 2) foreachv € V(H).
(ii) We prove the assertion by induction on |G| = 2n. For n= 1 this is true as
G = K. Consider a spanning tree T of G, |T'| = |G| = 2 n. Then of course
e(T) =1 (mod 2), (e(G@) denotes the number of edges of a graph G).
If degrv = 1 (mod 2) for each v € V(T') we are done, else let v be a vertex
having an even degree in T'. Clearly, v is not an endpoint, and let By, B3, ... , By,
k=0 (mod 2) be the branches at v.

Now Y%, e(B;) = e(T) = 1 (mod 2). Thus, at least one of the branches,
say B;, must contain an even number of edges, hence, [B1\v| = 0 (mod 2).
Consider the resulting trees, 7 = B;\v and T3 = T'\T3, both contain an even
number of vertices and induction applies. 1

Remark: Once again Theorem 2 can be implemented in O( E) algorithm. Observe
here that from Theorem 2 we deduce that if G is a connected graph then there exists
asetof edges Ey C Esuchthat|E;| > 1%‘—‘ and F inducesa (1, 1,2)-divisible
subgraph. It is also easy to conclude that if G is a graph such that §(G) > 1
(6(@) = the minimum degree) then G contains (1,1, 2) -divisible subgraph H
such that |H| > %|G).

What about (1, 1, k)-divisible graphs for & > 3?

The following result gives a hint on this question.

Theorem 3. Let G be a connected graph on n > 2 vcm'ces. There exists a
(1,1, k) -divisible subgraph H C G such that |H| > 2% .

Proof: We prove the assertion of the theorem by induction on the number of the
vertices of a spanning tree T of G.

For n= 2 this is true. It is also true for any star K ,, as one can easily check.
Suppose T is not a star, then there is an edge e = (u, v) whose endvertices u, v
are not endpoints of the spanning tree T'. Hence, T'\e results in two nontrivial
subtrees K and H, both of them contain at least two vertices. Apply the induction
hypothesis on K and H to obtain K’ C K and H' c H, both K' and H' are
(1,1, k)-divisible and also |K'| > 2EL |H'| > 2Bl hence, K’ U H' which is
(1,1, k)-divisible satisfies | K’ U H'| > ZIEHAD _ 211 55 peeded. I

k+1
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Theorem 3 is probably not best possible and we conjecture that the following
stronger estimate holds.

Conjecture 1. Let G beaconnected graph, then G containsa (1,1, k) -divisible
subgraph H such that|H| > KJ%L-L)

We conclude the discussion concerning Problem 1 with the following question.

Question 1. Letk > 3 be agiven integer and let G be a k-connected graph. Is
it true that G contains a (1, 1, k) -divisible subgraph H s.t. |H| > |G| — k.

3. Problem 2 and Problem 3.

Recall Theorem A and Theorem B from the introduction and the following well-
known result of Pyber [PYB].

Theorem C. [PYB] Let k > 3 be an integer and let G be a graph on n
vertices and at least cynlog n edges, where ¢, > 0 a constant depends only on
k, then G contains a k-regular subgraph (c; = 32 k? is a valid choice).

Recall also the following extension of Theorem A to a nonprime-power moduli
m.

Theorem D. [AFK, BASM] Let m be a non-prime power integer, and let
n be a positive integer. For 1 < i <t let o = (a{?,... ,a{®) bea vector with
integer coordinates. Suppose t > (cmlog m)n, then there exists a non empty
subsetI C {1,2,...,t} such that the follo wing set of congruences hold.

S{a:ier}=0 (mdm), j=12,..,n

Let k, m, n, r be positive integers, m,r > 2, > k > 0. Define the function
h(n, m, k,r) as follows.

(m=-1(} m=p%,p aprime, () Z0 (mod p)
h(n,m,k,r) =4 (m—1) (Z)—m+% m=p?,p aprime, (;)EO (mod p)
(cmlog m) (:) m#p‘i,c is the constant from Theorem D.

Theorem 4. Let H be r-uniform hypergraph on n vertices and q edges. Let
f:E(H) — Z%. Ifq > h(n,m, k,7)+1 then H contains anontrivial (k,0,m) -
divisible hypergraph.

Proof: . Let [ H]* be the collection of all k-subsets of V.( H).
Clearly, |[ H1*| = (}). For u; € [H]* and e € E(H) define

af‘f)={f(e) u; Ce

0 otherwise.
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For e € E(H) define a‘® = (a{?, ... ,a?) where t = (}). Observe that

t
(e) _ T — . T
Seld = (D=0 o pitp| (5)-

Hence, by Theorems A,C,D, according to the relations between m, k,r, there
exists a non-empty subset E' C E(H) such that

S{recr)=o mot mwra<is ()

The induced r-uniform subhypergraph on E' is a non-trivial (k,0,m) -divisible
hypergraph. |

We are now in a position to give some estimates concerning Problem 2 and
Problem 3.

Theorem 5. Let m, k,r be positive integers such that m > 2,r > k > 0. Let
H be r-uniform hypergraph on = vertices and e edges and let f: E(H) — Zq,.
Then H contains a ( k,0 , m) -divisible subhypergraphs having at least max{0,e—
h(n,m,k,r)} edges.

Proof: If e < h(n,m, k,r) the result is obvious. Suppose e > h(n,m,k,7).
Then by Theorem 4, H contains a nontrivial (k,0,m) -divisible subhypergraph
H,. Pute; = |E(H,)| and consider the hypergraph F' = H(V, E\E(Hy)). If
|E(F)| < h(n,m,k,7) thene; > e — h(n, m, k, r) and we are done, otherwise,
we may use Theorem 4 once more and F' contains a nontrivial (k, 0, m)-divisible
subhypergraph H,, where ez = |E(H2)|. Clearly, E(H1) U E(H3) induces a
(k, 0, m)-divisible subhypergraph on e; + ez edges. This process will terminate
only after the deletion of ( k, 0, m) -divisible subhypergraphs Hy, H, ... , Hysuch
thate; + e; + ...+ e > e — h(n, m, k,7) and, clearly, Ui, E( H;) induces a
(k,0, m)-divisible subhypergraph of H. ]
For the particular case whenr = 2, k = 1, m = 2 Theorem 5 implies that every
graph G contains a (1, 0, 2) -divisible subgraph on at least | E(G) |-1G|+1 edges.
What about (1, 1, 2) -divisible subgraphs?
Theorem 6. Let G be a connected graph on |G| > vertices.
(i) If|G|=0 (mod 2),G containsa(1,1,2) -divisible subgraph H,|E(H) |
> |E(G)| - |G|+ 1.
(ii) If|G|=1 (mod 2),Gcontainsa(1,1,2) -divisible subgraph H,|E(H)|
> |E(GQ)|-2(|G| + 3.
Proof: By Theorem 2, G containsa (1, 1,2)-divisible subgraph H s.t. |H| = |G|,
if |G| =0 (mod 2),and |H|=|G|-1if|G]=1 (mod 2).
() If|G| =0 (mod 2) then delete from E(G) the edges of E(H) to obtain
a subgraph G(V, E(G)\E(H)):=G'.
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By Theorem 5, G’ containsa (1,0, 2)-divisible subgraph F such that |[E(F)| >
|E(G)| - |G"] + 1.
Clearly, E(F) U E(H) is (1, 1,2)-divisible subgraph Q in which |E(Q)| >
|ECH)| +|E(G)| - |G'| +1 = |[E(G)| - |G| + 1.
(i) If|G]=1 (mod 2) the same argument works with slight changes. Recall
- that if G is connected then there exists a vertex v s.t. G\v = H is also
connected. We may lose |G| — 1 edges incident to the vertex v € G\ H.
Also, |G'| = |G| — 1. Taking this in account, the same calculation gives,
[BE(Q)| 2 |[ECH)| +|B(G)| - |G| +1 > |[E(G)| - 2]G| + 3.
|
Remark: Observe that if G is 2-connected and v is a vertex that realizes §( G) then
G'\v is also connected, hence, in this case one can improve Theorem 6(ii) to the
bound | E(G) |- |G|—8(G) + 2. Notice here also that combining Theorem 5 with
the ideas of Theorem 6 it is easy to show that if H is r-uniform hypergraph and H
contains a subhypergraph F's.t. V(F) = V(H),and F is (k, n, m)-divisible and
also |[E(H)| > h(n,m, k,r) + 1 then, in fact, H contains a (k, n, m)-divisible
subhypergraph F s.t.

|ECF)| > |[ECH)| = h(n,m, k,7).

So, for example, if G' has a 1-factor (perfect matching) then G contains a (1, 1 ,9)-
divisible subgraph H s.t. |[E(H)| > |E(G)|—8|G|. This principle can be applied
to graphs having k-factor (k-regular spanning subgraphs) as well.

Now we turn our attention to Problem 3 from the introduction. Recall that
Problem 3 asked for a ( k, n, m)-divisible hypergraph F such that Eee rf(e) =0
(mod m).

Recall the trivial fact that every collection ey, a3, ... , a., Of m integers contains
asubsetthataddstoO0 (mod m). Combining this fact with our results on Problem
2 we obtain:

Theorem 7. Let m,k,r be positive integers, m > 2,r > k > 0. Let H
be r-uniform hypergraph on n vertices and e edges, and let f: E(H) — Zt,.
Then H contains a(k, 0, m)-divisible subhypergraph F s.t. Y ecrm f(e) =0
(mod m) and |E(F)| > max {0, | £ — h(n,m,k,7)]}.

Proof: We may assume L — h(n,m, k,7)] = ¢ > 1, otherwise the assertion
is trivial. Take m disjoint subsets of edges E,,...,E, C E(H) sdt. |Ei| =
h(n,m, k,r) + q. This is possible because | U, E;| < e. By Theorem 5, for
1 < ¢ < m the hypergraph induced by E; contains a (k,0, m)divisible subhy-
pergraph F;, |E(F;)| > g. Foreach1 < i< mleta; = Y cer, f(e). By the pre-
vious remark, in {ay, . .. , a } there exists a subset a;, , ... , a;, S.t. 2};1 a; =0
(mod m).
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Clearly, F' = Ujf:l E(F;) is (k,0,m)-divisible with the additional property
that Y,ep f(€) =0 (mod m), |E(F)| > g. [

The estimate in Theorem 7 can be improved under certain conditions, using the
following theorem due to Erdds, Ginzburg and Ziv [EGZ].

TheoremE. [EGZ] Let m>2 beanintegerand a1,a3,... ,0(t+1)m-1 b
acollection of (t+1)m—1 integers. Then there existsasubset I C {1,2,...,(t+

Theorem 8. Let m,k,r be positive integers,m > 2, > k > 0. Let H be
r-uniform hypergraph on n vertices and e edges. Finally, let f: E(H) — Zj,.
Then H contains a (k,0,m)-divisible subhypergraph F s.t.

_ e
Z;f(e) =0 (mod m),|B(F)| >max {tmlm—h(n.m,k,rﬁ} :

Proof: We may assume l-(tTl)em——T — h(n,m,k,7)] = ¢ > 1 for givent > 1;
otherwise there is nothing to prove.

Take (t+ 1) m— 1 disjoint subsets of edges E; C E(H),1< i< (t+1)m—1
such that | E;| = h(n, m, k,r) +g. This choice is possible because | U; E;| < e.

By Theorem 5 for 1 < i < (t + 1)m — 1, the hypergraph induced by E;
contains a (k,0,m)-divisible subhypergraph F;, |E(F;)| > g¢. As before let
ai =Y oer f(e) 1<i<(t+)m—1.

By Theorem E there exists a subset I C {1,2,...,(t+ I)m — 1}, |I| = tm
S.t. Y 7@ =0 (mod m). ’

Clearly, F = U;cr E(F;) is (k,0, m)-divisible subhypergraph s.t. 3" . = f(e)
=0 (mod m) and |E(F)| > tmq as claimed. 1

Final Remarks

We believe that Problems 1-3, stated in the introduction, deserve more consider-
ation and further ideas must be incorporated to deal with the case of (k,n, m)-
divisibility when n # 0.

We close this paper with two more questions.

Question 2. Lef n, m be positive integers. Does there exist a constant ¢ = ¢y,
such that if G is an m-connected graph, then G contains a (1,n, m)-divisible
subgraph H s.t. |[E(H)| > |E(G)| - c|G|?

Question 3. LetG be a connected graphonn=1 (mod 2) vertices.
Is it true that G contains a (1,1,2)-divisible subgraph H s.t. |E(H)| >
|E(G)| - 2|G| + ¢ (for somec > 0).
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