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Abstract. Bondy and Fan recently conjectured that if we associate non-negative real
weights to the edges of a graph so that the sum of the edge weights is W then the graph
contains a path whose weight is at least 2%, We prove this conjecture.

The celebrated double cycle conjecture [4] states that for any two edge-connected
graph G there exists a set S of cycles of G (not necessarily distinct) such that each
edge of G appears in precisely two of the cycles of S. Bondy [1] has conjectured
that, in fact, in any two edge-connected graph with n vertices there exists such a
set containing at most n — 1 cycles. A necessary condition for this to be true is
that in any two edge-connected graph with n vertices and E edges, there exists a
cycle of length ;f—_ET Actually, Erdos and Gallai [3] proved the following stronger
theorem.

Theorem 1. Let G be a graph on n vertices and E edges. Then
() G contains a path of length %, and
(ii) if E > m, then G contains a cycle of length at least 2%-.

We shall consider the generalization of Theorem 1 to weighted graphs. We
weight a graph G by assigning to each edge e of G a non-negative real weight
w(e). For ease of exposition, if zy ¢ E(G), we say that w(zy) = 0. A graph
which has been weighted is called a weighted graph.

The weight of any subgraph H of a weighted graph G, denoted w( H),is simply
the sum of the weights of the edges of H. The weighted degree of a vertex z in
G, du(2), is just 3, ey W(TY)- The average weighted degree, A,(G) (or
just A,,) of a graph G with n vertices and weight W is just 2—:1 Bondy and Fan
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[2] proposed the following two conjectures which generalize parts (i) and (ii) of
Theorem 1.

Conjecture 1: Let G be a weighted graph with = vertices and weight W. Then G
contains a path of weight at least -2-{! (equivalently, G contains a path of weight
at least A, (Q)).

Conjecture 2: Let G be a weighted two edge-connected weighted graph with n
vertices and weight W. Then G contains a cycle of weight :—_“li

We note that if Bondy’s conjecture about double cycle covers is to hold, so must
Conjecture 2.

In this paper, we prove Conjecture 1. We shall restrict our attention to integer
weights. Having proved the conjecture for integer weights, we can prove it for
rational weights using a simple scaling argument. Using an easy approximation
argument, we can generalize our result from the rationals to the reals. Thus, we
prove the following theorem.

Theorem 2. Let G be a weighted graph such that all the edge weights are inte-
gers. If G has weight W then there is a path in G of weight 2., -

Proof: By a minimal courterexample to Theorem 2 we mean a counterexample
(1) ’"(@i)" such that |V (G)| is minimum,
(ii) with no more edges than any other counterexample with the same number
of vertices,
(iif) with no greater weight than any other counterexample with the same number
of vertices and edges.

We prove this theorem in two steps. First we show that any longest path in a
minimal counterexample is Hamiltonian. Then, we show that any path of length
n— k — 1 in a minimal counterexample has length less than A,(G) — k. This
implies that given a minimal counterexample G, we can obtain a counterexample
of lower weight simply by subtracting one from the weight of every edge of G.
However, this contradicts the minimality of G.

Lemma 1. If G is minimal cardinality counterexample to Theorem 2 then every
path of maximum weight in G is Hamiltonian,

Proof: We begin by stating the following facts which we will use throughout the
proof of Theorem 2.

Fact1. Every vertex in any minimum cardinality counterexample H to Theorem
2 has weighted degree greater than 2{f) .

Proof: If some vertex x of a minimum cardinality counterexample, H, contained
a vertex z such that d,,(z) < 2<%, then A,(H — z) > A,(H). Thus, by the
minimality of H, H — =z contains a path P such that w(P) > A,(H). P is also
apath in H, a contradiction. 1
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Now assume Lemma 1 is false and let G be a minimal cardinality counterex-
ample to Theorem 2 which contains a non-Hamiltonian path of maximum weight.
Let P = {z = po,p1.p2,.--,Pk = y} be such a path.

Fact2. Y spw(zz) =0and},¢pw(yz) =0.

Proof: Pis Qf maximum weight. 1
Fact3. Forl<i<k,if zp; € E(G) then w(zp;) < w(pi—1pi)-

Proof: If i = 1 zp; is p;_1p;. Otherwise, consider the path P’ = {p;_1pi—2,...,

TyPisPi4lyeoey !I}- Since w(PI) S ‘IU(P), w(zPi) ﬁ w(Pi-lPi)- l
Fact4. For0 <i<k-—1,ifyp; € E(G) then w(yp;) < w(p;Pi+1) -
Proof: Analogous to the proof of Fact 3. ]

Fact5. Y ,cpw(zp) + 3 ,epw(yp) > w(P).
Proof: We know that since G is a counterexample to Theorem 1, w( P) < A,(G).
Thus, Fact 5 follows from Facts 1 and 2. [}

Fact6. Forsomeedge p;pi+1 of P,zpiv1 € B(G),yp; € E(G),and w(zpi+1)+
w(yp;) > w(pipis1)- :
Proof: Follows from Facts 3, 4, and 5 by summing over the edges of P. |

Let p;p;+1 beanedge of P suchthatzp;.1 € E(G),yp; € E(G) and w(zp;s1)+
w(yp;) > w(pipi+1). Let C be the cycle z,pir1, pis2, ..., ¥, Pis Pi-1, -+, T
Note that E(C) = E(P) — pipi+1 + Tpi+1 + yp;i. Thus w(C) > w(P). Now,
consider a component A of G — V(P). Let P’ be a path of maximum weight in
A with endpoints a and b. If either a or b sees a vertex of P then we will attempt
to extend P to a heavier path by attaching P’. Otherwise A contains many long
paths and we arrive at a contradiction by appending one of these paths to C.

Case 1: {N(a) UN(b)}NP #0.

Fact 7. For an edge p;jpjs1 of P, w(ap;) + w(bpjs1) < w(pjpjs1). Further-
more, if ap; € E(G) or bpjs1 € E(G) then w(ap;) + w(bpj+1) < w(pjpj+1) —
w(P').
Proof: If neither ap; nor bp;,; is an edge of G then there is nothing to prove. If
both ap; and bpj,1 are edges of G then consider the path P" such that E(P") =
E(P) — pjpjs1 U {ap;} U E(P') U {bpj+1}. Since P is of maximum weight,
w(P) > w(P"). Thus, w(ap;) + w(bpj+1) < w(pjpj+1) — w(P’) as required.
If ap; € E(G) and bpjs1 ¢ E(G) then we shall focus our attention on the
cycle C. If i # j (thatis p;p;s1 is not the edge of P we removed when creating
C), then p;pjs1 € E(C). Consider the path P such that E(P") = E(C) —
pjpj+1 + apj + E(P'). Since P has maximum weight, w(P) > w(P"). Thus,
since w(C) > w(P), we have w(ap;) < w(p;jpj+1) — w(P') as required. If -
i = j then consider the path P” such that E(P") = E(C) —yp;+ap;j+ E(P'). As
before, w(C) > w(P) and w(P) > w(P"). Thus, w(ap;) < w(yp;) —w(P').
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Now, by Fact 4, w(ap;) < w(p;pj+1) — w(P') as required. An analogous proof
yields the required result if ap; ¢ E(G) but bpj.1 € E(G). |

Fact8. If{N(a)UN(b)}NP # Bthen) ., w(az)+Y ,p w(bz) < w(P)—
2w(P’).

Proof: Note that w(bz) = 0 and w(ay) = 0 from Fact 2. Now, from Fact 7,
S0 (w(apdu(bpe1)) < T4 wipipi1) = w(P). Thus, 3,cpw(az) +
Y .ep w(bz) < w(P). In fact,if [N(a) N P|+ |N(b) N P| > 3 then from Fact
7,3 cep w(az) + 3 ,cp w(pz) < w(P) —2w(P’) as required. Furthermore, if
IN(s) N P|+ |N(b) N P| = 2 then the required result again follows from Fact
7, although we may have to interchange the roles of @ and b. If |[N(a) N P| +
|[N(b) NP| = 1 then we can again use Fact 7 to obtain the required result. To wit,
if N(a) N P = p; and N(b) N P = { then, from Fact 7, we have w(pjpjs1) >
w(ap;) + w(P'). Similarly, w(p;j_1p;) > w(ap;) + w(P'). Summing we obtain
w(P) > w(pj-1p;) + w(pjpj+1) > 2w(ap;) + 2w(P'). Thus, Y ,.p w(az) +
Y sep w(bz) < w(P) — 2w(P') as required. [}

Now, we consider the weighted degrees of a and b in G. Since A is acomponent
of G — P, dy(a) + dy(b) = Y ,cpw(az) + Y ,cpaw(az) + ¥ ,pw(bz) +
Y :ea w(b2). Because P’ is a longest path in A, we know (from Fact 2) that
Yeaw(az) =Y, cpw(az) and Y, ., w(bz) = Y, cp w(bz). Furthermore,
by Fact4, " . pw(az) < w(P') and Y, p w(bz) < w(P'). It follows that
du(a) + du(b) < 3 cpwlay) + Y yep w(by) + 2w(P'). Thus, by Fact 8,
duw(a) + dy(d) < w(P). However, by Fact 1, d,,(a) + du(b) > A,(G). This
contradicts our assumption that G is a counterexample to Theorem 2.

Case2: {N(a)UN(D)}NnP=4.

In this case, we show that every vertex of A is the endpoint of a fairly heavy
path. This implies that there are few edges between A and P which lead us to a
contradiction.

Fact9. w(P') > %G

Proof: By assumption Y, , w(az) = 0. Furthermore, since P’ has maximum
weight in A, by Fact 2, } ,.,_pw(az) = 0. Thus, dy(a) = Y p w(az2).
Now, as in Fact 4, )", p w(az) < w(P’). Thus dy(a) < w(P') and by Fact 1,
w(P') > é'éﬂ [ |

Fact 10.  Every vertex z in A is the endpoint of a path P, of length at least 2.

Proof: Since A is connected for any z € A there is a 2 to a path P” in A. Let p}
be the first vertex of P’ on this path. We can create a new path P; by following
P" from z to p; and then following P’ from p} to b. Similarly, we can create a
new path P, by following P" from z to p’ and then going from p' to a along P'.
Clearly w( Py) + w(P,) > w(P'). Thus, by Fact 9, one of P, or P, has weight
at least 2(C) (]
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Fact 11. At most two vertices of P are adjacent to elements of A. Furthermore,
if two vertices of P are adjacent to elements of A then they are consécutive vertices
of P.

Proof.: Let u be a vertex of P which sees some z € A. Let u~ and u* be the
neighbours preceding and following u on the cycle C. Form paths P, and P,
such that E(P;) = E(C) — uu~+uz+ P, and E(P,) = E(C) —uu® +uz+ P,.
By the maximality of P, w(P) > w(P;) and w(P) > w(P,). By Fact 10, this
implies w(uu™) > éﬂ‘%@- and w(uu*) > A"ﬁ@-. Also, clearly v # z,u # y.
Now, by the construction of C, we know that both path edges incident to u have
weight at least 2{® . (In fact if v # p; these are precisely the edges uu™ and
uut*). Since w(P) < Ay(QG), we are done. |

Now let B = {v | v € P,vz € E(G) for some z € A}. We know that |B| = 1
or 2. We shall consider these two possibilities separately.

Case 1: |B|=1.

Let p; be the unique element of B. Clearly j # 0 and j # k. Let z be a vertex
of A such that w(p;jz) = max,ea(w(pju)). Let s = w(p;2).
Fact 12. There is a path P, in the graph induced by p; U V/(A) which has p; as
an endpoint and has weight at least 242

Proof: If s > 2«{@ then let P, = p;z and we are done. Otherwise w(G) <
w(G— A) + w(A) +|Als. By the minimality of G, w(G— A) < 242 .(n—|A])
and thus w(A) > (24 — s) .| A]. Now, applying the minimality of G, we see
that A contains a path P” of weight at least A,(G) — 2s. Since A is connected
there is a path from z to P". It follows that z is the endpoint of a path P, in A
which has weight at least 2272 = 2(Q) _ 5. Now set P; = pjz U P, and we are
done. 1

Now, we can form a path from C U P, by deleting either of the cdges of C in-
cident to p;. Since w(P;) > 24 it follows from the maximality of P that
both edges of C incident to p; have weight at least 222, This implies that
both edges of P incident to p; have weight at least -A-*é@- But, now we have
w(p;pip}) 2 Au(G), a contradiction.

Case 2: |B|=2.

In this case B = {pj,pj+1} with j # 0,j # k — 1. Furthermore, as we saw
in the proof of Fact 11, all of the three edges p;j_1p;, pjpj+1, and pj+1pj+2 have
weight at least 242 We assume that max,e4(w(vp;)) > mazea(w(vpjs1)).
(If necessary we reverse the numbering on P.) Then let z € A be such that
w(psz) = max,ea(w(p;v)) and let s = w(p;2).

Fact 13. ‘There is a path P in the graph induced by p; U V/(A) which has p; as
an endpoint and has weight at least 322(9).,
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Proof: If s > é'§9 then take P; = p;z U P, and we are done. Otherwise,
w(G) < w(G'— A) + w(A) + |A| - 25. By the minimality of G, w(G — A) L
2(9) (n— | A]). Thus, w(A4) > (24 _ 25) . |A|. Now, by the minimality of
G, A contains a path P" of weight at least A,,(G) — 4 s. As before, we can walk
from z to P" and then to one of the endpoints of P". This gives a path p/, in A
with z as an endpoint such that w(p,) > %{S) —2s. Now, setting P; = P!+ p;z,
we see that w(Py) > 2{G _ 5 > 32e(G) 4 required. [

Now, we can form a path from C U P, by deleting either edge of C incident
to p;. It follows that both these edges have weight at least 22¢(S) Thus, both
pj—1p; and p;p;.; have weight at least 22¢(5) But, this implies that w(P) >
w(pj_1P;) + w(P;Pjs1) + w(pja1pjez) > 24O 4+ IO 4 8O - p (), 2
contradiction. 1

This completes the proof of Lemma 1. By Lemma 1, all the heaviest paths in
any minimum cardinality counterexample are Hamiltonian. We now show that in
any minimal cardinality counterexample, the length of a path determines a bound
on its weight.

Lemma 2. Let G be a minimal counterexample to Theorem 2. Let H be the
weight of a heaviest path in G. Any path of weight H — k has at least n— k — 1
edges.

Proof: We prove Lemma 2 by induction on k. Lemma 1 simply says that Lemma
2 istrue for k = 0. Assume Lemma 2 is false and let ¢ be the smallest integer
for which it fails. Now, let G be a minimal counterexample to Theorem 2 whose
heaviest path has weight H. Furthermore, we insist that G contains a path P of
weight H —¢ which has length less thann—t—1. Let P = {z = pop1, ..., pk = y}
be such a path.

Fact 14. No edge of G has weight 0.

Proof: If e is an edge of G with weight 0 then G — e is also a counterexample to
Theorem 2. This contradicts the minimality of G. 1
Fact 15. Every vertex of G has degree greater than 2.

Proof: Assume some vertex z of G has degree at most #. Then, subtract 1 from
each edge of G incident to z thereby obtaining a new weighted graph G'. Now
w(G@) > w(G) - 2. Furthermore, since every heaviest path in G is hamiltonian,
the heaviest path in G’ has weight at most H — 1. This contradicts the minimality

of G. 1
Fact16. N(z) UN(y) C V(P).

Proof: Otherwise we could extend P, contradicting the minimality of t. [ ]
Fact17. |V(P)|> %+ 1.

Proof: Follows from Facts 15 and 16. |
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Fact 18. 'We can find a cycle C on V(P) such that w(C) > w(P) and such
that all but at most one of the edges of P are edges of C. Furthermore, if some
edge pjp;+1 of P is not an edge of P then E(C) — E(P) = {pjy, pj+1z} where
w(pjpj+1) > w(psy) and w(p;pj+1) > w(pjs17).
Proof: Analogous to the proof that such a cycle existed in Lemma 1. [ |
Now,let A= G -V (P).
Fact19. Forv € A,|N(v) N P| > 3.
Proof: Follows from Facts 15 and 17. 1
Fact20. Forve A, ,.pw(vz) < ﬂzﬂ-.
Proof: Letp;p,+1 beanedge of P. We claim thatw(ap;)+w(apj+1) < w(p;pj+1)-
Otherwise, if both ap; and ap;+1 are edges of G we can construct a new path
P' = P — p;pjs1 + ap; + ap;.1. However, in this case w(P') > w(P) + 1
and |P’| = |P| + 1. This contradicts the minimality of ¢. If only one of ap; or
apjs+1 is an edge of G, we can obtain the same result by deleting the edge of C
corresponding to p;pj+1. Now, to obtain Fact 20 we simply sum over the edges of
P. |
Now, let P’ = {a = p},p},...,p} = b} be alongest path in A with endpoints
a and b.
Fact21. w(P') > 2t.
Proof: w(@G) = w(G — A) + w(A) + E:g: w(vz). By FathO,E;,g w(vz) <
(2LQ=t) .| A]. By the minimality of G and t, w(G — 4) < (24@=t)(n—|A)).
It follows that w( A) > t|A|. Thus w(P’) > 2. |
Fact 22, For an edge p;p;+1 of P, w(pjpj+1) > w(ep;) + w(bpj+1) + 1. Fur-
thermore if either ap; or bpj;,; is an edge of G then w(p;pj+1) > w(ap;) +
w(bpjs1) + w(P') —1t.
Proof: We note a # b. If neither ap; or bp;. is an edge of G there is nothing
to prove. If both ap; and bp;., are edges of G then consider the path P with
E(P") = E(P) —pjpj+s1+apj+ E(P') +bpj+1. Sincew(P") < Handw(P) =
H—t,w(P") < w(P)+t. Thus, w(p;pj+1) > w(ap;) + w(bpjs1) + w(P') —t.
If only one of ap; or bp;, is an edge of G we obtain the same result by considering

the path obtained from C and P’ as in the proof of Fact 7. [ |
Fact23. Y ,cpw(az) + Y ,ep w(bz) < (P)—2w(P')+2t—(|V(P)|-3).
Proof: Follows from Facts 19 and 22 by summing over the edges of P. |

Fact24, Y, w(az) + 3,4 w(bz) < 2w(P').

Proof: Note firstthat)", ., w(az) = )", w(az) andalsonote y ., w(bz) =

3" .ep w(bz) by the maximality of P'. Also by the maximality of P', w(apj,,) <

w(p}p},,) and w(bp}) < w(p)p},,) for any edge pjp),, of P'. |
Now, Facts 23 and 24 imply that d,,( @) +d,,(b) < w(P)+2t—(|P|-3). Thus,

du(a) + du(B) < A(G) +t—(|P|-3). But|P| > 2+ 1andt < |A] < 3 —1.
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This implies that d,,(a) + dy,(b) < A,(G), contradicting Fact 1. This completes
the proof of Lemma 2 and thus, as stated earlier, the proof of our main theorem.
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