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1. Introduction.

Suppose that we have a set of v elements and that we select a family F made
up of k-element subsets (these are usually called blocks). Let the cardinality of
the family F be b. Suppose further that we demand that no pair of elements
from the v-set be repeated among the blocks of F and that the number b be as
large as possible. Then we say that we have a packing design of type (2k,v).
The cardinality b is usually denoted by D(2,k,v).

To distinguish this situation from other related problems, we often speak of
this problem as the classical packing problem. This sort of packing is of
interest in its own right, but is also of use in many areas of combinatorics,
such as coding theory.

As an illustration, we readily see that D(2,4,9) = 3, since we can take sets
1234, 1567, and 2589, from 9 elements, but no other 4-sets (this is not a very
effective packing, since it includes only half of the pairs from 9 elements, but
it is the best that we can do). Similarly, we find that D(2,3,6) = 4, since we
can take four triples 123, 145, 246, and 356, but no others. In this second
case, the left-over pairs are 16, 25, 34, and they form a graph known as the
defect graph of the packing. In the special case that the defect graph is null, the
packing becomes a Balanced Incomplete Block design with A = 1.

Of course, the packing problem, like any other problem involving designs,
can be phrased exclusively in graph-theoretic terms: we seek to pack as many
as possible disjoint copies of the complete graph Kk into the complete graph

Ky (cf., for example, the terminology in [1]). From this graph-theoretic point
of view, the packing problem is the problem of minimizing the cardinality of
the defect graph.
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2. The Classical Counting Bound.

Suppose that the defect graph is the null graph. Then every pair of elements
from the v-set occurs in the family of blocks (k-sets). Also, every element
occurs a constant number of times, say r, since counting of pairs involving a
fixed element x of frequency ryx gives the equation

v-1=rgk-1).
Thus ry = (v - 1)/(k - 1) = a constant r.

This particular packing can be called a perfect packing, but was introduced in
Statistics by Frank Yates in 1935 as a Balanced Incomplete Block Design. By
counting the number of elements appearing in the packing array (that is, the
BIBD), one immediately has the result

bk =rv.

Now suppose that the packing is not perfect, that is, the defect graph is not
null. Then each element i has a replication number rj, and the analogue of the

Fisher-Yates result bk = rv is the equation
bk=Zr; (=123..V).

Now let R be the maximum of all the replication numbers rj. Then we can
write down the Counting Bound Equation

bk < Rv.
It is clear that R <[(v - 1)/(k - 1)}, and so we have

bk<vl(v- /- 1)l
Since b must be an integer, we obtain the classical counting bound

bl vl - ik - k.
This bound has been in use for some time (cf. [4]), and evolved independenty
in coding theory [3]. Basically, for small values of k, the exact value of b is
usually equal to this counting bound, or differs from it by only one unit (there
is the very occasional exception). See, for example, [12] for k = 3 and [1]

for k = 4; the results for k = 5 (still incomplete) are the subject of current
studies by Mills and Mullin (see also [2] and [15]).
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Until recently, the fact that studies were made only of cases where k < 5
obscured an important phenomenon, which is somewhat analogous to what
happens in quantum theory in Physics. To put matters very roughly, packings
behave differently according as they are "large" or "small" packings. The
dividing line betwen the two situations occurs at the geometry that exists
when v=k2 -k + 1 and k - 1 is a prime power.

When such a finite geometry exists, the classical counting bound is exact and
gives D(2,k,v) = k2 - k + 1 = v. For values of v greater than k2-k+1, the
counting bound works very well; for values of v less than k2 -k + 1, the
counting bound is extremely poor. So the Counting Bound bears an analogy
to Newtonian Mechanics; it works well for "large" situations and very badly
for "small" situations. Since the dividing line is at the value v = k2-k+1,
we refer to the "small" packings as subgeometric packings. '

Just as one illustration of how poor the counting bound can be, let us look at
the value of D(2,6,26). The counting bound gives us

D(2,6,26) <| 26 25/5)/6] =21.
The exact value of D(2,6,26) is equal to 13.

Basically, the reason that the counting bound is so poor in "small" situations
is that it uses the value R, the maximum possible value for the occurrence of
any element in the packing. But it ignores totally the interaction of the
elements upon one another. This is not important for "large" packings, but is
a very serious drawback for "small " packings. In a "small" packing, the fact
that a few elements occur R (or nearly R) times puts a very severe constraint
on the other elements and does not permit these other elements to appear with
a frequency that is anywhere near R.

In the next section, we shall describe the weight bound which is excellent for
the "small" situations where the counting bound fails to be of use; the weight
bound does take into account the interactions of the various elements and
considers the design as a whole (it does not allow a few elements to take on
high frequencies without considering the effect that such high frequencies have
on the other elements). On the other hand, the weight bound is of no use for
the "large" situations.
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3. The Weight Bound.

The weight bound has recently been developed and employed in a series of
papers [6] - [16]. We shall here give a brief summary of some of its
principal features.

Take a block B in a packing, and define the weight of the block to be the
quantity

w(B)=b-1- Z(rj- 1),

where ihe summation is over all elements of the block B. It is obvious that
w(B) = 0, since w(B) can be interpreted as the number of blocks in the packing
that are disjoint from the block B.

If we add together all the quantities w(B), we obtain the weight of the entire
design as

w(D) = b(b- 1) - Exi@ - 1),

where the summation is now over all v varieties that occur in the design.
Since it is a sum of non-negative quantities, the weight of the design must be
non-negative itself.

Use of the weight approach is made possible by a result on balance, given in
[5]. This is merely a formalization of the fact that one would expect: For a
given value of b, the design of maximum weight has all the rj as nearly equal

as possible. Consequently, if this maximum weight should be negative, the -
value of b under discussion is immediately ruled out. If this maximum weight

is zero, it immediately follows that every block in the design must have

weight zero, and this restriction frequently eliminates certain possibilities.

‘We illustrate how the weight method is used with an example.

Consider D(2,6,26) and suppose, if possible, that a packing in 14 blocks could
exist. Then the number of elements in the packing array is-

bk = 14(6) = 84 = 3(26) + 6 = 4(6) + 20(3).

So the packing of maximum weight would contain 6 elements of frequency 4
and 20 elements of frequency 3. Its weight would be

w(D) = 14(13) - 6(4)(3) - 20(3)(2) < 0.
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Consequently, no packing in 14 blocks is possible; so we next consider the
possibility of a packing in 13 blocks.

For b =13, we have
bk = 13(6) = 78 = 26(3).

So the packing of maximum weight has 26 elements of frequency 3, and has
weight

w(D) = 13(12) - 26(3)(2) = 0.

Thus we see that there could be a packing in 13 blocks, and such a packing is
easily achieved by taking the dual of the triple system with parameters
(13,26,6,3,1). Hence D(2,6,26) = 13. Indeed, since there are exactly two
non-isomorphic triple systems on 13 elements, we have the result that there
are exactly two non-isomorphic packing designs of type (2,6,26).

This result is just a special case of a more general result (cf. [8]): If
(v,b,rk,1) is a legitimate set of parameters for a Balanced Incomplete Block
Design, then the packing number D(2,r,b) = v if and only if the Balanced
Incomplete Block Design exists.

4. Conclusion.

We conclude with a couple of other examples. Consider the case of D(2,7,38)
where the counting bound works out to be 32.

We easily find that a packing design of maximum weight in 20 blocks has
negative weight. On the other hand, if we try b = 19, we find that the packing
design of maximum weight has weight zero and comprises 19 elements of
frequency 4 and 19 elements of frequency 3.

As often happens, this information tells us how to construct the packing
design; the design is the dual of a pairwise balanced design on 19 elements
which appear in 19 blocks of length 4 and 19 blocks of length 3. One such
design can be constructed by cycling, modulo 19, on the two initial blocks
(1,2,4,9) and (1,5,11).
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Our final example is a consideration of D(2,9,69), where the classical counting
bound is 61. The weight bound is 46; indeed, the theorem quoted in the last
section shows that the packing number is 46 if and only if a Balanced
Incomplete Block Design with parameters (46,69,9,6,1) exists. Unfortunately,
this is one of the family of Wallis Designs (cf. [7]), a family about which
relatively little is known.

However, if we take the finite geometry PG(2,8) on 73 points and delete 4

points, no three collinear, together with all lines that contain these 4 specific

points, we are left with a packing on 69 points that contains
73-9-8-7-6=43

blocks. Consequently, we can make the statement that

43 < D(2,9,69) < 46.
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