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Abstract. The set of Lyndon words of length N is obtained by choosing those strings
of length n over a finite alphabet which are lexicographically least in the aperiodic
equivalence classes determined by cyclic permutation. We prove that interleaving two
Lyndon words of length n produces a Lyndon word of length 2 n. For the binary alpha-
bet {0, 1} we represent the set of Lyndon words of length n as vertices of the n-cube.
It is known that the set of Lyndon words of length n form a connected subset of the
n-cube. A path of vertices in the n-cube is a list of strings of length n in which adjacent
strings differ in a single bit. Using paths of Lyndon words in the n-cube we construct
longer paths of Lyndon words in higher order cubes by shuffling and concatenation.

Introduction

Let A be a finite alphabet equipped with a total order <. A string, w, of length

n over A is a mapping w: {1,...,n} — A. Usually, a string w is denoted by
w=ay---a, anwithay,...,a, € Aorby w=a[1]---a[n]. Welet A™ denote
the set of all strings of length » and set

Ax-:UAn

0<n

where A® = {)\}, if ) is the empty string, and A! = A. Weset A* = A* — ). If
w € A* then we denote the concatenation of w with itself & times by w*.
Consider the action of the full cycle permutation = = (12 ---n) on A" given
by
'wk = Qx(1) *** On(n)

foreachw = a; - - - a, € A" Therelationu ~ vifv = 4™ for some non-negative
integer m, is an equivalence relation on A®. The resulting equivalence classes are
often called circular strings. We are especially interested in aperiodic circular
strings. A string w is aperiodic if w # u™ for any nonempty substring u and
positive integer m. A circular string is aperiodic if every word in the equivalence
class determined by the string is aperiodic. A string for which the corresponding
circular string is aperiodic is called primitive. A standard argument by Mobius
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inversion shows that the number of primitive strings of length » constructed from
an alphabet A of cardinality o is given by

3 u(n/d)ot
d|n
and hence the number of aperiodic circular strings is
1 d
s(n,0) = = > u(n/d)a”. )
dn
From (1) we see that the number of aperiodic circular strings over an alphabet
of cardinality o is asymptotic to o™ /= as either o or n approach infinity.
Lexicographical Ordering and Lyndon Words
The set A* can be ordered lexicographically as follows:
Definition 1. Strings u and v in A* satisfy u < v if
v = uv', forsome v' € A* ¥))
or
u=ras,v=rbtand a < b forsome a,b € A,r,s,t € A*. A3)
Lemma 1 contains two well-known properties of the lexicographical ordering.

Lemma 1. If u,v, w, and z are strings in A* then
u < v ifand only if wu < wv, forall w € A* @

and A
if u<vandv # uw' forany v' € A* then uw < vz. o)

Another well-known consequence of the lexicographical ordering of strings is
the following:

Proposition 1. If w,w',w" € A* and w' < w but w # w'u forany v € A*
then
w'w < w < ww'.

We will need the following special case of proposition 1:
If p and q are positive integers and w is a non-constant string in A* then

aPw < w < wh? ©)

where a is any element of A less than the first entry of w with respect to the given
order < on A and b is an arbitrary element of A. 1

48



Definition 2. We denote by L, the set of primitive strings of length n in A™
which are lexicographically least in the equivalence classes determined by cyclic
permutation. The strings in L, are called Lyndon words. By convention we take
Ly = A. We further define L = | Jo<,, Ln-

Lyndon words were first introduced by R.C. Lyndon to define bases for the
quotients of the lower central series of a free group, or equivalently, a basis of the
free Lie algebra [1], [5]. For other applications see [6] and [7].

We list the Lyndon words in L throughn=6:

0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101,
00111, 01011, 01111, 000001, 000011, 000101, 000111, 001011,
001101, 001111, 010111, O11111.

Proofs of the following two lemmas about Lyndon words are contained in [4].

Lemma 2. A string w € L if and only if w = uv for some u,v € L such that
u < v in the lexicographical order determined by a total ordering of the underlying
alphabet A.

If w = uv € A* and u and v are non-empty then v is called a proper right
factor of w.

Lemma 3. A string w € L if and only if w is strictly less than each of its proper
right factor in the lexicographical order of A* determined by a total ordering of
the underlying alphabet A.

Lemma 2 yields a recursive algorithm to generate all the Lyndon words in Ly,
from shorter words, but the same string may be generated in different ways, re-
quiring “look-ups” to avoid repetitions. The first example of this sort occurs in
Ly4:

0011 = (001)1 = 0(011).

Viewed as an algorithm, Lemma 3 would require testing each of o™ strings of
length = to determine L,. Repetitions may be avoided by putting further restric-
tions on the words to be concatenated. For instance, distinct Lyndon words of
length 2n could be generated by requiring that v and v both have length n, but not
all Lyndon words of length 2n would be generated in this way.

J.-P. Duval [3] has given an excellent algorithm which generates all Lyndon
words of length n in lexicographic order. The algorithm requires only the previous
word of the list to be held in memory.

Shuffled Strings

Lemma 2 may also be viewed as providing a “weak” binary operation on L: given
words u,v € L, u # v, then exactly one of uv or vu € L. We study a different
operation which “shuffles” the words of L.
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Definition 3. If v = a; ---a, and v = by -- - b, in A™ then the string
(u ' v) = a1biazbsy - --anb,

in A** is called “u shuffle v”.

We note that Definition 3 is a special case of the shuffle product as defined in
[4; p. 108].

The interleaving described in the definition above can be viewed as an addition
if the alphabet symbols appearing in u and v are interpreted as digits of numbers
which are first appropriately padded with zeros. A convenient way to do this
padding is to change the radix from m to m? and to multiply the digits of u by m
to shift them to the left one position. This leads to an arithmetical characterization
of shuffling.

Proposition 2. Let w = a; ---a, and v = by - - - b, be strings over the alphabet
{0,1,...,m—1}. If

n
(Wm =Y aim™
i=1

and
(W2 = E a;mX™
i=1
then
('ul'v)m=ﬂ""("“')m2 +(v)m2~ (7)

We now turn to some basic facts about shuffled strings and the lexicographical
ordering.

Lemma 4. If w < wy and ws < wqg then

(w | w3) < (wy | wa), ®)

Conversely, if (8) holds then at least one of wy < wy or w3 < ws IS true.

Proof: We compare strings of the same length one alphabet letter a time. Let
Wy =@Q1 Qu, W2 =Dby by, w3 =cCy---Cp, wq =dy---dy. Since w; < wn,
either a1 < by, in which case (8) is true, ora; = b;. In the latter case, we compare
the second letters of the shuffled words. Here, since w3 < wq, either ¢; < d;,
in which case (8) is true, or ¢c; = d;. If a; = b; and ¢; = d; we shift right one
letter and repeat the argument. Since the inequalities postulated were strict, (3) of
Definition 1 ensures that (8) eventually holds.
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Conversely, suppose (8) holds. In Definition 1, (2) is not applicable since
(w; | ws) and (wy | ws) have the same length. From (3) there exists i €
{1,...,n} such that either

a1€1 ---0ic; = bydy - - - byd; and ai41 < bisy ()]
or
aicy ---a; = bidy - - by and ¢iv1 < dys1. (10)
Now, if (9) holds then
ay=by,...,a;=b;and a;e1 < bis1.
In this case w; < w;. In the same way, (10) implies w3 < ws. [ ]

Lemmas5. If u,v € A" and u < v then (u | v) < (v | u).

Proof: We proceed by induction on n. First note for n = 1 thatifa,b € A
and a < b then ab < ba. Now suppose the result is true for strings of lengths
1,....n—1.Ifu=aq;---a, < v= by ---b, then we compare the strings

(u | v) = a1hiazbz - - - an-1bn-1(anby)

and
(v]u) =barbaz ---by1841(bnays).

Eithera; - - - an_1 < b - - - by—1 in which case the induction hypothesis establishes
the required inequality independently of a,, and b, or the initial segments of length
n— 1 are equal, in which case a,, < by, since by hypothesis, u < v. [ |

We observe that u # v implies (u | v) # (v | u) so that Lemma 5 may be
stated with strict inequalities as well.

We next study the periodicity of the shuffle of two arbitrary strings of length
n. For our purposes, we say a string w € A* has period d if w = v™ for some
u € A* with u € A?and m > 1 is chosen as large as possible. Letu = a; - --a,
and v = b; - - - b, and assume (u | v) has period d. If d = 1 then (u | v) = a%"
which implies that v = v = a}. If d = 2 then

aithy =ahp=---= anby

which implies u = o] and v = b}.
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Lemma 6. If u,v € A" and (u | v) has period d, then d even implies both u
and v are periodic with period d/2 . If d is odd then v is a cyclic permutation of
u.

Proof: We have already noted the cases d = 1 and d = 2. We change no-
tation slightly for convenience in this proof only. Set u = a[1] ---a[n] and
v = b[1].--b[n] where a[1],b[j]1 € A. Note that since (v | v) has length
2n,2n=dm forsome m > 1.
If d is even then
(u| v) =a[1]b[1]---a[d/2]b[d/2]al(d/2) + 11b[(d/2) + 1]
---a[d]bld] ---a[n— (d/2) + 11b[n— (d/2) + 1] - - -a[n]b[n].

Hence,
a[11 = a[(d/2) + 11 =---=a[n—(d/2) + 1]
b[1]1 = b[(d/2) + 11 =---=b[n— (d/2) + 1]
a[d/2] = a[d] =---=a[n]
b{d/2) = bl[d]) =--- = b[n].
Therefore,
u=(a[1]---ald/2]D™
v=(b[1]---b[d/2])™.
If d is odd then

(u]v) =a[115[1] ---b[(d — 1)/2)al(d+ 1)/21b[(d+ 1) /2]al(d + 3)/2]
---a[d]bld] ---b[n— (n/2) + 1]a[n— (d/2) + 2] ---a[n]b[n].

Hence,
a[1] = b[(d+ 1)/2] =---=b[n—(d/2) + 1]
b[1] = a[(d+3)/2] =---=a[n—(d/2) + 2]
bl(d—1)/2] =ald] =---=a[n]
4 a[(d+1)/2) = b[d] =--- = b[n].
We conclude that

v=">b[1]---b[n] = a[(d+ 3)/2]---a[nla[1]---a[(d+ 1)/2],

showing that v is a cyclic permutation of u. 1

Conversely, if u has odd period d then there is precisely one cyclic permutation
of u, namely, v = u [%1] ... u[n]u[1] ... u [%5] such that (u | v) has period
d. In all other cases, (u | v) has period 2d.
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Theorem 1. If n> 2 and u,v < L, withu < v then (u | v) € La,.

Proof: We establish first that (¢ | v) is a primitive string. Suppose a cyclic per-
mutation w of (u | v) is periodic with period d. Then w = (v’ | v') for some
strings u,v € A*. It follows that if w is an even cyclic permutation of (u | v)
then ' is a cyclic permutation of  and v’ is a cyclic permutation of v. If w is an
odd cyclic permutation of (u | v) then v’ is a cyclic permutation of v and v' is
a cyclic permutation of u. If d is even then u/,v' are periodic by Lemma 6 and
therefore so are u and v, contradicting the assumption that u,v € L,. If d is odd
then ¢' is a cyclic permutation of u/. Therefore, v is a cyclic permutation of u,
again contradicting the assumption that u,v € L.

To complete the proof, note thatif (u | v) ¢ L2, then some cyclic permutation
of (u | v), say, w = (v’ | v/) € La2qa,and w < (u | v) in the lexicographical
ordering.

As before, if w is an even cyclic permutation of (u | v) then v’ is a cyclic
permutation of u and v is a cyclic permutation of v. But w = (u' | v') < (u | v)
implies by the converse of Lemma 4 that at least one of v’ < u or v/ < v holds,
contradicting either the assumption that u € L, or thatv € L,. If w is an odd
cyclic permutation of (u | v) then ' is a cyclic permutation v™" of v for some non-
negative integer m and v’ is a cyclic permutation 4™ of u for some non-negative
integer p. By Lemma 5, our hypothesis v < v implies (u | v) < (v | u). Thus,
w= (u'|v) < (u|v) implies (v’ | v) < (v | u). Again by the converse of
Lemma 4 we conclude that at least one of ' < u or v’ < v holds. But then either

m
u=v" <v

or
v=u" <u

From Definition 2 we now conclude that either v ¢ L, or u ¢ L, completing

the proof. 1

One can compare the operations of concatenation and shuffling by noting that
concatenation produces a Lyndon word vv from Lyndon words « and v under the
restriction ¢ < v. On the other hand, shuffling produces a Lyndon word (u | v)
under the weaker restriction u < v but requires that u and v have the same length.
In particular, if u is any Lyndon word of length n then (u | u) is a Lyndon word
ifn> 1 but u - u = u? is never a Lyndon word. The following proposition states
an obvious relationship between concatenation and shuffling.

Proposition 3. For any strings wy, w2, w3 and ws € A",
(w1 | w2)(ws | wa) = ((wrws) | (w2ws)).

Paths of Lyndon Words in the N-Cube
We now restrict our attention to the binary alphabet A = {0,1}.
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It was shown in [2] that the set of binary Lyndon words in L,, when viewed as
vertices of the n-cube, form a connected subset. It was conjectured there that for
n > 2 the strings in L,, can be listed so that there is only one bit change between
successive strings. Equivalently, the conjecture states that the subgraph of the n-
cube determined by L, for n > 2 has a Hamilton path; i.e., a path containing
every vertex of the subgraph once and only once. If the conjecture is true then the
storage and generation of binary Lyndon words becomes computationally very
efficient because, for fixed n, only one string need be stored together with a list of
S(n,2) — 1 change digits. We note that Duval’s Algorithm [3] does not provide
a solution to this problem because the lexicographical ordering of L, has many
adjacent words which are not at distance 1 in the n-cube.

Definition 4. The n-cube is the graph whose vertices are the 2™ strings of
{0,1}". The edges of the n-cube are the pairs (o, f) with a,f €:a,B €
{0,1}" and d(a,B) = 1, where d(«, ) denotes the Hamming distance be-
tween o and B; i.e., the number of bits in which o and f differ. Any path in
" the n-cube is an ordered list of vertices wy, ..., w,, where d(w;, ws1) = 1 for
i=1,...,m—1. Apath in L, is a path of the n-cube whose vertices are Lyndon
words.

Theorem 2. If there is a path in L, with m distinct vertices then there is a path
with 2m — 1 distinct vertices in L3 .

Proof: The proofis constructive. If wy, ..., w,, isapathin L, then d(w;, w;) =
1fori =1,...,m — 1. Therefore, d((w; | w;), (w1 | wis1)) = 2. By
Theorem 1 (w; | w;) and (w;s1 | wis1) are in L,. We construct a path in L,
by interpolating between each pair (w; | w;) and (wjs1 | wis1) the vertex (w; |
Wi+1) € Lag if wy < wiyy or the vertex (wiv1 | wy) € Loy if wy > wiss.
Theorem 1 ensures that the appropriate choice in each case is a Lyndon word. If,
for example, w; < w;, then

d((wi | wy), (2 | win1)) = d((w; | wis1), (wis1 | wisr)) = 1.
Note, further, that all vertices of the constructed path in L;,, are distinct since the

initial path of vertices in L,, was assumed to contain only distinct vertices. 1

Repeated application of Theorem 2 leads to longer paths in higher order cubes
but this is not as useful as might be hoped since the number of Lyndon words
increases at the same rate.

Corollary 2.1. Let k be a positive integer. If there exists a path of m distinct
vertices in L, then there exists a path of 2*(m — 1) + 1 distinct vertices in L, kn.

Proof: The kth iteration of the construction of Theorem 3 yields Lyndon words
of length 2 ¥n. An inductive argument shows that the number of words produced
is2km — (2F - 1) = 25(m-1) + 1. ]
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In the following theorem we combine shuffling and concatenation to obtain
longer paths of distinct vertices of Lyndon words.

Theorem 3. Let r and s be positive integers. If there is a path of m distinct
vertices in L,, then there is a path of 2r(m — 1) + 1 distinct vertices in Ly 5.

Proof: Letw,, ..., wy, be apath of m distinct vertices in L,,. With these vertices,
construct a path y;,...,y2m-1 of distinct vertices in Ly, as in Theorem 2. If
y; < 9;+1 in the lexicographical ordering then construct by concatenation the r
strings

259 = 0Py717

Zf‘) = Opy.."l yis1 19

an

r—1

191 = 0Py;y;y 1°
Z,(“) = OPy’T‘” lq,
where p and g are positive integers such thatp+ g = s.
If y; > y;+1 then we construct instead a set of strings similar to those of (11) by
interchanging the roles of y; and y;.;.
The strings thus constructed are in L yn+s:

1 N 2 _(2m-1) 2m-1) _(2m-1
zs),...,zf_)l,z((,),...,z((,"' ,...,zf_'l" ) Z2m=1)

They are seen to be distinct by direct comparison since wy, ..., wy, are assumed
distinct. Since we start with 2 m — 1 distinct shuffles of wy, ..., wn, and we in-
terpolate r — 1 strings between each z$” = 0Py719;i=1,...,2m — 1 there are
2m—1+(2m—2)(r—1) =2r(m — 1) + 1 distinct strings thus constructed.

We now show that each of the constructed strings zt(" is in Lyypes. The zt(')
come in various forms depending on the choices made in the construction of
Yi,---,Y2m-1. Suppose that z{? = 0P(w; | wy)™*(wi | wi1)!19. Then,
yi = (w; I w;) and ys+1 = (w; | wiv1) and y; < yi+1. Now y; is not a prefix of
yi+1, simply because they have the same length. From (4) we obtain y] < v

when we take w = y7~*~! and z = y{]. Now from (6) we obtain

Opy:_t S y:'._t < y:+l S y:-«-llq- (12)

It now follows from Lemma 2 that zt(0 is aLyndon word. The argument is similar
in the other cases.

Note that we have assumed that r and s are positive integers. Thus, for s = p+¢
either of p or ¢ may be zero, but at least one is non-zero. This is required because
the construction would otherwise contain strings y7 which are periodic and so not
Lyndon words.
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