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Abstract. A procedure based on the Kronecker product yields +1-matrices X,Y of
order 8 mn, satisfying X X* + YY* = 8mnl and XY* = Y X* = 0, given Hadamard
matrices of orders 4m and 4n. This allows the construction of some infinite classes
of Hadamard matrices - and in particular orders 8 mnp, for values of p including (for
7 >0)5,97,25 - 9/, improving the usual Kronecker product construction by at least
a factor of 2. A related construction gives Hadamard matrices in orders 4 - 5° . 97,
0 < i < 4. To this end we introduce some disjoint weighing matrices and exploit
certain Williamson matrices studied by Turyn and Xia. Some new constructions are
given for symmetric and skew weighing matrices, resolving the case of skew W(N,, 16)
for N = 30,34, 38.

1 Introduction

We take the definition of the Kronecker product of matrices A = (a;;) and B to
be, in block form,

AQ) B = (a;B). 0]

The following properties of &) will be used without explicit mention throughout
the paper:

e (AQB)(CQ®D)=ACRBD
(A®RB)!=A'QR B!
(AQRQB)+MARC) = ARQ(B +X0)
(ARQB)+MC®B)=(A+XC)R®B
ifAism x kand Bisnx 1then AQ) B is mn x ki

e rank(AQ B) = rank(A)rank(B),
for all matrices A, B, C and any scalar \, whenever the required matrix operations
are defined.

As early as 1867, Sylvester [3] noted that the Kronecker product of what are now
known as Hadamard matrices is again an Hadamard matrix. An n x n 4+ 1-matrix
is called an Hadamard matrix if it satisfies H H* = nl. These are known to exist
only in orders 1, 2 or multiples of 4. Since Seberry [2] has given an asymptotic
result which shows Hadamard matrices exist in orders 2 ¥p for any fixed p, with
k > |2 log, (p—3) ], the question of existence of Hadamard matrices is concerned
primarily with orders 2 *p for p odd and k small. Therefore, we have a (loosely
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defined) notion of the comparative value of constructions for Hadamard matrices
based on the number of factors of 2 introduced, all other things being equal. While
the Kronecker product is of great value in the replication of Hadamard matrices
(in fact, is instrumental in the aforementioned result of Seberry), it has this short-
coming, that every nontrivial direct application of it introduces an extra factor of
22 = 4, Here is a way to improve on this by a factor of two (first noted by Agaian
[1], whose demonstration of it was considerably more involved):

Theorem 1. Given Hadamard matrices of orders4 m and4 n there is an Hadamard
matrix of order 8 mn.

Proof: Write the given matrices in block format as 2 x 1 arrays of 2m x 4m
(respectively, 2 n x 4 n) submatrices as follows:

H K,
= — K = —_— .
f (Hz ) ’ (Kz ) @
The required Hadamard matrix is given by

U=z [+ B @ K+ (1 - ) @ K] )

|
In the verification of this result, we take note that the matrix U constructed
indeed has the right dimensions, and that %—( H, + H;) and l7(1‘11 — H,) are
(0, +1)-matrices which are complementary in the sense that each is zero precisely
in those positions in which the other is nonzero. Moreover, H{H, + HH, =
H'H = 4ml. The rest follows from the properties of the Kronecker product.
In what follows we shall use the more general fact that if a matrix A is parti-
tioned into blocks of rows A;, Az,... Ay then AL A, + AL A +---+ AY Ay =
AtA. '

2 Orthogonal pairs
Definition 1. An orthogonal pair (of +1-matrices) of order k is a pair of k x
k + 1-matrices (X,Y’) satisfying

XY'=0, : )
XXt'+YY'=2kI (5)
It follows immediately that Y X! = 0. Thus (X + Y)(X'+Y) = (X —

Y)(Xt-YY) =2klandso (X + V)X +Y) = (X -Y)(X -Y) = 2kl
Comparing terms, we obtain equations like those in the definition, except that
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the order of multiplication is reversed. Now (4) tells us that the rowspace of Y’ is
contained in the orthogonal complement of the rowspace of X. Thus, rank(X) +
rank(Y) < k. But X + Y is nonsingular, and so rank(X) + renk(Y) > k.
Multiplying the second equation by X X* gives (X Xt)2 = 2 kX X*, and similarly
for YY't. Summarizing, we have the following basic information about orthogonal
pairs:
Lemma 2. An orthogonal pair (X,Y) of order k satisfies:
XYt=YX'=X'Y=Y'X=0,
XXt+YY!= XX +Y'Y = 2kl,

+X +Y . .
each of 1Y +X ) is an Hadamard matrix,
rank(X) + rank(Y) =k,
both X X* and YY* have minimal polynomial * — 2 k.

P

Part 3 of this lemma and the following basic theorem for the construction of
orthogonal pairs demonstrate the useful connection between orthogonal pairs and
Hadamard matrices.

Theorem 3. Given Hadamard matrices of orders 4 m and 4 n, there is an orthog-
onal pair of order 4 mn.

Proof: Let H and K (as in Theorem 1) be partitioned into m x 4m andnx 4n
submatrices as follows:

0 K
2| K
H= Yy | =% | ©)
Hy Ka
Set
1
X = Z[(H1 + H2)' QK1 + (Hy — H2)' Q) Kq), @)
1
Y = S((Hs + Ha) Q) K3 + (Hs — Ha)' R Ka] (8

and observe that the axioms for an orthogonal pair of order 4 mn are satisfied. i

Theorem 1 follows as an easy corollary. At this point we should note that while
the order of an orthogonal pair must be even, it is not necessarily divisible by 4.
Consider, for example, the pair

(1) (C3)
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of order 2 (by convention, “~" is an abbreviation for “—1”). The construction
of orthogonal pairs of orders divisible by higher powers of 2 is a trivial matter,
considering that if (X,Y’) is an orthogonal pair and H is an Hadamard matrix,
(X ® H,Y @ H) is an orthogonal pair.

Here is an intriguing aside, in the light of part 4 of lemma 2: all constructions
the author is aware of produce only orthogonal pairs consisting of two matrices
of equal rank. This is not necessitated by conditions (4) and (5) alone; we may
take, for example, X = 0 and Y an Hadamard matrix. Does the additional (com-
binatorial) condition that X and Y are 4-1-matrices force them to have the same
rank?

3 Disjoint W(2p,p)’s

Definition 2. A square (0,+1)-matrix A is a W(n, w), or weighing matrix of
order n with weight w, if AA* = wl,.

Definition 3. Matrices A = (a;;) and B = (b;;) are disjoint if a;jb;; = O for
all 1,j.

Theorem 4. Let p be a positive integer, (X,Y) an orthogonal pair of order k,
and A and B disjoint W(2p,p)’s. Then AQX + BQY is an Hadamard
matrix of order 2 kp.

Corollary 5. If there are Hadamard matrices of orders 4m, 4 n, and two disjoint
W(2p,p) ’s, then there is an Hadamard matrix of order 8 mnp.

Iterating this result we have:

Corollary 6. If there are Hadamard matrices of orders 4m,,...,4w and a pair
of disjoint W (2p;, p;) 's for each of pi,...,pt—1, then there exists an Hadamard
matrix of order 2**'n; ... mpy ... pe-1. .

As for the existence of disjoint W(2p,p)’s, there are many such cases. For
example, whenever we have an orthogonal design OD(4t; 2t,2t) we can take
p = 2t. Weighing matrices A, B obtained in this way will satisfy AB*+ BA* = 0.
Conversely, any two such weighing matrices determine the corresponding orthog-
onal design. These are known for many orders [2]. However, we do not require
the strong properties of orthogonal designs. Here is another way to produce an
infinite family of these matrices:

Theorem 7. (X,Y) is an orthogonal pair of order 2p if A= %(X +Y),
B = %-(X —Y) is a pair of disjoint W(2p,p) ’s satisfying AB* = BA* (Note:
wecanalsowrite X = A+ B,Y = A— B).

In light of our comments at the end of the introduction, the case of even p is not
as interesting as that of odd p, for which we have the following restriction:



Theorem 8 (Raghavarao, [2]). If n= 2 mod 4 and a W (n, w) exists then w
is a sum of two squares.

Corollary 9. Disjoint W(2p,p) ’s cannot exist for p = 3 mod 4.
Corollary 10. Orthogonal pairs can only exist in orders n=0,2,4 mod 8.

Corollary 9 appears to be the only general restriction on the existence of disjoint
W (2p, p)’s; while there does not seem to be an orthogonal pair in order 10, and
there certainly is no OD(10; 5, 5), there is a pair of disjoint W(10,5)s:

(1111100000 /0000011111\
11 - —-0100 00 000O0T10 11 - -
1 -—-00 0011 10 001 11 02001
1 —-0000 — -0 1 0011 -100 -0
1000 — —-—00 — — 011 -00-100
0100 - -0011Jl1t0-100-100
001 —000 — 1 — 1100 100 00
001 -—0010 -1 1100110 —-200
KOOIO—I-]OO 1 -0 —-—000 0 1 -
0001 -11-20020 \1-100000-1/

©)

A more suggestive way to construct such matrices is to let

(A —A _(B1 —-B

= (3 w)e- (3 &)
where A1, Az, B, B, arecirculants with firstrows (1,1,—,0,0),(0,1,0,0,1),
(0,0,0,1,1) and (1,0, 1, —, 0) respectively.

Turyn [4] considered Williamson matrices A, B, C, D of order p satisfying
AB+CD = AC+BD = AD + BC = 0, showing them to exist in orders
97,7 > 0. We weaken this slightly to include any quadruple of +1-matrices
satisfying: '

i) AA'+ BB'+CC'+ DD'=4pI

i) AB'—BA'= AC'-CA'= BD'-DB'=CD'—DC'=0 (10)

i) AD'+ BC'=0.

This is slightly weaker than the conditions required for the class “W) ” of William-
son matrices in [7], where they are shown to exist in order 25 - 97,7>0.

Theorem 11. If A, B, C, D satisfy (10) then
_(A -B _ (D -C ,
X‘(c D)’Y'(B A) an
is an orthogonal pair of order 2 p.
Combining this result with theorem 7, we have:

61



Corollary 12. For0 < i < 4,j > 0, an Hadamard matrix of order 4 - 5° . 97
exists, and if Hadamard matrices of orders 4 m and 4 n exist, there also exists an
Hadamard matrix of order 8 mnp, with p=5,97,0r 25 -9/,

Corollary 13. Matrices satisfying (10) cannot exist in orders = 3 mod 4.

This last nonexistence result does not seem to be known to either Turyn or Xia.
Moreover, if we require the matrices A, B, C, D in [4] (class “W, ™ in [7]), to
be group matrices (as does Turyn), they are regular with row and column sums
a, b, c, d respectively. Multiplying the defining relations by the matrix of all ones,
we obtain ab+ cd = ac+ bd = ad + bc = 0, a? + b + ¢ + d® = 4p, whence
it follows easily that p is a square. Given the evidence at hand it does not seem
unreasonable to guess that this must hold in general for matrices satisfying (10).

Theorem 14. If H is an Hadamard matrix of order 2n, H;, as in Theorem 1,
and A, B are disjoint W(2p, p) ’s partitioned similarly, then

U

sl @a+in-mr@a) - a2
V=%[(Hl+Hz)'®Bl+(H1—H2)‘®Bz] (13)

is a pair of disjoint W (2 np, np) ’s. Moreover,UV* = +VU" according as AB* =
+BAt.

4 Special types of orthogonal pairs

The defining relations of orthogonal pairs place them somewhere between Hada-
mard matrices and Williamson matrices. In general, we may consider sets of g+ 1-
matrices of order p satisfying A1 A} + - - + A A} = pgl,, A;A} = A; AL Such
matrices lend themselves nicely to similar constructions to ours, utilizing orthog-
onal designs, and many such constructions have been tried. These are generally
based on standard types, such as circulants, symmetric matrices, or those in a “nor-
mal form” such as that for Hadamard matrices in which the first row and column
have all entries equal to 1.

If P and QQ are monomial matrices of the same order as an orthogonal pair
(X,Y), it is easy to verify that (PXQ, PY Q) is also an orthogonal pair. Thus
we see that we may “normalize” the pair by making all the entries in the first row
and column of one of the matrices equal to 1, or those in the first row of one and
the first column of the other, but not simultaneously the first row or column of
both, for this would contradict (4).

A second special type of orthogonal pair derives its inspiration from the 2 x 2

orthogonal pair, (X, X*), where X = ( | 1) . We shall say that X is trans-
pose orthogonal if (X, X*) is an orthogonal pair.
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Theorem 15. If H is an Hadamard matrix and X is transpose orthogonal then
X @ H is transpose orthogonal.

Presently, we shall see another construction for transpose orthogonal matrices, a
bit more interesting than this one in that it produces matrice of orders not divisible
by 8. However, let us first consider the following variation on the Kronecker
product:

Definition 4. Take A;, B; to be, respectively, the ith row of A and the jth col-
umn of B. Then we write, in block form,

AQ B =(Bj4). (14)

The reader may verify that all the basic properties of ) listed in the introduction
hold for @ except the first two, for which we may substitute:
e (A@B)(CoD)=AD@BC
when these are defined, and
e (AoB)'=B'o A"

Theorem 16. If H is an Hadamard matrix of order 4n with H;,i=1,...,4 as
in Theorem 3 then X = }[(H) + H3)' @ Hy + (H, — H;) @ Ha] is transpose
orthogonal of order 42,

Transpose orthogonal matrices may be applied in the construction of skew weigh-
ing matrices as we now illustrate. Let A, B, C be, respectively, the matrices

L LSSy e
- 1100 -1 11 11
10 -0 -0 1
1 - 1100 11 - -
01 -—00 1 — .
-1 110 0 }°{1 -1 -
010 - 101
001 — 11 1 - -1
o0l - =10 00 - 111
100 -0 - —
Then choosing W to be one of

0 A0 0 A O 0 A O
(0 0 B),(O 0 C),(O 0 C),
B 0 O B 0 0 c 0 0

we make W equal to any of a W(15,4),aW(17,4),oraW(19,4) which s, in
each case, disjoint from W*.

Theorem 17. If W, W are disjoint W(n,w) ’s and X is transpose orthogonal
of order k, then U = W @ X + W* @ X! is a symmetric (in the case of “+*) or
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skew (in the case of “— ") W (nk,2wk). In particular, skew W (N, 16) exist for
N =30,34,38.

These orders are mentioned specifically because in spite of having small order
they are listed as unresolved in [2]. The second one gives some hope that dis-
joint W(34,17)s exist, strengthening theorem 4, since in this case U + I is a
W(34,17), which is also listed as unresolved.

A third special type of orthogonal pair occurs when the two matrices are sym-
metric. We call such a pair a symmetric orthogonal pair. An example of a sym-
metric orthogonal pair is the one of order 2 given in section 2.

Theorem 18. Under the hypotheses of theorem 16, X = -;-[(Hl +H)'QH +
(Hi—H2) @ H2),Y = 3[(H3+ H4)' @ H3 + (H3 — Hy) @ Ha] is a symmetric
orthogonal pair of order 4n? .

Unfortunately, while this makes it easy to construct symmetric Hadamard ma-
trices of order 8%, there is no way of simultaneously guaranteeing a constant
diagonal [6], which would be of interest to graph theorists, since a symmetric
Hadamard matrix with constant diagonal corresponds to a special class of graphs
[5] (however, these conditions are satisfied by the matrix H* @ H of order 16 ).
On the other hand, the diagonal is well-behaved in thattr(X) = tr(Y) = 0. We
also have an analogue of theorem 17:

Theorem 19. If V,W are disjoint symmetric (respectively skew) W(n, w) ’s
and (X,Y) is a symmetric orthogonal pair of order k, then X QV + Y QW
is a symmetric (respectively skew) W (nk, wk).
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