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Abstract. For any tree T lety(T) represent the size of a minimum dominating set.
Let Ep represent the collection of trees with the property that, regardless of the choice
of edge e belonging to the tree T, 4(T — €) = 4(T). We present a constructive char-
acterization of Ey. )

Introduction.

We begin with some definitions and terminology. A set S of vertices of a graph
G is a dominating set if every vertex of G is either in S or adjacent to a member
of S. Let 4(G) be the cardinality of a dominating set of minimum size. We shall
say D is an-set of G if D is a dominating set and | D| = 4(G).

As we are interested in the effect of removing edges it will be useful to call
an edge essential if 7(G — e) > ~(G) and not essential otherwise, that is, if
(G — €) = 9(G). Ey is the collection of trees T' in which no edge is essential.
For instance, the paths of order 4 and 7 as well as the graph F,,,, m > 2, in Figure
larein Ep.

In [3] Fink, Jacobson, Kinch, and Roberts, introduced the bondage number of
a graph as being the cardinality of a smallest set of edges whose removal from G
results in a graph with domination number greater than 4(G). They proved that
any tree has bondage number 1 or 2, and pose as an open problem classifying trees
of bondage number 2. Ej is the collection of trees that have bondage number 2.

Other authors have considered similar problems related to adding or deleting
edges or vertices in graphs and investigating the effect on various graphical pa-
rameters. See [1], [2], and [6]. In [5], Haynes, Lawson, Brigham and Dutton
study minimum and maximum degree, maximum clique size and vertex and edge
independence under adding or deleting a single edge. In [4] Gunther, Hartnell,
and Rall give a constructive characterization of the two classes of trees whose
independence number is unchanged under single edge addition or deletion.

The notation P, will represent a path on n vertices. We shall use the expression
attach a P, say [z, y] to a vertex, say v, in a tree T' to refer to the operation of
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joining the vertices x and v by an edge. Similarly, to attacha P;,say [z,y,2],t0
v refers to joining = and v by an edge.

An important tree in the work that follows will be called F,,. This tree can be
viewed as being formed from m copies of P, , each of the form [t;, y;, s;, 4], and
a single vertex, say w, which is joined to each y; (see Figure 1).

w
Figure 1

When we say that we attach Fy, to a vertex v in a tree T we mean that v and w
are joined by an edge.

A vertex v of a tree T" will be called a level vertex of T if v(T ~ v) = 4(T)
and a down vertex if y(T' — v) < 4(T).

As we shall demonstrate how to build larger trees in Ep from existing ones we
need to consider the following 4 operations on a tree T':

type (1): Attach a P, to T at v where v is a level vertex of T belonging to at
least one «y-set of T'.

type (2): Attach a P; to T at v where v is a down vertex of T'.
type (3): Attach F; to T at v where v belongs to at least one y-set of T'.
type (4): Attach Fy,, m > 2,to T at v, where v can be any vertex of T'.
Finally,letC = {T |TisatreeandT = K1,T = P4,T = Fy, forsomem > 2,
or T can be obtained from P4 or F,;, (m > 2) by a finite sequence of operations
of type (1), (2), (3),0r(4) }.

It will be shown that Ey and C are identical.

Preliminary results.

To understand the structure of a tree from Ep it is necessary to know something
about the effect of vertex removal on the domination number. Although in general
the removal of a vertex can result in the domination number increasing, in our first
lemma we prove that if a tree T has no essential edges, then each vertex of T is
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either a level vertex or a down vertex. The first statement of the following result
is Corollary 3.1 of [3]. Its proof is included here for completeness.

Lemma 1. If T isatreein Fy, then no vertex of T can be adjacent to more than
one leaf. Furthermore, for any vertex v of T, y(T — v) < y(T).

Proof: LetT be a tree in Ep. Assume w is a vertex in T' with two leaves, say w;
and w», attached. Without loss of generality, we may assume that w belongs to a
~-set of T'. Clearly, there is a y-set of T' — ww;, which includes both w and wy,
and hence, (T — ww;) > q(T), a contradiction.

If some vertex v of T has the property that 4(T" — v) > «(T'), then v must be-
long to every «y-setof T'. Let D be any y-set of T'. Suppose N (v) = {v1,v2,..., v}
In the forest T — vv; let T; represent the component which contains v;, and let S;
represent the component which contains v.

If4(T;) < |DNV(T;)| forevery j,1 < j < k, then choose a y-set M; of T;.
U;Ll M is ay-set for T — v and yet |U}=1 M;| < E;L, IDNV(Ty)| =T -1,
a contradiction. Therefore, fix 1 with 1 < i< kand so thaty(T}) > |DNV(T3)|.
(In fact, v(T3) = |DNV(T;)| + 1.) Since T belongs to Eg, 7(T) = 4(T — vv;)
and it then follows that 4(S;) < |D N V(S;)|. Thatis, there is a y-set D; of S;
with cardinality less than |D N V(S;)|. This implies that D; does not include v.
But if we consider a y-set, say Ds, of T;, we then can form a -set of T, namely,
D1 U D,, which does not contain v, a contradiction. Hence, for every vertex v of
atree T in Ey it is the case that y(T — v) < y(T). [ |

Lemma 2, IfT isany treein Ey and v is a vertex of T witha P, attached at v,
then v is a level vertex of T'. Furthermore, there is a ~y-set for T which includes
v.

Proof: Let 4(T) = nwhere T is a tree in Ey and v is a vertex of T" with a P,,
say [z, y], attached. Suppose v is a down vertex. Then v(T — v) = n— 1. Let
D be aqy-set for T — v. Assume without loss of generality that z € D. But then
D is a dominating set for T of size 4(T") — 1, a contradiction. Therefore, such a
vertex v must be a level vertex of T'.

Also v belongs to some 4-set of T'. This can be seen by taking a -set, F,
for T — zy. We may assume v € F (since either z or v must be in F'). Now
|F| = 4(T — zy) = 4(T) since T € Ey. Therefore, Fisaqy-setof Tandv € F.

|

Lemma 3. If T belongs to Ey and a vertex v of T has a Py attached, then u is
a down vertex of the tree T' obtained from T by removing the P;.

Proof: Denote the P; attached at u by [v, w, z]. Let 4(T) = n. Theny(T") =
n—1. Lete = zw. SinceT € Ep,y(T—e) = n. Let Dbeavy-setforT—e. z € D
and we may assume thatv € D. Then |[DNV(T')|=n—2.Ifu € DNV(T")
then D NV (T") is a dominating set for 7" of cardinality n — 2, a contradiction.
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This implies u € DNV (T"). Therefore, DNV(T') C V(T'—u) and DNV (T")
is adominating set of 7' —u. Theny(T" —u) < |DNV(T')| = n—2 = 4(T") -1
and so u is a down vertex of T". 1

The next four lemmas will be needed in our characterization of trees in E,. Col-
lectively they show that the class of trees in Ey is closed under the four operations
specified in the Introduction.

Lemma 4. If T belongs to Eo and S is the tree obtained from T by a type (1)
operation, then S belongs to Ey.

Proof: Suppose T' € Fy and v is a level vertex of T which belongs to at least
one -set of T. Let S be the tree obtained from T by attaching a P, , say [z, y]
atv. Since v is a level vertex of T, 4(S) = 4(T) + 1. If e € E(T) and D is
aq-set for T — e, then D U {z} is a dominating set for S — e. This implies that
(S—e) < |DU{z}|=|D|+1=~(T —e) +1=~(T)+ 1= ~q(8S). Therefore,
e is not essential in S.

Let D' be ay-setfor T withv € D'. |D'| = 4(T). D" = D'U {y}isa
dominating set for S — e for e = vz or e = zy. Thus, 4(S —e) < |D"| = |D/|
+1 = 4(T) + 1 = 4(S). Hence, neither e = vz nor e = zy is essential in S.
Therefore, S belongs to Ey. [ ]

Lemma 5. If T belongs to Eo and S is the tree obtained from T by a type (2)
operation, then S belongs to Ey.

Proof: Let T be a tree in Ey and v be a down vertex of T". Let S be the tree
obtained from T by attaching a P;, say [z, y, 2], to T at v. First we note that
A(8S) = 4(T) + 1. Let D be a y-set of T — v. Since v is a down vertex of T,
|D]=4(T) - 1.

Ife = vzore = zy,let D' = DU{v,y}.Ife = yz,let D' = DU{z, 2}. Ineach
of these cases D’ dominates S —eandsoy(S—e) < |D'| = |D|+2=~(T) +1
= ~(S). On the other hand, if e € E(T), let D be a 4-set for T — e. Now
|D| = 4(T —e) = 4(T) sinceT € Ey. Let D' = DU{y}. As D' is adominating
setfor S — e wehave (S —€) < |[D'| = |D|+ 1 =4(T) + 1 =4(8S).

Hence, for alle € E(S),4(S — €) = 4(S), and so S belongs to Ey. 1

Lemma 6. If T belongs to Ey and S is the tree obtained from T by a type (3)
operation, then S belongs to Ey.

Proof: LetT be atree in Ey and v be a vertex of T which is in at least one ~y-set
of T. Let S be the tree obtained from T by attaching Fy, say [w,t,y, s, u] atv,
where t and u are of degree one and y is of degree three with neighbors ¢, s, and
w. Observe that v(S) = 4(T) + 2.

Ife € E(T),thenlet Dbea~y-setof T — eand D' = DU {y,s}. We have
|D'|=|D|+2 =T —e)+2=+(T) +2=~(S). But D' dominates S — e s0
(S —e) = (S) forthe case e € E(T).
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If e € {vw,wy,ys}, then let D be a 4-set of T which includes v, and let
D' = DU{y, s}. Certainly | D'| = |D|+ 2 = 4(T) + 2 = 4(S) and D’ dominates
S —e. Ife = yt choose D' = DU {t,s} and if e = su select D' = DU {u,y},
where again D is a 4-set of T which includes v. As before D’ dominates S — e
and |D'| = |[D|+ 2 = 4(S).

Therefore, foralle € E(S),v(S — e) = 4(S) and, hence, S belongs to Eo. 1

Finally, we show that a type (4) operation maintains a tree’s membership in Ey .

Lemma 7. If T belongs to Ey and S is the tree obtained from T by a type (4)
operation, then S belongs to Ey.

Proof: Let T be a tree in Ep and v be an arbitrary vertex of T'. Let S be the tree
obtained from T by attaching Fy,, for m > 2, say [w,t1,¥1,81,%1, .-+ ,tm, Ym,
Sm, U] at v. First observe that 4(S) = 4(T) + 2m. Consider any edge e €
E(S).

Ife € E(T),let Dbean-setforT—eandlet D' = DU{y1, 81,¥2,52,--- ,Ym,
8 }. Since D' dominates S — e we have 4(S —e) < (T) + 2m = y(S).

Ife € E(S)—E(T),let Dbea~-setforT and D; = {y1,81,¥2,82,+++ »Ym,
Sm}. Ife= vw,e = wy; ore = y;s;,forsomeior j,let D' = DUD;. Ife = s;u;,
for some i, let D; = (D1 — {s;}) U{u;} andlet D' = DU D,. If e = y;t;, for
some i, let D3 = (Dy — {y;}) U{t;} and let D' = D U Ds. In each case D'
dominates S — e which implies that 4(S — e) = 4(S).

Hence, no edge e of S is essential in S, and so S belongs to Ep. ]

The characterization.
We are now ready to establish our main result.

Theorem 1. The family Ey is contained in C.

Proof: It is straightforward to verify that every tree of order 9 or less which be-
longs to Ey is also in C. Assume that if T is a tree in Ep on fewer than n (where
n is an integer and at least 10) vertices, then T belongs to C.

Now let T" be a tree of order nwhere T € Ey. Choose a leaf, say v, at the end
of a longest path in T'. Let s; be the unique neighbor of vy in T'. Since s; cannot
have 2 leaves as neighbors by Lemma 1, it follows that degr(s;) = 2.

Let vy, 31, a and b be the four vertices at the end of this longest path where a is
adjacent to s; and b. Exactly one of the following two cases must hold.

(I) a has a leaf as a neighbor, or
(II) a is not adjacent to a leaf.

'We consider these separately as follows:

(I) Suppose a is adjacent to a leaf v;.
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(b)

(a) Figure 2

(a) In addition assume a has at least one other P, (other than [s;,v;]) attached
(see Figure (2(a)).

LetT' = T — {v1, 81 }. Thus, 4(T") = 4(T") — 1. First we show that T' € Eyp.
Let D be aq-setfor T". Hence, |D| = 4(T") — 1 and we may assume without loss
of generality that z; € D andthata € D.

If e = oz, then D is a dominating set for T — e which implies that (T —e) =
wT).

Ife = z1z3, then D' = (D — {z1}) U {z2} is a dominating set for T" — e.
Again y(T' — ) = (T").

Ife € E(T'), e # a1, e # 1113, then let D be a y-set for T — e. Now
|D| = 4(T), since T € Ey. Assume without loss of generality that s; € D,
z1 € D. Butthen D' = D — {s1} is a dominating set for T' — e implying
WT' —e) < |D'| = 4(T) — 1 = 4(T") which means v(T" — e) = 4(T").

Thus, foralle € E(T"),y(T' —e) = y(T") and so T' € Ey.

By induction, 7' € C. By Lemma 1 vertex a is either level or down. Since a
has a leaf as a neighbor, it follows that a is a level vertex and must also belong to
at least one ~y-set of T". Hence, T' can be obtained from T" by a single Type (1)
operation, thus, implying T belongs to C.

(I)(b) Assume a has no other P, (other than [ sy, v1]) attached and, hence, degr(a)
3 (see Figure 2(b)).
(D(®)(1) Assume b is adjacent to a leaf v3 (see Figure 3(a)).

LetT' =T — {v1,s1}. Thus,4(T") = v(T) — 1.

Lete € E(T'). Since a and b each have a leaf as a neighbor, we can choose
a ~-set, say D, for T — e in such a way that at least one of a and b belongs to
D. Now (T — e) = 4(T) so |D] = 7(T"). Note that a is dominated by D' =
D — (DN {s1,v1}). Therefore, D' is a dominating set for T — e and it follows
that (T — e) = 4(T").
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Figure 3

Thus, T' € Eo and so by the induction hypothesis, ' € C. Since vertex a is
adjacentto aleaf and 7' € Ey, it follows that a is level and belongs to at least one
~-set of T'. Hence, T can be obtained from T” by a single Type (1) operation and
it follows that T € C.

@M(@®)(2) Assume b is not adjacent to a leaf but has a P, say [z, z2], attached
(see Figure 3(b)). ’

LetT' = T — {v1,81,0,v2}. Hence, y(T') ='4(T) — 2. If e € E(T") but
e # bz and e # =z 22, then we can select a y-set D for T' — e in such a way that
zy € D. Bt D' = D~ (DN {v1,s1,a,v12}) = DNV(T") is a dominating set
for T' — e. This implies y(T' — €) = y(T").

Suppose e = bxy ore = z1z2. Let D be a 4-set for T — z1z,. Assume
without loss of generality thatb € Dand z; € D. Then D' = DNV(T') is a
dominating set for T" — e. Since T' € Ey, |D| = 4(T) = |D'| = 4(T) — 2 and
s0Y(T' —e) = y(T).

Therefore, T € Eo. By the induction hypothesis 7" € C. By Lemma 2, bis a
level vertex in T" and belongs to some «y-set for 7",

Thus, we can obtain T from T" by 2 applications of a Type (1) operation. That
is, first attach P, at b and then attach P ata. Hence, T € C.

(D(®)(3) b is not adjacent to a leaf of T', b has no P, attached but degr(b) > 3.

Since v; was chosen to be the end of a longest path in T", we need only consider
the following three subcases.

Subcase (i)
Suppose b has a neighbor, say z, of degree r + 1 (r > 1), whichhas r» P,’s
attached, say [y1,21], [y2,22], ..., [yr, 2/] (see Figure 4).

7



But this is a forbidden structure in a tree in Eo, for if 1 < § < r then any ~-set
for T must contain one of y;, z;. Therefore, if D is a 4-set for T', we may assume
that s1,a,91,¥2,... ,4 € Dand [DN {vy,s1,a,v2,z,91,...,9r, 21,... 2}
=r+2.

Howevér,ife = y12; theninT —e, if D' isay-setfor T—e, |D'N{v1,s1,a,v2,
T, Y1y« yYUry 21,... , zr}| = 7+ 3, acontradiction. [If D’ could be chosen so that
IDInV(T_ {01,81,0,1)2,2,![1,... yUry 215400 9zr})| < 'Y(T) —(r+ 3), then
one could construct a dominating set for T of cardinality strictly less than 4(T’).]

Figure 4

Subcase (ii)

Suppose b has a neighbor, say z, of degree  + 2 (r > 2), which has r Py,
say [y1,21],...,[yr, 2,] as well as a leaf, say w, attached (see Figure 5(a)).

(a) ®)

Figure 5
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But this is case (I)(a) with the role of a in (I)(a) taken by z here. Hence, within
this case we are left with only the following possibility.

Subcase (iii)

Suppose b is of degree » + 2 (r > 1), and b has r neighbors, other than a of
degree 3, say z1,... ,Z,, where each z; has a leaf, say w;, and a P, say [y;, 2],
attached (see Figure 5(b)).

LetT' =T — {v1,81,8,v2,b0,T1,ccc , Tr,Y1,eee ,YrsWiyeon y Wy  21,0en y 2r ).
Now 4(T") = 4(T) — 2(r + 1). First we show that 7' € Ey. Lete € E(T")
and let D be a y-set for T — e. One may assume that {s1,a,Z1,... , Tr,¥1,... ,

v} C D,b ¢ D, and that | DNV(T')| = 4(T) — 2(r + 1).. (Note: we can
replace b by m in D, if necessary.) But then D' = DNV (T") is a dominating set
for T' — e which implies that y(T" — e) = 4(T"). Therefore, T' € Ey.

Now by the induction hypothesis " € C. But then T is obtained from T"
by a single application of a type (4) operation which implies that 7' € C. This
completes (I)(b)(3).

M(®)(4) degr(b) = 2. That is, we have the structure illustrated in Figure 6.

Figure 6

LetT' = T — {a, 81, v1, v2, b}. Clearly 4(T") = 4(T") — 2. Lete = ab. Since
T € E there exists a 4-set D for T — e with cardinality 4(T —e) = 4(T). Since
bisaleafin T — e, either b € D or m € D. Assume without loss of generality
thatm € D. But D is alsoay-setforT". Let D' = DNV (T"). Then D' is ay-set
for T’ and m € D'. Thus, m belongs to a ~y-set for T".

Lete € E(T') andlet D be a y-set for T — e. Since T' € Ey, |D| = 4(T —e)
= ~4(T). We may assume without loss of generality that s; € D, a € D, and
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b & D (if necessary replace b in D by m). Then D' = D NV (T") is a dominating
set for T' — e implying that y(T' — e) = 4(T"). Therefore, T' € Ej. '

By the induction hypothesis T € C so since T' is obtained from T” by a single
application of a type (3) operation, T € C. This completes case (I) where a has a
leaf as a neighbor.

(ID) Suppose a has no leaf as a neighbor.
(@) degr(a) > 3. Then a must have a P, say [ z, y], attached (see Figure 7(a)).

1

(a) (b)
Figure 7

By Lemma 2, a is a level vertex of T. LetT' = T — {v1,31 }. Then 4(T") =
~(T) — 1. First we show that T' € Ep. Let Dbeay-setfor T — zy. T € E,
$0 |D| = 4(T). We may assume that s; € D,y € D and a € D. Now consider
e € E(T").

Ife = axore = zy, then D' = D— {3, } is a dominating set for T' — e implying
(T — e) = 7(T") so e is not essential in 7'. A similar argument holds for any
other e belonging to a P; attached at a. Suppose e is any other edge in T” (that is,
one not on a P, attached at e). If M is ay-setfor T — e, then M' = M N V(T")
is a dominating set for 7' — e. Hence, 1(T' — €) = 4(T") so e is not essential
in T". Therefore, T' € Ey. By the induction hypothesis, " € C. By Lemma
2, a belongs to some 4-set for T'. Since T can be obtained from T” by a single
application of a type (1) operation, T belongs to C.

(ID(b) degr(a) = 2. Then we have the P;, namely [a, sy, v1], attached at b (see
Figure 7(b)).

LetT' = T — {v1, 81,a}. Thus, 4(T") = 4(T) — 1. Lete € E(T") and let
D be any-setforT —e. Since T € Ey, |D| = 4(T). We may assume without
loss of generality that s; € D and thata ¢ D (for if a € D replace it in D by
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b). Thus, T” is dominated by D' = D — {s1} = DN V(T"),and |D'| = |D| - 1,

so D is a dominating set for 7' — e. Therefore, 7(T' —e) < |D'| = |[D] -1

= 4(T) — 1 = 4(T"). Hence, (T’ — €) = 7(T"), foralle € E(T'). Thus,

T' € Ey. By the induction hypothesis 7' € C. By Lemma 3, b is a down vertex

in T and so since T" can be obtained from 7" by a single type (2) operation, T’ € C.
Thus, all cases are handled and so T € C. Therefore, by induction, it now

follows that Fy C C. |
We can now state the theorem characterizing trees in Eo.

Theorem 2. A tree T belongs to Ey if and only if T belongs to C.

Proof: By Theorem 1, if T' belongs to Eo, then T must belong to C. But K, as
well as Py and Fy,, m > 2, are clearly in Ep. Using Lemmas 4, 5, 6, and 7 it
follows that any tree in C is also a member of Eo . Therefore, Eo = C. [ |

Two related questions.

Having characterized those trees in which no edge is essential to the domination
number it is natural to ask which graphs have the property that every edge is es-
sential. It is not surprising that the stars are the only connected graphs satisfying
this condition.

Theorem 3. Let G be a connected graph. v(G — e) > «(QG) for every edge e
of G if and only if G is a star.

Proof: Certainly if G is a star, then G has the required property. Conversely, if
every edge of G is domination essential then G must be a tree since every con-
nected graph has a spanning tree with the same domination number. Let D be a
~-set of G and let z € D. No neighbor of z, say y, could belong to D or else the
edge zy would be inessential. Furthermore, all neighbors of z must be leaves, for
if some neighbor y is not a leaf and is adjacent to a vertex z # , then the edge yz
is inessential. Hence,  must be the center of a star. [ |

We conclude by exhibiting a family of graphs with the property that no matter
which set of k edges is deleted, the domination number does not increase. In
particular, let H be a graph on 2p vertices where V( H) can be partitioned into
two sets L and S of equal cardinality such that each vertex of S has degree at least
k + 1, each vertex of L is a leaf and each vertex of S is adjacent to exactly one
vertex of L. Observe thaty( H) = p and that necessarily p > k+1. If F C E(H)
and |F| < k, then no vertex of S is isolated in the graph H — F'. Thus, a 4-set D
for H — F can be chosen as follows. For each z € S, if F contains the edge Ty
where y € L N N(z) let {y} = DN {z,y}. Otherwise, let {z} = DN {z,y}.
|D| = p and D dominates H — F soy(H — F) = 4(H).
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