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Abstract. If each pair of vertices in a graph G is connected by a long path, then
the cycle space of G has a basis consisting of long cycles. We propose a conjecture
regarding the above relationship. A few results supporting the conjecture are given.

Introduction

Our notation will follow that of Bondy and Murty [2]. The length of a path or
cycle is the cardinality of its edge set. For vertices = and y, an (z, y)-path is
a path from z to y. For k a positive integer, an (z, y: k)-path is an (z, y)-path
of length at least k. A graph G is k-path-connected if for every pair of distinct
vertices v, v in G there is a (u, v: k) -path in G. If P is a path, the segment of P
from z to y is denoted P[z, y]. The distance from z to y in G, dg(z, y), is the
length of a shortest ( z, y) -path.

The cycle space, Z(G) , of a graph G is the vector space of edge sets of eulerian
subgraphs of G. The subspace of the cycle space generated by the set of cycles
of length at least k will be denoted Z,(G). A graph G is k-generated if Z(G) =
Z(G). A2-connected graph is a k-generator if itis both k-generated and (k—1)-
path-connected. In [5] it is proven that any 2-connected graph which contains a
k-generator must be a k-generator.

For graphs G and H, the join GV H is the graph with vertex set V(G) UV ( H)
and edge set E(G) UE(H) U{zy |z € V(G),y € V(H)}.

Bondy [3] made a conjecture which we state as:

Conjecture 1. Let G be a 3 -connected graph with minimum degree at least
d and with at least 2d vertices. Then every cycle of G can be written as the
symmetric difference of an odd number of cycles, each of whose lengths are at
least2d — 1.

This was partially proven in [5] as:

Theorem 1. Let G be a 3 -connected graph with minimum degree at least d.
Suppose further that G is non-hamiltonian or G has at least 4d — 5 vertices.
Then G is a (2d — 1) -generator.

When producing [5], no attempt at proving that a representation as a sum of an
odd number of cycles was possible. We quickly sketch here how one might take
this proven result and extend it.

A theta-graph is a 2-connected graph with two vertices of degree three and
the remaining vertices of degree two. It is easily established that if H is a 2-
connected graph, but H is not a cycle, then H has a theta-subgraph. In particular,
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any 3-connected graph G has a theta-subgraph H. If Bondy’s conjecture is true,
then each of the three cycles in H is representable as the sum of an odd number of
cycles of length at least 2d — 1, and then the sum of all three of these collections
contains every edge of H exactly twice, and is thus the empty subgraph.

On the other hand, if the empty subgraph is the sum of an odd number of such
cycles, then to prove Bondy’s conjecture, one needs only determine whether or
not each cycle can be written as a sum of cycles of length at least 2d — 1, without
regard to the parity of the set, since one can always add in an odd set of cycles that
sums to the empty graph.

We are now left with determining whether or not a given graph admits an odd
set of long cycles summing to the empty graph. We thus conjecture that:

Conjecture 2. Let G be a 3 -connected graph with minimum degree at least d,
and with at least 2 d vertices. Then, there is a an odd set of cycles in G, each of
which has length at least 2d — 1, and whose symmetric difference is 0.

Partial Proof: If G is a non-hamiltonian 2-connected graph with minimum degree
at least d, and thus with at least 2d vertices, then there is an odd set of cycles
whose symmetric difference is 0. A basic step in the proof given in [5], is to take
a longest cycle, and to find a (u, v: k) -path P in G — V(C) with
@i u',v' € V(C),uv,v' € E(G),v # v, and
(i) k+|N(u)NV(O)|>d.

Nowletzo = v/,andlet{z;,z,,..., T} be the vertices of N(u) NV (C) —{zo}
labelled cyclically around C from zo. Set :

Ci = Clzg1, zilziuzyyy for 1=1,2,...,m—1,
Co = Cl[z1,z0)z0vPuz; and Cp = Clxo,Tm]lTmuPyzo.

Since, C is a longest cycle, it is not difficult to check that each C; has length at
least 2d. If m is even, then ) C; = 0, while if m is odd, C+ }_ C; = 0. In each
case, we have an odd set of cycles summing to 0. We note also that, if G is a graph
with connectivity 2, mimimum degree d and 2 d vertices, then G is hamiltonian,
but has no odd set of cycles summing to 0. Let {u, v} be a cutset of two vertices
in G, and let G, be one of the components of G — {u,v}. It is immediate that
every odd set of cycles, each cycle of which has length at least 2d — 1, must use
an odd number of edges from u to G, . Therefore, one could not easily strengthen
Conjecture 2 to include 2-connected graphs.

There is another possible use of theta-subgraphs in extending the results of [5].
An (a, b, c)-theta-graph is a theta-graph in which the three paths P, Q and R
connecting the two vertices v and v of degree three are of lengths at least a, b,
and c, respectively. A (d — 1, d, d) -theta-graph H is (2d — 1)-generated, and if
z € V(P) — {u,v} and y € V(Q) — {u, v}, then there is an (z,y:2d — 2)-
pathin H. Thus, while H is nota (2d — 1) -generator, it comes reasonably close.
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One would expect that a 3-connected graph which contains a (d — 1, d, d) -theta-
subgraph would be a (2 d— 1) -generator. Then, to extend the result in [S] to graphs
on at least 3 d vertices, one would need only prove the following conjecture, since
any hamiltonian graph G has a theta-subgraph with [V (G) | + 1 edges. ]

Conjecture 3. Let G be a 3 -connected gmph with minimum degree at least d.
Suppose that G contains a theta-subgraph with at least 3d + 1 edges, then G
contains a (d — 1, d, d) -theta-subgraph. |

We note a result, similar to [5], by Hartman [4] for 2-connected graphs.

Theorem 2. Let G be a 2-connected graph with minimum degree at least d.
Then G is (d + 1) -generated, unless d is odd and G = Ky, .

Theorem 2 is also proven in [6]. The proof of [6] can easily be modified to allow
for a degree sum condition rather than a minimum degree condition. Hartman [4]
also notes that a 2-connected graph with chromatic number k£ must be (k — 1)-
generated.

The proofs given in [1], [5] and [6] are, in part, based on the fact that the classes
of graphs being considered are both ( k + 1)-generated and k-path-connected for
some k. In fact, if a class of ( k + 1) -generated graphs is closed under the addition
of edges to graphs in the class, then each graph in the class is k-path-connected.

In these notes we consider an aspect of the relationship between the properties
k-path-connected and £-generated.

Let G; denote the class of k-generated graphs and let P, denote the class of
k-path-connected graphs. It is immediate from these definitions that Pi.1 C Pk
and Gi+1 C Gi. .

Let f(k) = max{m I Pe C gm}'k >2.

Conjecture d. For k> 2, f(k) > k — g(k), where lim o €2 = 0. 3

Example 1. K3 € Pag-1 — Gag.fork > 2. 1
Example 2. Let P and Q be disjoint paths of length 7, j > 2, and let G be the
graph obtained from P U Q by adding the four edges from the ends of P to the
ends of Q. Then, G € Pjs2 — Gje3. |

One could also describe the graph of Example 2 as a subdivision of K4, in
which the edges of a matching have been replaced by paths of length 7. There are
only two cycles of length at least j + 3, but the cycle space has dimension 3.
Example 3. Let D denote the graph of the dodecahedron. Then D € Pigs — P9
and D € G17 — Gis. Therefore, f(18) < 17. 1

A simple application of the Kozyrev-Grinberg test (see, for example, [2, $.7]
or [7]) shows that D — v has no Hamilton cycle for any vertex v of D. Thus D
has no 19-cycles and Z13( D) # Z(D). Itis easy to represent each 5-cycle as the
sum of a 17-cycle and a Hamilton cycle. Also, for any two vertices, u and v, there
isa (u,v: 19)-path if d(u,v) # 2, and a (u,v: 18)-path if d(u,v) = 2.
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In order to justify Conjecture 4 somewhat, we now look at some general prop-
erties and then complete the proof that P, C G, for a few small values of k. It
may be that a slightly stronger statement than Conjecture 4 is possible. Perhaps
some simple degree, connectivity, forbidden subgraph, or embedding condition
can be found which is such that G € Py — Gi+1 only if G satisfies that condition.
Examples 1, 2 and 3 indicate that such conditions might be difficult to determine,
unless the condition itself implies G € P, N G+1. Even if one could find a suit-
able side condition, the result would not be quite as appealing as the simplicity of
Conjecture 4 as stated above. We might also note that Conjecture 4 already seems
sufficiently difficult. Lemma 4 shows exactly what can be achieved for the class
Ps. .

Lemma 1 demonstrates that there is some relationship between the two families
of classes, {Px} and {Ge}.

Lemma 1. P;_1y241 C Gi+1 and any 2 -edge-connected graph in G,._, is in
Pk.

Proof: First, suppose that G is a 2-edge-connected graph in G24_;. Let z and y
be vertices of G. If z and y are in different 2-connected components of G, let R
be any (z, y)-path, and let y' be the first vertex of R — z which is a cut-vertex
of G. For any (z,y': k)-path S, the path SU R[y',y] will be an (z, y: k)-path.
Therefore, we may restrict our attention to 2-connected graphs.

Let C be any cycle of length at least 2 k — 1 in G. There are two paths P and
Q from z and y, respectively, to C, meeting C at distinct vertices z' and y'. Let
C' be the segment of C from z' to y' with length at least k. Then PUC' U Q
is an (z, y: k)-path. We note that the condition that G be 2-edge-connected is
necessary since any tree is in G, for any k.

Now suppose that H € P(x_1)2+1. Let C be a cycle of length at most k in H.
Let = and y be vertices of C. There is an (z,y: (k — 1)2 + 1)-path P in G. The
vertices of C decompose P into segments, at least one of which must have length
at least k. Let Q be such a segment, and let C' and C” be the segments of C
between the end vertices of Q. Then

C=C'Q+C"QE€ Z4.1(G).
' ]
Corollary. f(k) > 1+ k. 1

We now prove some lemmas which may be useful for the first few cases of
Conjecture 4.

Lemma 2. If every 2 -connected k-path-connected graph is in G,,, then every
k-path-connected graph is in G,,.

Proof: Simply examine the 2-connected components of the graph. Every 2-con-
nected component of a k-path-connected graph is k-path-connected. 1
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Lemma 3. Let C be any cycle in a 2 -connected graph G. Suppose that there
is a vertex w at distance at least j from C. Then C is the sum of two cycles of
length at least 25 + 1.

Proof: Let P and Q be paths from w to C, disjoint except at w. Let P, and
P, be the sections of C between the end vertices of P and Q. Then each of
C,=PUQUP andC, = PUQU P, has length at least 2 j + 1. Therefore,

C=C+C € Z2541(G).

Lemma 4. If G is a 2 -connected graph in P, then G € G4 or G ¥ K,.
Proof: We may assume that G has at least five vertices. Let C be acycle of lehgth
three in G. By Lemma 3, we may assume that every vertex of G is at distance at
most one from C. Let V(C) = {z,y, z}.

Since @G has at least five vertices, we may pick two vertices, v and w, notin C,
but adjacent to C. We may also assume that all neighbours of v and w are on C, or
we could form a 4-cycle with only one edge in common with C. One could then
proceed as in Lemma 3.

Thus, v and w have at least two neighbours each on C. Let us suppose that, say,
2 has no neighbours noton C. Then, G = K> VmK;, and there is no (z, y) -path
of length at least three.

Thus, without loss of generality, vz, vy, wy, wz € E(G), and then

C = zvywzz + svy2z + syw2z € Z4(G).

Since any 3-cycle can be written as the sum of cycles of length at least4, G €
Ga. |

Lemma 5. IfG € Py, for k > 2, then each triangle of G is in Z+2(G).
Proof: Let C = zyzz be a triangle in G. Let P be an (z, ) -path of length at least
2k. .

Ify ¢ V(P), then

C = Pzx + Pzyz € Z21+1(QG).
If y is on P, we may assume that y is on the first half of P, and thus that P[y, 2]
has length at least k. If the length of P[y, 2] is k, then
C = Plz,ylyzz + Pzz + zyPly, 212z € Zis2(G) .
If y is the second vertex on P, then
C = zzyPly, 2] + zyPly, 2] € Z:1(G).
In the remaining cases,
C = zyPly,zlzz + Ply, 212z € Z12(G).

81



Lemma 6. Ps C Gs.

Proof: Direct application of Lemma S. ]
Lemma7. Ps £ Gs.

Proof: Direct application of Example 2. 1
Lemma 8. Ps C P4 C Ga.

Proof: Direct application of definitions and Lemma 6. |

Lemma9. Ps C Gs.

Proof: Let G € Ps. By Lemma 8, Ps C P4 C Ga. Therefore, we need only
consider 4-cycles in G. Let C = wzyzw be a 4-cycle in G. We need to show
that C € Zs(G). We consider two cases, depending on the length of the bridges
between opposite vertices of C.

Case (i). Suppose that dg_(,,)(z2z) > 3. Let P be a (w,y: 5)-path in G. If
{z,z} C V(P),then Q = P[z, z] is an (z, z: 3)-path. Thus

C = Qzyz + Qzwz € Z5(G).

Hence, we may assume that P meets at most one of z and 2. If P meets one
of these two vertices, then without loss of generality, assume that z € V( P) and
2 ¢ V(P).LetQ = P[w,z]. If Q is a (w, z: 4)-path, then

C = Qzw + Qzyzw € Z5(G).

Therefore, we may assume without loss of generality that each of Q = P[w, x]
and R = P[z,y] has length at least two. Thus,

C = Qzyzw + wzRyzw+ QRyzw € Z5(G).
We may now éssume that neither z nor 2 is on P. But then
C = Pyzw + Pyzw € Z7(G) C Z5(@).

Case (ii). We may thus assume that each of dg_(;,)(w,y) and dg_{u)(z, 2)
is at most two. Suppose that there is a vertex s € N(z) N N(z) and a vertex
t € N(w) NN(y).

If s = ¢, then

C = wszyzw + z8yzwz + yszwzy + zswzyz € Zs(G).

If s # t,then

C = zszwtyz + zszytwz € Z6(G) C Z5(G).
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Now, suppose that there is a vertex s € N(z) N N(2) and that y € N(w).
Then

C = wzszyw + wzszyw € Zs(G).

Therefore, we may assume that z € N(z),y € N(w), N(z)NN(2) = {w,y}
and N(y) N N(w) = {z,2}. We note that G[{w, z,y,2}] ¥ K4. Now let P be
a (w, z: 5)-path. We consider the possible intersections of P with C.

IfV(P)NV(C) = {w,z}, then

C = Pxzw+ Pzyzw € Z¢(G) C Z5(G).

If [V(P) N V(C)| = 3, then without loss of generality, V(P) N V(C) =
{w,z,y}. If P[w, y] has length one, then

C = Ply, zlzwzy + Ply, z]zy € Z5(G).
However, if P[w, y] has length exceeding one, then
C = Plw,ylyzzw + Plw,ylyzzw € Z5(G).

The remaining case is that [V (P) N V(C)| = 4. The vertices of C occur in
the order w, y, z, T or in the order w, 2, y, z. Suppose that the order is w, y, 2, T.
Then P[w, y] and P[z,z] must have length one as in the previous paragraph.
Therefore, Ply, 2] is a (y, z: 3) -path avoiding {z,w}. A similar situation arises
if the order of the vertices of C along P is w, z,y,z. In this case, at most one
of P[w, 2], P[z,y] and P[y, =] can have length greater than one. For example,
suppose that P[w, z] and P[ z, y] have lengths greater than one. Then

C = Plw, z]zyzw + Plz,ylyzwz + Plw,ylyzw € Z5(G).

The other two possibilities are quite similar.

Therefore, for either order of vertices of C on P, we obtain a path @ between
vertices which are consecutive on C, avoiding the remaining vertices of C, and
having length at least three. Without loss of generality, let Q be a (y, z: 3) -path
in G — {x,w}. We may also assume that Q is not a (y, z: 4)-path. Let Q = ystz.

Since G € Ps, there is a (y, z: 5)-path R in G. Since our original choice of P
was arbitrary, we may assume that {z,w} C V(R), and that some subpath S of
R is a path between vertices which are consecutive on C, avoiding the remaining
vertices of C, and having length at least three. Note, also that because S is a
subpath of R, we know that S cannotbe a (y, z)-path. If V(Q)NV(S) C V(O),
then C is the sum of three cycles of lengths at least six. Thus, without loss of
generality, we may assume that s € V(.S) and that the neighbours of s along S
are not y and ¢.
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Let T beasubpathof S from s to u € {z, z} withTN{s,t,w, z,y, 2} = {s,u}.
If £ = u, then

C = T'stzwz + T'syzwz + zystzwz € Zs(G).

If w= u,then
C = Tsyzzw + Tsyzzw € Z5(G).
Thus, in all cases, we have shown that C € Z5(Q). [}
Some Other Examples

(1) 1. The Petersen graph is in Gg — Gy and in Py — Ps.
(2) 2. If G is a connected Cayley graph of an abelian group of order =, then
from [1] we know:
" (a)" If nis odd or if G is bipartite, then G is n-generated;
" (b)" If G is an odd prism then dim(Z,(G)) = dim(Z(G)) — 2;
" (c)" In all other cases, dim( Z,(G)) = dim(Z(Q)) — 1.

We can examine cases (b) and (c) to determine dim(Z,_; (G)).

If G is an odd prism, n = 4 k + 2, for some k. There is a unique cycle of length
n— 1 avoiding any given vertex of G. It is easy to show that these cycles generate
the cycle space of G. Therefore, there is a basis for the cycle space of G consisting
of 2k cycles of length nand two cycles of length n— 1. Thus, G € Gp_1 .

For case (c), we have that G is not bipartite, has an even number of vertices
and is not an odd prism. In this case Z(G) is generated by the Hamilton cycles
together with any odd cycle of G. One would need only calculate the length of
a longest odd cycle in G. It may be that G has an (n — 1)-cycle, and that one
could prove this by following [1]. Example 3 does not contradict this, but might
constitute a warning.

Recapitulation
Pr C Gk,for2 < k< 5and f(2) =3, f(k) =k,fork=3,4,5.

G € P3 — G, only if G has a 2-connected component which is K.

The argument for k = 5, is rather more complex than the argument for k < 4.
One would tend to expect the arguments to become even more difficult for evalu-
ating f(6). To establish values of f(k) for £ > 10, would probably necessitate
new techniques.

Examples 1 and 2 show that f(k) < k, for k > 3, and Lemma 1 verifies that
f(k) > 1+ vk, for k > 2. Since it may be quite difficult to prove Conjecture 4,
we offer a weaker version of that conjecture.

Conjecture 5. For some constant m,0 < m < 1, f(k) > mk.



References

1. B. Alspach, S.C. Locke and D. Witte, The Hamilton spaces of Cayley graphs
on abelian groups, Discrete Math. 82 (1990), 113-126.

2.J.A. Bondy and U.S.R. Murty, “Graph Theory with Applications”, Elsevier,
North-Holland, 1976.

3. ].A. Bondy. Personal Communication. (1979).

4. 1.B-A. Hartman, Long cycles generate the cycle space of a graph, Europ. J.
Combin. 4 (1983), 237-246.

5. S.C. Locke, A basis for the cycle space of a 3-connected graph, Cycles in
graphs, Annals of Discrete Math. 27 (1985), 381-397.

6. S.C. Locke, A basis for the cycle space of a 2-connected graph, Europ. J.
Combin. 6 (1985), 253-256.

7. H. Sachs, Ein von Kozyrev und Grinberg angegebener nicht—hamiltonscher
kubisher planarer Graph, Beitrige zur Graphentheorie (1968), 127-130, B.G.
Teubner, Leipzig.

85



