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Abstract. A scheme for classifying hamiltonian cycles in Py, x P, is introduced.
" We then derive recurrence relations, exact and asymptotic values for the number of
hamiltonian cycles in Py x P, and Ps x P,.

1. Introduction

Let P, denote the path with n vertices, and let H,,,(n) be the number of hamilto-
nian cycles in the cartesian product P,, x P,. It is easy to verify that H;(n) = 0;
Hy(n) =1,n>2; H3(2n+1) = 0 and H3(2n) = 2™}, The value of H4(n)
was studied recently in [2]:

Theorem 1. H4(n) satisfies the recurrence relation
Hy(n) =2Hs(n—1) +2H4y(n—2) —2Ha(n—3) + Hy(n—4)

for n > 4, with initial values H4(0) = H4(1) =0, H4(2) = 1 and H4(3) = 2.

In [2], the authors discovered a complicated necessary and sufficient condi-
tion for a cycle to be hamiltonian in Py x P,. After studying a particular pattern
within the hamiltonian cycles, they deduced an explicit formula for H4(n) in
terms of binomial coefficients. Meanwhile, the recurrence relation of H4(n) was
also derived.

In this paper, we list four necessary conditions, and apply them to derive the
recurrence relation of H (n) directly. We then extend the investigation to Hs(n),
whose recurrence relation is obtained via its generating function.

Theorem 2. Hs(n) satisfies the recurrence relation
Hs(n) = 11Hs(n—2) +2Hs(n—6) forn>6,

with initial values Hs(0) = Hs(1) = Hs(3) = Hs(5) = 0, Hs(2) = 1 and
Hs(4) = 14.

We also evaluate the exact and asymptotic values of H4(n) and Hs(n).
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2. Preliminaries and Notations
Since P,, x P, is isomorphic to P, x P,,, we may consider the vertex-set of
Pp x Pyas{0,1,--- ,n—1} x {0,1,--- ,m — 1} so that P, x P, can be
represented graphically as a m-by-n grid in the usual cartesian plane. For instance,
Figure 1 contains such a representation of Ps x Pjg, with one of its hamiltonian
cycles drawn in bold lines.
(0:4) (9,4)

(0,0) (9,0)
Figure 1. A hamiltonian cycle in P5 X Pig.
It is clear that H,,(n) = H,(m). Furthermore, we have
Theorem 3. For m,n > 1, Hy,(n) > 0 ifand only if mn is even.
Proof: We leave it to the reader to construct a hamiltonian cycle in Py, x P, when
mn is even. Assume that mnis odd. Define

S={(i,Hi+j=1 (mod 2)}.

Then ( Py, x P,) — S consists of (mn+ 1) /2 totally disconnected vertices. There-
fore, the number of components in (P, x P,) — S is .

mn+ 1 >m'n—l _
2 2

k((Pm X P,) — 8) = 181,

Thus, P, x P, is not 1-tough, hence it cannot be hamiltonian. [1, p. 219] |

To derive a recurrence relation for H,,(n) we have to classify the different
shapes a hamiltonian cycle can take. Denote the cell with (1, j) in its upper right
comer by C;;. Given any cycle C, we follow [2] by defining b;; = 1 if C;; is
enclosed within C, and b;; = 0 otherwise. These bit assignments clearly charac-
terize C, and vice versa. The problem now reduces to finding all bit assignments
which induce hamiltonian cycles. For example, Figure 2 displays the bit assign-
ments of the hamiltonian cycle shown in Figure 1.

Note that since every vertex has degree two in any hamiltoniar cycle,

bin =b1gm—1 — b1 = bp1m-1 = 1.
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Figure 2. The bit assignments of a hamiltonian cycle.
To further facilitate our discussion, define the i-th bit map of C as
Ti = bim—1bim—2 - - - b by

in binary expansion. Then we can refer to C by its signature, which is defined
as the 2™~ .ary expansion z; z; - - - T,_; . For example, the hamiltonian cycle in
Figure 1 has a signature of BEB8 FA3 AF, where we adopt the standard con-
vention of using letters A through F for the hexadecimal digits 10 through 15.

Two cells C;; and Cyy, are said to be adjacent if either (i) i = hand |j — k| = 1
or (i) i — h] = 1 and ; = k. We call a cell with bit assignment 1 an I-cell,
and 0-cell otherwise. We also regard all cells in the z-y plane outside the grid as
0O-cells. The following necessary conditions are easy to verify:

(BC) Boundary Condition: No adjacent 0-cells can be found on the boundary.
(IC) Interior Condition: The configurations, shown in Figure 3, of four cells
sharing a common vertex are not allowed:
ofo] 1]1 E 1]0

04{0 111 110 011
Figure 3. Four forbidden configurations.

(CC) Connectedness Condition: There is exactly one contiguous block of adja-
cent 1-cells.

(EC) Exterior Condition: There is exactly one contiguous block of adjacent 0-
cells. In other words, any contiguous block of adjacent 0-cells cannot be
enclosed entirely by 1-cells: it must have an “outlet” to the exterior.

Note that conditions (CC) and (EC) are equivalent to saying that 1-cells form a
simply-connected region. However, we found that it is easier to apply (CC) and
(EC) if we leave them as two separate conditions.
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3. Value of Hy(n)

Proof of Theorem 1: For brevity, denote Hs(n) by H(n). Assume n > 2.
Since by; = by = 1 and by € {0,1}, we have z; € {5,7}. Let hs(n) and
h7(n) be the number of hamiltonian cycles in Py x P, withz; =5 andz; = 7,
respectively. Then,

H(n) = hs(n) + hq(n) forn>2. @3.1)

First consider z; = 5. It follows from (CC) that by; = by = 1,50z € {5,7}.
Thus, 73 73 - - - Z, is the signature of a hamiltonian cyclein Py x P,_; . Conversely,
given any hamiltonian cycle z 3 - - - T, in Py X P, ,itisclearthat 5z, 23 - - - 2,
is hamiltonian in Py x P,. Thus, hs(n) = H(n— 1) for n > 2. Together with
(3.1), we get

hy(n) = H(n) —H(n—-1) forn>2. 3.2

Now assume that n > 3 and z; = 7. Due to (IC), there are either one or two
1-cells in the second column, so z; € {1,2,4,5}. If z11, € {71,74}, then
(CC) and (BC) imply that b3; = 1 and b33 = 1, respectively. Thus, z3 € {5,7}
and there are 2 H(n — 2) such hamiltonian cycles. If z;z, = 72, (BC) and (IC)
imply that z3 = 7; we have h7(n— 2) hamiltonian cycles in this category.

We are left with the case of z;z2 = 75, in which the 0-cell Gy needs an
outlet to the exterior. Although it is not difficult to derive the number of such
hamiltonian cycles directly, the situation is more complex for larger m. Hence,
we shall use an alternate approach. Define a twin cycle in P, x P, as a 2-factor
G =5z - - - T, withtwo components (that is, a spanning subgraph consisting of
exactly two disjoint cycles) such that Cy; and Ci3 are enclosed in diferent cycles.
Topologically, the 1-cells form two disjoint simply-connected regions.

Let g(n) be the number of twin cycles in P4 x P,. For instance, g(1) = 0
and g(2) = 1. Clearly, there are g(n — 1) hamiltonian cycles in Py x P, with
122 = 75. Thus far, we have obtained

hi(m) =2H(n—2) + hi(n—2) + g(n—1) for n> 3. 3.3)

In any twin cycle z;z; - - - z,1 , C12 is a 0-cell, which needs an outlet to the
exterior. Suppose the first outlet for C); is located at the k-th column. If k = 2,
then z; € {1,4}. Similar to the discussion of z,z; = 71, we have H(n — 2)
such twin cycles. If, however, k > 2, then by; = by3 = 1. From the definition of
a twin cycle, G always has by, = 0. Therefore, z, = 5 and there are g(n— 1)
twin cycles in this case. Hence, g(n) = g(n— 1) + 2H(n—2) forn > 3. It
follows immediately that .

n-2
g(m) =1+2) H(k) forn>3. (34)
k=1
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Combining with (3.2) and (3.4), we can rewrite (3.3) as

n—-2

H(n) —H(n—1) =1+ H(n— 2) H(n- 3)+2EH(/¢)
k=1

for n > 3. We conclude that for n > 4,
H(n)=2H(n—1)+2H(n—2) —2H(n—-3) + H(n—4).

To obtain an exact formula of H4(n), we first have to determine the zeros of
the characteristic polynomial F(z) = * — 2z — 222 + 2z — 1. Let

_3’—29+3\/39 :’—29 3 /2(u+u)+7
“A—

=4 — 21-= d 4 — 2 =
G (1+ K) ( K and H = (1-K) ( p )
The zeros of F'(x) are, according to Ferrari’s formula (see, for example, [3]):

o1 = ((1+ K) +VG) /2 ~ 2 .5386,

o =((1+ K) —VG) /2 ~ —1.2762,

a3 = ((1 — K) + VH) /2 ~ 0.3688 + 0.41554
o4 = ((1 - K) — VH)/2 ~0.3688 — 0.4155i

Since the zeros of F'(z) are distinct, we obtain

Theorem 4. If o; are the zeros of F(z) = z* — 223 — 222 + 2z — 1, then

4
oy
Hy(m) =) ——af
! 21: F'()

Proof: It is a routine exercise to show that

A = 2z 222 +25 — 22 _‘_=l 1 - o4z

for some constants A;, 1 < i < 4. Therefore, a,.‘z = A; HM(I — ajay 1, or
equivalently, a; = A; ij.'(ai — o) = AiF'(o;) for1 < i< 4. 1
Since |as| = |as| < 1, we also have
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Corollary 5. If oy and o are the real zeros of F(z) = z* —22° —22%+2z—1,
then asymptotically,

%) n o
Ha(m ~ Fiay® ¥ Fiean)

oj ~ 0.1363(2.5386)" + 0.1162(—1.2762)".
4. Value of Hs(n)

Proof of Theorem 2: Again, for the sake of brevity, denote Hs(n) by H(n).
From (BC), by and by3 cannot be both zero. Thus, z; € {F, B, D}. Define
hr(m), hg(n) and hp(n) as the number of hamiltonian cycles in Ps x P, with
z1 = F, B and D, respectively. Clearly, hg(n) = hp(n). Therefore,

H(n) = hp(n) + 2hg(n) forn>2. 4.1)

Because of Theorem 3, hg(n) = hg(n) = 0 if n is zero or odd. For positive
even n, the initial values are hp(2) = 1, hp(4) = 8, hp(2) = 0 and hg(4) = 3.
Type 1: z; = F.

It follows from (IC) that there are at most two 1-cells in the second column.
In fact, z; € {8,1,4,2,A,5,9}. Symmetry of the configurations allows us to
group these seven choices of  into four cases.

Case 1.1. z;z; = F8. (Symmetric to ;1 = F'1.)

(BC) and (CC) imply that b3; = 1 and bas = 1, respectively. This in turn
implies that z3 € {F, B, D}. Thus, z3z4 - - - Z,-1 is a hamiltonian cycle in Ps x
P,_, . Conversely, given any hamiltoniancycle z3 z4 - - - z,; from Ps x P,_, ,the
cycle F8x3x4 - - - T, is hamiltonian in Ps x P,. Therefore, there are H(n— 2)
hamiltonian cycles in Case 1.1.

Case 1.2. z11; = F4. (Symmetric to z;z; = F2.)

(BC) implies that b3; = bzs = 1. Now (IC) implies that b33 = 1. However,
bs, € {0, 1}; so Case 1.2 contributes hp(n— 2) + hp(n— 2) to hp(n).
Case 1.3. z1z2 = FA. (Symmetric to z1z2 = FS.)

While (EC) implies that b33 = 0, (BC) implies that b3; = 1. Then it follows
from (IC) that b3; = 1. Depending on the value of b3, we have two subcases.
Subcase 1.3.1. b3s = 0. (Thatis, z3 = 3.)

The 0-cell Cy3 has an outlet at Cs4 . Thus, (EC) is satisfied. (BC) implies that
by = 1. If we change b34 from Oto 1, we get a hamiltonian cycle Bxgzs - - - Ty
in Ps x P, . Conversely, starting with any hamiltonian cycle Bzsxs - - - 51
from Ps x P, , we obtain a hamiltonian cycle FA3z4%s --- Ty in Ps X P,.
Thus, Subcase 1.3.1 accounts for hg(n — 2) hamiltonian cycles.

Subcase 1.3.2. byq4 = 1. (Thatis, z3 = B.)

Certainly, replacing bs3 by 1 leads to a hamiltonian cycle Fz4zs - - -z, in

Ps x P,_2. The problem is, the converse does not hold. Take, for example, the

92



hamiltonian cycle Fz4 - - - z,—1 with bs3 = 1. Coupling with z;z, = FA and
changing z; from F' to B will seal both C»; and Cs3 (now both O-cells) from the
exterior, contradicting (EC).

Define a twin cycle in Ps x P, as a 2-factor Bz, - - - z,—; with two compo-
nents such that {C\4 } and {C11, C12 } are enclosed by different cycles. Let g(n)
be the number of twin cycles in Ps x P,. Then the contribution from Subcase
1.3.2 is precisely g(n— 2).

Case 14. 137 = F9.

From (IC) and (EC), we have b3 b3z € {01, 10 }. Without loss of generality,
we may assume bsp b33 = 01. Now (IC) implies that b4 = 1. The subcases of
bs1 = 0 and b3; = 1 are similar to Subcases 1.3.1 and 1.3.2, respectively. Hence,
there are 2[ hg(n — 2) + g(n — 2)] hamiltonian cycles in Case 1.4.

Summary of z; = F. We conclude that for n > 4,
he(n) =2H(n—2) +2[hg(n—2) + hp(n—2)1+ 4[hp(n—2) + g(n—2)],
which can be simplified to, with the aid of (4.1),

hp(n) =4H(n—2)+2hg(n—2) +4g(n-2). 4.2)

Type 2: z; = B. (Symmetric to z; = D.)

(CC) implies that by, = 1. Since by € {0,1}, we have z; € {9, A4, E}.
Case 2.1. =1, = B9.

Since (CC) implies that b3; = bss = 1, z3 € {B, D, F}. Similar to Case
1.1, there are H(n— 2) such hamiltonian cycles.

Case 2.2. 7,5 = BA.

Because of (CC) and (BC), we have b3y = b4 = 1. Now as a consequence
of (IC), b3 = 1. Thus, b33 € {0,1}. Similar to Case 1.2, Case 2.2 contributes
hp(n— 2) + hp(n— 2) hamiltonian cycles to the evaluation of hg(n).

Case 2.3. 1T = BE.

Routine argument leads to b3; = b3z = 1 and b33 = 0, while b34 can be either
0 or 1. The two configurations are similar to those found in Subcases 1.3.1 and
1.3.2. Hence, Case 2.3 covers hg(n— 2) + g(n— 2) hamiltonian cycles.

Summary of z; = B. We have proved that, forn > 4,
hg(n) =2H(n—2) + g(n—2). 4.3)
Recurrence relation for H(n). Concluding from (4.1)—4.3), we get

H(n) =8H(n—2)+2hp(n—2) +6g(n—2) forn>4. “44)
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It now remains to find a recurrence relation of g(n) for » > 4. Note that
g9(2) = 1,9(3) =0, g(4) = 6; and in general, g(n) < hp(n) for even n. The
six configurations counted by g(4) are displayed in Figure 4.
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Figure 4. Six cases counted by g(4).

Since C)3 needs an outlet to the exterior, b3 = 0. There are two cases.
Case A: by = 0.

Since Cy3 has already found its outlet at Cy4, (EC) is satisfied. Now (CC)
implies that b1 b2 € {10, 01}. Numbers of such hamiltonian cycles are H (n—2)
and hg(n— 2) + hp(n— 2), respectively.

CaseB: by =1.

Since (IC) forbids by by = 11, we have three subcases.

Subcase B1. by b2 = 01. If we replace b3 by 1, the two disjoint cycles become
connected to form a hamiltonian cycle with 3z, = FA. As in Case 1.3, the
contribution is hg(n— 2) + g(n—2).

Subcase B2. by by; = 10. Again, replacing b;3 by 1 leads to z;z; = F9 studied
in Case 1.4. Therefore, the contribution is 2[ hg(n— 2) + g(n—2)].

Subcase B3. by b = 00. Since Ci3 has an outlet at Cy, 23 € {B, D, F}.
There are H(n — 2) such twin cycles.

Recurrence relation for g(n). We assert that, for n > 4,
g(n) =3H(n—2) +2hg(n—2) + 3g(n—-2). 4.5)
Conclusion. Define

H(z) =) H(wz", hp(s) =) hp(mz" and g(z) = g(m)z".
n=0 n=0

=0

Routine manipulations on (4.3)—(4.5) lead to

z? g(z) — hp(zx) + 222 H(z) =0
—61? g(x) — 222hp(z) + (1 — 822 H(z) = 22
(1 -322)g(z) — 22%hg(z) — 3% H(z) = 22

Solving for H(z), we obtain

had z2(1 + 322)
HD = H" = 11 o0
=0
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The recurrence relation stated in Theorem 2 now follows easily. [ |

Next, we derive an explicit formula for Hs(n). Since Hs(n) = 0 for odd
m, it suffices to consider

had z2(1+ 32)
. . A,
So Hs(2n) 2" = TP PR

Let 3; denote the zeros of G(2) = z° — 1122 — 2. Define §; = y; + 11/3 such
that y; are the zeros of y* + py + g, where p= —121/2 and ¢ = —2716 /27. If

2 2
i e 1/9_ . _1’/_2_1/2_ P
"'\/2+ sty W =AYt
then Cardan’s formula leads to
p1=13—1+u+ua»,11.0165,

=g -t VAN 000824042600 (49)
B =5 — 52+ Lo 0VEi n —0.0082 — 04260

Similar to Theorem 4 and Corollary 5, it can be shown that
Theorem 6. Forall n> 0, Hs(2n+ 1) =0, and
~Bi+3 .
A G(B)
where f3; are the zeros of G(z) = 23 — 1122 —2 as givenin (4.6). Asymptotically,

Hs(2m) =

Hs(2m) ~ g(—;% ~ 0.1151(11.0165)".

4. Remarks

As closing remarks, we pose several questions for further investigation:

(1) Apply these techniques to find the value of He¢(n). One may have to gen-
eralize the definition of twin cycle, because now two nonadjacent O-cells in
the same column can be “sealed” by a column of 1-cells on their left, so that
outlet(s) must be found in order to satisfy (EC).

(2) Evenform = 6, the task is already immensely tedious. Is there any alternate
approach to simplify the derivation of H,,(n)?

(3) Is it true that H,,(n) always satisfies a certain homogeneous linear recur-
rence relation with constant coefficients? If this can be answered affirma-
tively, the recurrence relation can be derived by the method of undetermined
coefficients.

(4) What are the reasonable bounds on H,,(n)?

(5) Are there any simple relationships between Hp,(n) and H;(j), wherei < m
andj < n?
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