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Abstract. We give a complete solution to the intersection problem for a pair of Steiner
system S(2,4, v), leaving a handful of exceptions when v = 25, 28 and 37.

1. Preliminaries

A Steiner system S(t, k,v) is a set V of elements and a set B of k-element
subsets of V' called blocks, with the property that every t-subset of V appears in
precisely one block. Two Steiner Systems (V, B) and (V, B') intersect in s blocks
if|BNB'|=s.

Kramer and Mesner [6] asked the followlng: for what values s does there exist
two Steiner systems S(t, k, v) intersecting in s blocks? Lindner and Rosa [7]
solved this problem for all v for $(2,3,v) systems. Gionfriddo and Lindner
[3] examined intersections of S(3,4, v) systems; that problem is now essentially
solved [4]. No other general result on intersection sizes of S(t, k, v) systems are
known.

In this paper, we solve the intersection problem for S(2,4,v) systems, also
known as (v,4, 1) designs, leaving some possible exceptions for v = 25, 28
and 37. Letb = v(v — 1)/12, and let I4[v] = {0,1,...,b,}\{by — 7,by —
5,b,—4,b,— 3,b, — 2,b, — 1}. Denote by J4[v] the set of intersection sizes
of S(2,4,v) systems. We prove the following:

Main Theorem. For v = 1,4 (mod 12),v > 40, J4[v] = I4[v].

We employ two recursive constructions, along with a detailed examination of
S5(2,4,13) and S(2,4,16). In Section 2, we establish that J4[v] C I4[v] for
all v. In Section 3, we introduce the recursive constructions used. In Section 4, we
analyze the cases v = 13 and v = 16 in detail, to produce the needed ingredients
in the constructions. Then in Section 5, we apply the recursive constructions to
prove the Main Theorem for v > 49. Finally, In Sectlon 6, we examine the
four remaining small cases: v = 25, 28, 37, and 40. We establish J4[40] =
I, [40] using a special tripling construction, and then apply various computational
methods to the remaining cases.
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2. Necessary Conditions

In this section, we establish necessary conditions for J4 [v]. We recall that I4[v]
is the set ‘

{0,1,2,...,b,— 8}uU {b, — 6,b,}.
The main necessary condition follows.
Lemma 2.1. Forv = 1,4 (mod 12), J4[v] C I4[v].

Proof: Two S(2,4,v) designs (V, By) and (V, B;) intersect in at least 0 and
at most b, blocks. If they intersect in b, — s blocks, consider Dy = B;\B; and
D> = B;\B1. D, and D, each contain s blocks. Now let G be the graph on
vertex set V whose edges are the pairs appearing in blocks of Dy (or D;). G is a
simple graph on 6 s edges, with every vertex having degree = 0 (mod 3). G has
two partitions into K4 ’s (D; and D, ), and the resulting sets of K4 ’s are disjoint.
Hence G has no vertices of degree 3.

Now suppose that G has a vertex = of degree 6. In D, suppose z appears
in {z, a,b,c} and in {z,d, e, f}. Without loss of generality, D, then contains
blocks {z, a,b,d} and {z, c, e, f}. Now the two edges {a, c} and {b, c} appear in
different blocks in D, . Hence G contains at least two vertices of degree at least
9.

Suppose G has a vertex z of degree 9. In D; suppose that = appears in blocks
{z,a,b,c}, {z,d,e, f} and {z,g,h,i}. In D,, there are (up to isomorphism)
three possibilities for the blocks containing z.’

L. {z,a,d,g}.{z,b,e,h}.{z,c, f,1}
H‘ {z’ a)d)g}’ {z’blc, e}’ {z)f! hl i}
IH‘ {z) a! b) d}’ {z’ cl g’ h}’ {z) e, f! i}
In case I11, edges {a, d}, {b, d}, {c, g}, {c, h}, {e, 1} and { f, 1} appear in distinct
blocks of D; and hence s > 9. In Case II, edges {a,d}, {b, e}, {c,e}, {f,i} and
{h,1} appear in distinct blocks of D; and hence s > 8.

Finally, consider Case 1. Here, the edges of three triangles {a,d, g}, {b, ¢, h}
and {c, f, i} must appear in blocks of D, . This can be done withs =6 or s > 8.
At this point, if s € {1,2,3,4,5,7}, G contains no vertices of degree 9, and has
at least one vertex of degree > 12. If any vertex has degree > 15, there are at
least 16 vertices each of degree > 6 forcing G to have at least 48 edges and hence
s> 8.

It remains to consider the case where G has degrees 6 and 12. Here, G has at
least two vertices of degree 12 and hence at least 13 vertices. But then G has at
least 45 edges and hence s > 8.

Lemma 2.1 gives a general necessary condition. We develop next a necessary
condition for J4[16].
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Lemma 2.2. J4[16] C {0,1,2,3,4,5,6,8,12,20}.

Proof: Suppose that B; and B, are two (16,4, 1) ’s with at least seven blocks in
common. Two cases arise. Either B; and B, share a parallel class, or they contain
two blocks in common from each of two parallel classes. To see this, observe that
if By and B, share three blocks of a parallel class, the (unique) structure of the
S§(2,4,16) design forces them to share the whole parallel class.

For the first case, suppose that they contain a parallel class in common. The re-
maining sixteen blocks are equivalent to a pair of mutually orthogonal latin squares
with rows and columns indexed by Z4, and symbols from Z,.

Two such pairs, L, L, and M7, M; are said to intersect in | S| positions, where
8 = {(4,5) € 2} | I1(4,7) = Mi(4,j) and L2 (4,5) = M2(4,5)}. We need
only show |S| € {0,1,2,4,8,16 }. We define a collection B of 4-subsets of Z2
as follows:

Fori € Z4,{(i,j) | j € Z4} € B,

and {(j,4) | j € Z4} € B.

If 7 is a permutation on Z,, then {(7,%(j)) | j € Z4} € B. If {i1,i2} and
{71,72} are 2-subsets of Z4 with i; < 12, then

) {ilriZ}x{jl»jZ}eB
{Gi1,71),(41,72), (42, k1), (42, k2) } € B, and
{(jl;il))(jz)il))(kl)iZ):(kZ)iZ)} € B)

where {ky,k2} = Z4 {]1 ,J2 }

It is easy to see that every 3-subset of Z7 is contained in exactly one block of
B, that is, (Z2, B) is a Steiner quadruple system of order 16, We claim that if L
is a latin square of order 4 which has an orthogonal mate, and b € B, then the four
symbols of L occurring in the cells of b are of the form

TTTT, TTYY, OFf WIYZz,

where Z; = {w, z,y, z}.

This is easy to check. The only other possibilltles are xzzy and zzyz. The
first cannot even yield a latin square, and none of the latin squares in the second
possibility have an orthogonal mate.

Hence, glven the entries in any three cells T of L, the entry in the fourth cell of
the unique block of B containing T is uniquely determined.

In particular, with L, Ly, M}, M>, and S as above, S must be a sub-Steiner
quadruple system of (22, B). It is well known that |S| € {0,1,2,4,8,16}.

In the second case, B; and B, share two blocks from each of two parallel
classes. The automorphism group of the S(2,4,16) acts transitively on such
sets of four blocks. There are 3192 permutations mapping this set of four blocks
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onto itself. For each permutation 7 of this type, we determined B N B for
B a §(2,4,16) design. This small exhaustive search by computer shows that
|Bn=B| € {4,5,6,8,12,20}, completing the proof.

3. Recursive Constructions

We first describe simple tripling and quadrupling constructions, and then examine
their use in the determination of intersection sizes.

Construction 3.1 (quadrupling): Let G, B be a group divisible design of order v
with block size 4 and groups of sizes congruent to 0 (mod 3). Let G have t; groups
of size g;. Then there exists

(1) a(4v+ 1,4,1) design containing ¢; subdesigns of order 4 g; + 1, all inter-
secting in a common element.

(2) a(4v+4,4,1) design containing ¢; subdesigns of order 4 g; + 4 all inter-
secting in a common block.

Proof: Let G, B be such a group divisible design on element set V. We form a
(4v+1,4,1) designon (Z4 x V) U{oco1} ora(4v+4,4,1) designon (Z4 x
V) U {oo1, 002,003,004 } as follows. For each block b € B, b = {w,z,y, 2},
forma (16,4, 1) on Z4 x b omitting a parallel class on ( Zs x {w}, Z4 x{z}, Z4 x
{y}, Zs x {z}). Now for each group g of G, place a (4|g| + 1,4,1) design on
(Z4xg)U{oo; },0ora(4|g|+4,4,1) design containing block {oco; , 003, 003,004 }
on (Z4 x g) U{oo1, 002, 003,004 }. In the latter case, the block on {oo;} is taken
once only. ' _

There is much freedom in choosing the ingredients, which enables us to con-
struct two systems intersecting in a specified number of blocks.

We apply Theorem 3.1 to GDDs with groups of size 3, and possibly one group
of size 6. For both the 4 v+ 1 and 4 v + 4 constructions, we can choose on Z4 x b,
b € B, any (16,4,1) containing the required parallel class. Let JP4[v] for
v = 4 (mod 12) denote the number of blocks shared br two (v, 4, 1) designs with
a common parallel class, in addition to those shared in that parallel class.

In the 4 v + 1 construction, we can choose any (13,4, 1) designon (Z4 x g) U
{oc} when |g| = 3, and any (25,4, 1) design when |g| = 6. Hence we obtain the
following:

Lemma 3.2. Let G, B be a GDD or order v with block size 4 and group type

3%6t. Let b= |B|. For1 < i < b, let a; € JP4[16]. For1 < i < s, let
ci € J4[13]); for 1 < i <t, let d; € J4[25]. Then there existtwo (4v+1,4,1)
designs intersecting in precisely

b 8 t
Sar Y+ Y d
i=1 i=1

i=1
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blocks.

Proof: Using Construction 3.1, use the same GDD G, B to construct two (4v +
1,4, 1) designs. Forblocks B, ..., By place (16,4, 1) s sharing a parallel class
and a; other blocks on Z4 x B in the two systems. For groups G; of size 3,
place (13,4, 1)’s with ¢; blocks in common, and for groups H; of size 6, place
(25,4, 1)’s with d; blocks in common.

The 4 v + 4 construction is slightly more complicated.

Lemma 3.3. Let G,B beaGDD on v = 3s + 6t elements with b blocks of
size 4 and group type 3°6%,3 > 1. For1 < i < b, let a; € JP4[16). For
1<i<s—1,letc;+1 € Js[16) and let ¢, € J4[16]). For1 < 1 < t, let
d; + 1 € J4[28]. Then there exist two (4v + 4,4 1) designs with precisely

b 8 t
IILADILAPIL
=1 =1

i=1
blocks in common.

Proof: We proceed as in Lemma 3.2 on the blocks in B. For groups g € G except
for one group S of size 3 we must choose (16,4, 1)’s or (28,4, 1) ’s with at least
the block {001, 002, 003, 004 } in common. This block is then omitted in both de-
signs for all but one group, namely S. Finally on (Z; x §) U{oo;, 002,003,004 },
we place two (16,4, 1) ’s intersecting in c, blocks.

In applying Lemmas 3.2 and 3.3, we employ GDD’s of group of type 3% or 346 1.
Such GDD’s exist forall v = 0 (mod 3) exceptv = 9, 18. Forv = 0, 3 (mod 12),
these are obtained by omitting a pointina (v + 1,4, 1) design; forv = 6,9 (mod
12) they are obtained by omitting a point in the 7-block of a (v + 1,{4,7*},1)
design [1].

We employ a second general construction to handle values missed by quadru-
pling.

Construction 3.4 (tripling): Let G, B be a GDD of order v, blocksizes 4 and 5,
and groups of size 4 and 5. Then there exists a (3v + 1,4, 1) design.

Proof: Let G, B be such a GDD on element set V. We form a (3v + 1,4,1)
design on (Z3 x V) U {oo}. For each block b € B, if |b| = 4 place a GDD
with blocksize 4 and group type 3 on Z3 x B; similarlry if |b] = 5 place a GDD
with group type 35. For each group g € G, if |g| = 4 place a (13,4,1) on
(Z3 x g) U{oo};if |g] = 5 placea (16,4,1) on (Z3 x g) U {oo}.

The GDD’s of type 3* and 3° are obtained by omitting an element from a
(13,4,1) or (16,4, 1), respectively.

Now we conslder consequences for intersection sizes. The flower of an element
is the set of blocks containing the element. Let JF4[v] denote the number of
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blocks shared by two (v, 4, 1) designs in addition to those in a required common
flower. Observe that J F4[v] is precisely the intersection sizes of {4 }-GDD’s of
group type 3¢*~1/3 having all groups in common. Hence we obtain:

Lemma 3.5. Let G, B be a GDD of order v with bs blocks of size 4, bs blocks
of size 5 and group type 4°5*. Choose

a; € JF4[13]) for1 < i< by
ci EJF4[16] forl1 < i< bs
d;€Ja[13] for1 < i< s
e; €J4[16] for1 <i<t

Then there exist two (3v + 1,4 1) designs intersecting in precisely

b bs 8 t
SatYoas ST
§=1 i=1

s=1 i=1
blocks.

Proof: Similar to Lemma 3.2.

4. Ingredients

First we consider v = 13. Mathon and Rosa [9] showed that {0,1,2,3,4,5,7,
13} C J4[13], and hence by Lemma 2.1 we obtain

Lemma4.1. J4[13] = {0,1,2,3,4,5,7,13}.
Since s € JF4[13] implies s + 4 € J4[13], it is an easy exercise to establish
Lemma 4.2. JF,;[13] = {0,1,3,9}.

Next we consider v = 16 . Mathon and Rosa [9] established that {0,1,2,3,4,5,
6,8,12,20} C J4[16]. By Lemmas 2.1 and 2.2, we obtain

Lemma 4.3. J,[16] = {0,1,2,3,4,5,6,8,12,20}.

Examples are easily produced which, together with the necessary conditions,
establish the following.

Lemma 4.4. JP,[16] = {0,1,2,4,8,16} and JF,4[16] = {0,1,3,7,15}.

At this point, the recursions of Section 3 require only a few values for v = 25
and v = 28. We establish these here, and return to small orders in Section 6.
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Lemma 4.5. {0,29,50} C Ja[25].

Proof: 50 € J4[25] by taking the same (25,4,1) twice. 0 € J4[25] since
every (v,4,1), v > 13, has a disjoint isomorphic mate [8].

To obtain 29 € J4[25], take any (25,4,1), (V, B). Let z, y, z be three ele-
ments on a common block. Let B’ be the blocks obtained by applying the permu-
tation (zyz) to (V, B). Then B and B’ share 29 blocks.

Lemma 4.6. {1,63} C J4[28].

Proof: 63 € J4[28] by taking a (28,4, 1) design twice. To obtain 1 € J4[28],
delete four points in a block to form a PBD on 24 elements with block sizes 3 and
4. Simple counting shows that this PBD has a disjoint isomorphic mate, which
can then be completed to a (28,4, 1) sharing one block with the original.

5. Applying the Recursions

In this section, we prove the Main Theorem for all v > 49. First we treat the
(easier) case v = 1 (mod 12).

Lemma 5.1. Forv=1 (mod 12), v > 49, J4[v] = L4[v].

Proof: Necessity is established in Lemma 2.1. For sufficiency, letw = (v—1) /4,
and z = w/3. If w = 0,3 (mod 12), there is a GDD of order w with blocksize
4 and group type 3*. Apply Lemma 3.2 using this GDD, J4[13] from Lemma
4.1 and JP4[16] from Lemma 4.4. When w = 6,9 (mod 12), w # 18, choose
instead a GDD with group type 3*-26! and use Lemma 4.5 on the (25,4,1)
ingredient. '

When w = 18, form instead a GDD on 24 elements with blocksize 5 and
group type 46 (omit a point from a (25, 5, 1) design) and apply Lemma 3.5 using
JF4[16] and J4[13]. Since six (13,4,1)’s are contained in the (73,4,1) so
constructed, Lemma 3.5 produces all of the required values.

Now we tumn to v = 4 (mod 12).
Lemma 5.2, Forv=4 (mod 12),v > 52, J4[v] = I4[v].

Proof: Proceed as in Lemma 5.1, applying Lemma 3.3 instead of 3.2. Provided
w # 18, we use J4 [16], J P4[16] (Lemma 4.4) and Lemma 4.6 for J4[28]. This
produces all values except b, —6,b, —9,b, — 10, b, — 11, b, — 13 and b, — 21.

When w = 18, apply Lemma 3.5 using the GDD of blocksize 5 and group type
(i.e., the (25, 5, 1) design itself); again all values except the six stated omissions
are obtained, given the values for J F4[16] and J4[16].

Now we must handle the six remaining values. Rees and Stinson [10] proved
thatif v = 1,4 (mod 12), w = 1,4 (mod 12) and v > 3w + 1, then there is
a (v,4,1) design containing a (w,4, 1) subdesign. By taking all blocks not in
the subdesign identically, and two copies of the subdesign intersecting in all but s
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blocks, we have that b, — s € Ja[v] if by, — 8 € J4[w]. Using the Rees-Stinson
result with w = 13, we obtaln intersection numbers b,—6 , b, —9, b,—10,b,— 11
and b, — 13 for v > 40. Similarly using w = 25, and the fact that 29 € J4[25],
we obtain b, — 21 forv > 76.

~All that remains is b, — 21 for v = 52 and 64. For v = 52, observe that there
is a GDD on 52 points with block size 4 and group type 13 (essentially a pair of
mutually orthogonal latin squares of side 13). In two (52,4, 1) ’s, take the blocks
of the GDD identically. Replace the four groups by (13,4, 1)’s intersecting in
0,5,13 and 13 blocks respectively. This gives bs; — 21.

Finally consider v = 64. Let G, B be a GDD on 21 elements with blocksize

4 and 5, and group type 5!44; this is obtained by omitting four points from a
block of a (25,5,1). Apply Lemma 3.5 to produce (64,4, 1) designs. These
designs have four (13, 4, 1) designs intersecting in a single point, and by choosing
intersection sizes 0,5, 13 and 13 on these, we can obtain bgs — 21 € J4[64].

6. Small Orders

Four small orders, {25,28,37,40}, remain. The last of these can be handled by
a recursion similar to Construction 3.4.

Lemma 6.1. J4[40] = I,[40].

Proof: Let D be a Kirkman triple system of order 27 (briefly KTS(27)) contain-
ing three disjoint Kirkman triple systems of order 9. Let Py,..., Ps, R1,..., Ry
be the 13 parallel classes of the KTS(27) so that Py,..., Py each induce paral-
lel classes in the three KTS(9)’s. We add 13 points ay,..., a4, by,..., b to this
KTS(27) and form blocks by adding a; to each triple in P; and b; to each triple
in R;. Finally, place a (13,4, 1) on the 13 new points. Consider each ingre-
dient in turn. On the (13,4 ,1), we can get any intersection size from J4[13].
On the (b;, R;) blocks, we can permute the R; to obtain intersection numbers
{0,9,18,27,36,45,54,63,81}. On the (a;, P;) blocks, we can permute the
parallel classes of each of the KTS(9)’s to obtain intersection numbers {0, 3,6,
9,12,15,18,21,24,27,30, 36 }. Combining these yields the desired result.

For v = 25, we find that J4[25] # I4[25].
Lemma 6.2, bys — 6 ¢ J4[25].

Proof: There is a unique graph G on 36 edges having two partitions into Kj4’s
(see the proof of Lemma 2.1). Hence if a (v,4,1) design B intersects another
in b, — 6 blocks, B contains (without loss of generality) the blocks {z, a, b, c},
{z,d,e, f}, {z,9,h,1}, {y,0,d,9}, {y,b,e,h} and {y,c, f,i}. Form a PBD
B' from a (25,4,1) design (V, B) by deleting the four elements {w, z,y, 2}
in the block containing {z,y}. B’ is a PBD with 28 blocks of size 3 and 21
blocks of size 4. The 28 triples resolve into four parallel classes. Now let L =
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{a,b,c,d,e, f,g,h,i} andlet R = V\(L U {w, z,y, z}). Call an edge connect-
ing £ € L and r € R a cross edge and call other edges inside edges. Now the
triples arising from z and y consist entirely of inside edges. After eliminating such
edges, there remain 18 edges inside L, 42 edges inside R, and 108 cross edges.
We require 14 triples and 21 quadruples which partition the remaining edges, and
the 14 triples are in two parallel classes. Call a triple or quadruple an (4, 5)-block
if it contains 1 elements of L and j elements of R. Let the excess of a block be the
number of cross edges it uses less the number of inside edges which it uses.
We have the following:

blocktype excess
(4 10)’ (0’4) -6
(3,0), (0,3) -3
3,1),(1,3) 0
2,1), (1,2 1

2,2 2

We must account for a total excess of 48 = 108 — 60. Since L has at most 18
edges, the number of (2, 2)-blocks is at most 18. Also since the number of triples
is 14, we obtain excess at most 36 + 14 = 50. Since we require excess 48, block
of types (4,0),(0,4), (3,0) and (0, 3) cannot occur.

Consider a parallel class of triples. It contains necessarily 2 (2, 1) -blocks and 5
(1,2)-blocks. But then the triples exhaust 4 edges inside L, and hence the number
of (2, 2)-blocks is at most 14. However, in this case the total excess cannot exceed
42. This establishes that no such (25,4, 1) design exists.

Lemma 6.3. bys — 8 ¢ J4[25].

Proof: There are two graphs on 48 edges having two partitions into K4’s. One
has degree sequence 1226!2; let = and y be the vertices of degree 12. If this
configuration appears, the other blocks appearing with z and y are forced to appear
in the 36-edge configuration eliminated in Lemma 6.2, and hence is impossible.

The other 48-edge configuration is obtained by adding blocks {2, a,e, 1} and
{2,b, f, g} to the 36-edge configuration, and hence is also eliminated by Lemma
6.2.

Now we determine some values in J4 [25]. We employ the list of sixteen noni-
somorphic S(2,4,25) ’s of Kramer, Magliveras and Mathon [5]. Our initial strat-
egy is to apply a permutaton  to a system (V, B), and determine |B N 7B|. For
system 1 of [5], employ the permutations specified in Table 6.1 to establish that
{0,1,2,...,21} C J4[25].

For larger intersection sizes, we adapt the transformation method used by Kramer,
Mathon, and Magliveras [S]. Let (V,B) be an S(2,4,v) and b be a block in
B. Partition B\{b} into two classes U; and B;, where U, contains all blocks
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25



which do not intersect b, and B, contains all blocks intersecting b. Now form
Ty = {b' — b: ' € By}; that is, Ty, is formed from B, by removing the elements of
the fixed block b. T}, is a partition into triangles of an 8-regular graph G on v — 4
vertices, and thus |T;| = 4(v — 4) /3. Moreover, T}, consists of 4 parallel classes
Py, P, B3, P, of triangles. Now suppose that G, can be partitioned into four
parallel classes Qi , Q2, Q3, Q4 of triangles. Then from b, Uy, and these parallel
classes, one can construct an S(2,4,v) (V, B'). Observe that B and B’ intersect
n

1+ [Us] + |P N Q1|+ [P NQ2|+ |Ps N Q3| + |Ps N Q4|

blocks.

Hence if one can obtain different partitions of such a graph G, into parallel
classes of triangles, one can obtain different intersection sizes. Observe that for
any system (V, B) and any block b, the graph G} is partitionable into parallel
classes in at least one way. By permuting the names of the four parallel classes, one
obtains intersection numbers b,—2(v—4) /3, b,—3(v—4) /3 and b,—4(v—4) /3.
To obtain further values, we require graphs G, with more than one resolution.

We employ the numbering of the designs in [5], and their numbering of the
blocks. Specifying a design number and a block number defines a graph G, for
which we present multiple partitions into parallel classes. In Table 6.2, we give
such partitions to establish that

{22,23,24,25,26,27,28,29,30,32,35,36,38} C J4[25].

At present, this leaves the values {31, 33, 34,37,39,40,41} in doubt forv =
25.

Next we consider J, [ 28] . By applying random permutations 7 toan S(2,4, 28),
we obtained intersection sizes {0....,29 } U {32 }; we do not include them here.
Next we applied the transformation method to some S(2,4,28) designs listed in
[9]). From the so-called “classical unital”, design (vii) of [9], using the transforma-
tion method one obtains intersection sizes {31, 33, 35,36,37,38,39,41,42 ,43,
45,47,48,51,63}. Moreover, one can apply permutations to the blocks in Uy
provided they form an automorphism of Gy. In this way, we obtain intersection
sizes {30, 40 }. Design (i) of [9] under the transformation method provides inter-
section size 55. We found an S(2,4,28) giving intersection size 34. Hence the
values which remain in doubt for v = 28 are {44,46,49,50,52,53,54,57}.

For v = 37, we applied random permutations to obtain intersection sizes {0, .. .,
57} U {60}. For higher intersection sizes, we form a specific $(2,4,37) which
realizes many of the values. We exploit the fact that the partial S(2,4,12) ob-
tained by deleting a point from the $(2,4, 13) can beembeddedinan S(2,4,37).
One particular embedding is on elements {oo} U ({z, y, 2} x Z12). Take starter
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A. Block number 50 of Design number 3

5
9
15
4

- e e

5
12
15

4

e

13
12
21

7

9
13
21

7

N - NN

N N NN

13

o~

B. Block number

12
15
19

W w ww

312

20
18
21
11

19
15
20
21

L R Y

&~ o &

14
10

18

10

14

3142
3 415
3 811
3 6 9

3 4 8
314 21
369
31115

Intersection Sizes:

Partition 1:

1 of Design aumber 6

17
24
15

18 24

5
51119
5
51015

5 10 24
519 21
5 711
51518

4 816 6 17 19
516 19 6 718
418 19 5 917

10 14 18 11 15 16

Partition 2:

10 13 16 11 14 17
415 16 6 17 19
418 19 51317
5 16 19 6 14 18

23,24,26,27,30,32

Partition 1:

8 11 24 9 16 18
71217 8 16 23
7 89 10 13 17
812 13 9 17 19

Partitfon 2:

7 812 916 18
7 917 811 23

8 16 24 919 22

8 913 10 17 19

Intersections Sizes: 25

Table 6.2
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911
8 10
712

12

12

~

10
12

8 10

10

11
14

13
10
12
11

19
13
14
16

20
20
20

22
22

24

22
17
24

12
11
10
19

19

911
811

-]

13
14
16
21

20
14
14
16

12

22

23

22
23

22
20

23



C.

- = e

-

D.

- e

- e

Block number

1 23
13 14
19 20
2 3

11 23
13 14
19 20
2 3

NN NN

~N N NNN

14
20
12
10

20
12
14
10

Block number

72
12 14
16 23

2 3

72
12 14
16 23

2 3

2

2

2

7

17

10
10

10
17

23 of Design number 11

15 31921 7 822 9 10 20
21 310 22 7 92 81219
24 31315 71121 8 923
12 8 11 14 9 12 15 16 19 22
Partition 2:
21 31315 7 92 81219
24 31921 7 8 22 9 10 20
15 310 22 71121 8 923
13 8 11 14 912 15 16 19 22
Intersection Sizes: 24,26,28,32,38
23 of Design number 13
Partition 1:
24 31113 8 22 23 9 10 14
19 318 22 71115 9 23 24
15 3 92 7222 81213
13 81114 91215 16 19 22
Partition 2:
15 318 22 8 11 14 9 23 24
24 3 92 71013 822 23
19 31113 722 24 12 15
15 8 12 13 9 10 14 16 19 22
Intersection Sizes: 26,27,28,30,32,35
Table 6.2 continued

Partition 1:
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17

10
11
12
17

12
10
11
17

12
11
10
17

16
17

20
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18
17
23

20
21
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13
15
14
18

14
15
13
18

15
13
14
18

13
15
14
18

22
23
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blocks with subscripts mod 12 as follows:

00 L))
o T4
73 20
7 Yo
Z10 Yo
z3 Yo
I2 Yo
Ts un
and the short orbits
Yo U3
20 23

Call the resulting set of 102 blocks B. The pairs left uncovered by B form a com-
plete 4-partite graph K3 3 3 3; hence there is a set C of nine blocks which cover
the remaining pairs. We consider permutations of the resulting design which are
automorphisms on the K3 3 3 3 for C; this enables us to replace C by a differ-
ent set C' of blocks covering the same pairs. Recall that C N C' can be any of
{0,1,3,9}—this is JF4[13].

Hence we consider permutations on the design which induce automorphisms on
the K3 333. In this way, we obtain intersections sizes |B N «B| + {0,1,3,9}.

Yo
Y1
21
1/}
Y2
Y4
Ys
29

Y6
26

We employ the following permutations:

m

identity
(zoz1)
(yoys)
(zoz172)
(zoz1)(Z415)
(zoz17273)
(yoysys)
(zoz1)(yoys)
(yoy3) (2023)
(yow3ysyo)

Hence the values in doubt for v = 37 are

{64,66,76,82,84,85,88,90,91,92,93,94,96,97,98,99, 100, 101}.

We expect that the values left in doubt for v = 37 are all intersection sizes; how-
ever, we also expect that a proof of this will be the result of tedious computations,

or good luck.

110

|IBNxB|
102

86
80
78
74
70
69
68
62
58

25
25
29
2
27
210
2

Y9
29



7. Concluding Remarks

In this paper, we have obtained a complete solution of the intersection problem
for S(2,4,v) systems with v = 13, 16 and v > 40. The solution for the interme-
diate cases is partial, and is complicated by the lack of complete enumerations of
§(2,4,25) and S(2,4,28) designs. The remaining problems could be solved to
a large extent by determining minimal embeddings of partial S(2,4,v) designs.
This problem is open, and merits further study.
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