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ABSTRACT

We give explicit expressions for the sizth and seventh chromatic
coefficients of a bipartite graph. As a consequence we obtain a
necessary condition for two bipartite graphs to be chromatically
equivalent.
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§1. Introduction

Farrell [1] has given explicit expressions for the fourth and
fifth coefficients of the chromatic polynomial of a graph. The
results were obtained by using the following theorem for the
chromatic polynomial P(G;)) of a graph G, due to Whitney

[4].

Theorem A. Let G be a graph of order p and size q. Then

P4 ,

P(G;N) = ) (Q_(-1) N(k,n))X, (1)

k=1 r=0

where N(k,r) denotes the number of spanning subgraphs of G
having ezactly k components and r edges.

In this paper we give explicit expressions for the sixth and
seventh chromatic coefficients of a bipartite §ra,ph. As a con-
sequence we establish a necessary condition for two bipartite

%raphs to be chromatically equivalent. Two graphs are said
o be chromatically equivalent if they have the same chromatic

polynomial. Our results were obtained by using the technique
introduced by Farrell in [1].
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§2. Definitions and Known Results

All graphs considered in this paper are finite, undirected, sim-
ple and loopless. Let V(G) be the vertex set of the graph G
and E(G) be the edge set of G. An edge-gluing G V H of two
graphs G and H is a graph obtained from GU H by identifying
an edge in G with an edge in H. K, , denotes the graph ob-
tained by deleting one edge from the complete bipartite graph
K, .. C, denotes the cycle with n vertices. A graph is said
to be of type G*" if it is obtained from G by adding r extra

edges in such a way that no new cycles are created (so that
the number of vertices is increased by r more than the increase

in the number of components, which may be anything from 0
to r). Ng(H) will denote the number of subgraphs of G iso-
morphic to H, and I (H) will denote the number of induced
subgraphs of G isomorphic to H (so that Ng(H) = I, (H) if
H is complete, or if G is bipartite and H is complete bipar-
tite). If S is a set of graphs, we denote by N (S) the number
of subgraphs of G isomorphic to graphs in S.

Let G be a bipartite graph with p vertices and q edges.
The first three coefficients of P(G;A) = Y°7__ a;A\*~* can easily

be deduced to be 1, —g, and ({). By using Theorems 1 and 2
of Farrell [1], the expressions for a3 and a, are Ng (C,) — (;)
and (?) — (¢ — 3)Ng (C4) + Ng (K s), respectively.

The following lemma will be used to prove our main re-
sults.

Lemma B (Farrell [1]). Let G be a graph with p vertices

and l)—n components. Then G consists of p—c tsolated vertices
together with ¢ — n non-trivial components, where n < ¢ < 2n.
If1<n<p—2,thenn+1<c¢<2n.

§3. The Sixth Chromatic Coefficient

We will now prove the following result.

Theorem 1. Let G be a bipartite graph of order p and size

q. Then the coefficient of A\*~5 in the chromatic polynomial of
G s

~(9)+(%3 )Mo + 1o(00) ~ (4~ 9N (K
+ Ng(K34) — Ic(K; 3) — 4Ng(Ks 5). (2)
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Proof. By Theorem A, the coefficient of A\?~® is given by

q
as =Y (-1)'N(k,r) with k=p—35,

r=0

where N (k,r) is the number of spanning subgraphs of G with

— 5 components and r_edges. From Lemma B, we know
hat the only spanning subgraphs of G with p —5 components
are those having p — ¢ isolated vertices and ¢ — 5 non-trivial
components, where 6 < ¢ < 10.

c =6. In this case, the bipartite graphs have p — 6 isolated
vertices and_1 component with 6 vertices. The connected bi-
partite graphs with 6 vertices are in Figure 1.

c =17. The bipartite graghs with 7 vertices and 2 non-trivial
components are in Figure 2.

c = 8. The bipartite graphs with 8 vertices and 3 non-trivial

components are in Figure 3.

c =9. There is only one bipartite graph with 9 vertices and
4 non-trivial components, which is 3K, U K; ,. We will call it
graph (31).

¢ =10. In this case, there is also one bipartite graph with 10
vertices and 5 non-trivial components — the graph consisting

of 5 independent edges. We will call it graph (32).

In order to obtain the contributions of these graphs to a5,
it is convenient to put them into categories as follows.

S, = {1,2,3,4,5,6,18, , 19, 20, 24, 25, 26, 28, 29, 30, 31, 32},
S, = {8,9,10,11,21,23,27}, S, = {13,14,22},
S4 = 15}, a.nd S5 = {7, 12, 16, 17}.

All the graphs in S; contain 5 edges. The only other
bipartite graphs with 5 edges are the two graphs of type C;}*.
The number of subgraphs of this type is (§—4) N (C,). Hence

No(5) = (¥) - (a-9Na(c0)

The contribution of the graphs in S, is therefore

o= (-0 (7) - - e (]
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Figure 1.

All the graphs in S, are of type CJ 2. The only other bipartite
graph which consists of C, plus two edges is K, 5. Thus

N¢(S:) = (q ; 4)Na (Cs) —3Nc(Ks,s),

since each K, 5 is counted three times in (" ‘)NG (Cy). The
contribution of these graphs to a; is therefore

—14
6, = (—1)° [(q ) )NG (C.) —3Ng (Km)] :
All the graphs in S; are of type K} 3. There is no other such
graph. So
: Nc(Ss) = (9 —6)Ng (K, 3)
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(6) (21 (28 (29  (30)
‘ Figure 3.
and the contribution of the graphs in S; to a; is therefore
03 = (—1)7(q - 6)NG (Kg,g).

Graph (15) in S, is the complete bipartite graph K; 4. The
net contributionof all graph (15)’s to a5 is

0, = (—1)*Ng (Ka.4).

The graphs in S; are Cq, C, V C,, K;; and K3 5. We shall
see that the contribution of all these graphs to a; is

0; = I (Ce) —Ig (Kzz_,s) —4Ng (KS,S)'
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Each occurrence of one of these graphs as a subgraph of G
corresponds to an occorrence of a (possibly different) graph
in this set as an induced subgraph of G. If G has induced
subgraphs isomorphic to Cg, then their contribution to as will

be (—1)¢I;(Cs). An induced subgraph isomorphic to C, Vv C,
contains one Cs and so contributes (—1)¢ + (—1)” = 0 to a;.
An induced subgraph isomorphic to K; ; contains two C¢’s and
four C, v C,’s and so contributes 2(—1)° + 4(—1)" + (—1)% =
—1 to as; thus the total contribution of all such graphs is
—Iz(K; ;). Finally, an induced subgraph isomorphic to K s
contains 6 C¢’s, 18 C, V C,’s and 9 K; ,’s and so contributes
6(—1)¢ +18(—1)" +9(—1)® + (—1)° = —4 to as; thus the total
contribution of all such graphs is —4N¢ (Ks,3).

By adding the contributions of all graphs with p — 5 com-
ponents and r edges, we get (2) as required.

The following necessary conditions for two bipartite
graphs to be chromatically equivalent can be deduced and are
well-known (see, for example [2] and [1]). In the remaining
of this section, we give another necessary condition for two
bipartite graphs to be chromatically equivalent.

Theorem C. Let G, and G, be two chromatically equiv-
alent bipartite graphs. Then

Q) V(G1)| = V(G
(ii) |E(G1)| = |E(G2)];

iii NGl 04 =NG3 C4 ’
(iv) Ng,(K;,s) = Ne,(Kz,s);

(v) Gi is connected if and only if G, is connected;
(vi) Gy 1s 2-connected if and only if G, is 2-connected.

The follovyinﬁ necessary condition for two bipartite gr?hs
to be chromatically equivalent follows from Theorems 1 and C.

Theorem 2. Let G, and G, be two chromatically equiv-
alent bipartite graphs. Then

IGx (Cﬁ)-l-NGl (K2’4) - IGl (K:;_,s) - 4NG1 (K313) =
Ic,(Cs) + Ng, (Kz,4) — I, (K53) — 4Ng, (Ks,3).

Corollary. Let G be a bipartite graph which has no K, .
If cz grt)zph H is chromatically equivalent with G, then Iy (Cs) =
I;(Cg).
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Remark. We are able to show that there are infinitely
many pairs of bipartite graphs which satisfy all the conditions
in Theorem C but do not satisfy the necessary condition in
Theorem 2.

§4. The Seventh Chromatic Coeffi-

cient
Let G be a bipartite graph of order p and size g. In order
to find the seventh chromatic coefficient of G, we will need

all the bipartite graphs with p vertices and p — 6 components.

According to Lemma B, these graphs consist of 'f — ¢ isolated
vertices and ¢—6 non-trivial components, where 7 < ¢ < 12. It

is not difficult to confirm that all these graphs (the non-trivial
components) can be partitioned into the following 8 categories.

S, = { Forests with 6 edges };
S, = { Graphs of type C;* };
S5 = { Graphs of type K2 };
Sy = { Graphs of type K ; };
S = {K2'5 }; Se = {K‘.,"'4 and K 4 };
Sy = { Graphs of types Ct!, (C, vV C,)*?,
(K5s)*", and K33 };
Ss = { The Graphs H;(i =1,2,...,7) in Figure 4}.
We shall now calculate the contributions of all the graphs
inS; (1<¢<8)toas.
All the graphs in S, contain 6 edges. The only other

bipartite graphs with 6 edges are C, plus two edges and Cs.
Also, the number of subgraphs of G that consist of C, plus

two edges is (";‘)NG (C4) —2Ng (K, 3), since K, 5 is counted
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Figure 4.

three times in (*7*)Ng(C,). Hence

Ne(5)) = (g) — Ng(Cs) — (q;4)NG(C4) + 2Nz (Ka.s).

The contribution of all graphs in S; to a is therefore

&= (-1)° [(Z) ~ No(Co) - (q;"‘)NG (cy)

+ 2N, (Kg,s)] .

All the graphs in S; had one C, plus three edges. Other
such bipartite graphs which are not in S, are C4 VC,; and K, 5
plus one edge. Hence

Ne(Sz) = (q ; 4) N&(C.)—3(q—6) Ng (Kz,5)—2Ng (CyVCL),

since each K s is counted 3 times and each C, v C; is counted
twice in (“;4)NG (C4). The contribution of all the graphs in
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S, to ag is therefore

&= 07 [(*5 ) Me(C) - sla - N (1,

—2Ne(C, v C,)]

__ (q . 4) N (C4) +3(q — 6) No (Ko
+2N¢g(Cy Vv Cy).

All the graphs in S; contain K, 5 plus two edges. Other
such bipartite graphs which are not in S; are K;; and K, ,.
Thus

Ng (Ss) = <q;6>NG (Kz,a) —2Ng (Ke._,s) —4Ng¢ (K2,4)’

since each K; , and K, , is counted two and four times, re-

spectively, in (";6)NG (K;,3). The graphs in S; contribute to
as by the following amount.

6= (-0 [ (1] ) Vo ) — 2o (i65,) - e (50|

-6
- <q ) ) No(Ka,s) — 2Na (Kis) — 4N (Ks,4).

The contribution of all the graphs in S, to a4 is
€ = (-1)°(¢ — 8)Ne(Kz,4) = —(¢ — 8) N (Ks,4).
The contribution of the graph K, 5 in S5 to a is
s = (—1)'°Ng(Kz,5) = No (Ka 5).

The graphs in S are K, , and K, 4. Each occurrence of
one of these two graphs as a subgraph of G corresponds to an
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occurrence of a graph in this set as an induced subgraph of G.
If G has an induced subgraphs isomorphic to K3, then their
contribution to ag will be (—1)'*Is(K;,). An induced sub-
graph isomorphic to K; 4 contains 12 K ,’s and so contributes

(=1)*2 + 12(—1)** = —11 to ae; thus the total contribution of
all such graphs is —11Ng (K3, 4). Thus the contribution of all
graphs in Sg to ag is '

56 == "‘IG (K3_,4) - ].].NG (K3,4).

Now we consider graphs in S;. We shall see that the
contribution of the four types of graphs in this category to a¢

& = —(q—6)Ic(Cs) + (9 — 8)Ic (K5,5) +4(q — 9)Ne (Ks,3).

Each occurrence of one of these graphs as a subgraph of
G corresponds to an occurrence of a (possibly different) graph
in this category as an tnduced subgraph of G. If G has induced

subgraph isomorphic to a graph of type C?*, then the contri-
bution to ag will be (—1)7(¢—6)Is(Cs). An induced subgraph
isomorphic to a graph of type (Cy V C4)*?! contains one graph
of type C;}! and so contributes (—1)® 4+ (—1)" =0 to a¢. An
induced subgraph isomorphic to a graph of type (K;, s)t ! con-
tains 4 subgraphs of type (C, V C;)*! and two subgraphs of
type C;1, and so contributes 4(—1)* +2(—1)" +(-1)° =1 to
ae; thus the total contribution of all graphs of type (K ;)*! is
(¢—8)I (K; ;). Finally, an induced subgraph isomorphic to a
graph of type K3 contains 6 subgraphs of type Cg 1) 18 sub-
graphs of type (C, vV C,)** and 9 subgraphs of type (K;3)**,
and so contributes 6(—1)7 + 18(—1)® + 9(—1)° + (-1)'° = 4
to ag; thus the total contribution of all graphs of type K is
4(q¢ — 9)N¢ (Ks,3).
The net contribution to as of all the graphs in S; is

&= ZNG(Hi) - ZNG (Hi)'
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. By adding all the contributions §; (1 < ¢ < 8) to ag, we
ge
Theorem 3. Let G be a bipartite graph of order p and size

q. Then the coefficient of A’=® in the chromatic polynomial of
G 1s

(8) - -ea(c0) - Na(cn) - (7 ) e

+2Ng(C, vV C,) + [2 + %(q -1)(g - 6)] Ne(Ks,s)

— (92— 4)Ns(Kz,4) + Ne(K,,5) + (¢ — 10) I (K5 5)
+ (49 — 54)Ng (Ks s) — I (Ks.4) —11Ng (K ,4)

+ZNG(H;)—2NG(Hi).

The next result follows immediately from Theorems 1
and 3.

Theorem 4. Let G be a bipartite graph with p vertices
?’:zd q edges. If G has no cycles of length 4, but n of length 6,
en

ac =—(q)+n, and ag = {q

—_ 5n.
5 \6) gn + 5n

Remark. The coefficient a5 can also be deduced from
Theorem 2 in (3] and the coefficient a; (when n = 1) can be

obtained from Theorem 3 in the same paper.
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