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Abstract

The binding number of a graph G is defined to be the minimum of
|N(S)|/|S] taken over all nonempty S C V(G) such that N(S) # V(G).
In this paper, two general results for the binding numbers of product
graphs are obtained. (1) For any G on m vertices, it is shown that
bind(G x K,) = (nm — 1)/(nm — §(G) — n + 1) for all n sufficiently
large. (2) For arbitrary G and for H with bind(H) > 1, a (relatively)
simple expression is derived for bind(G[H]).
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1 Introduction

The concepf of the binding number of a graph was introduced by Woodall
(8] in 1973. It was an attempt to measure how “well-distributed” the edges
of a graph are. Various results have been obtained including: basic results
such as bounds; the binding numbers of specific graphs or families thereof,
especially of various products of “common” graphs; and conditions on the
binding number which (together with other simple conditions) guarantee the
presence of a required subgraph.

We return to the calculation of the binding number of a product graph
and prove two general results. The first results on product graphs were
obtained by Kane, Mohanty and Hales [4]. Subsequently, Wang, Tian and
Liu [6] considered more lexicographic products. They [7] also considered
some cartesian products, as did Guichard [3] and Luo [5]. Almost all the
results have dealt with the case where all the factors are “nice”, i.e. complete,
cycles, paths or complete bipartite. For example, most of [7] deals with the
cartesian product graphs G x K, where G is the cartesian product of cycles,
or of paths.

In contrast, we show here that for any graph G on m vertices, bind(G x
K,) = (nm—1)/(nm—-6(G)—n+1) for all sufficiently large n. We also derive
a general expression for the binding number of the lexicographic product
G[H) holding for all G and for H with bind(H) > 1. We then exhibit some
simplifications for classes of G and H. As a corollary follow most of the
ad hoc results of [4] and [6]. A more general discussion of lexicographic
products is to be found in [2].

(XX ]

In this paper we consider only finite undirected graphs without loops or
multiple edges. For definitions not given here, see [1].

Let G be a graph with vertex set V(G). For a subset § C V(G) we let
N(S) denote the neighbourhood of S, and N[S] its closed neighbourhood
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SUN(S). Then F(G)is defined tobe {S: ¢ # S C V(G) & N(S) # V(G) }.
Further, the binding number of G is given by

. . IN(S)
bind(G) .—sg?c) ST

A binding set of G is any set § € F(G) such that bind(G) = |N(S)|/|S|-
Also, for any § C V(G), the ezcess of S, is given by Exc(S) = |N(S)| - |S|.

The following well-known results will prove useful:

Proposition 1 [8] For any graph G on p(G) vertices and with minimum
degree 8(G), bind(G) < (p(G) ~ 1)/(p(G) - §(G)).

Proposition 2 [§]

a) Forn > 1, bind(K,) =n — 1.

b) For n > 3, bind(C,) = 1 if n is even, and (n — 1)/(n — 2) if n is odd.
¢) For n > 1, bind(P,) = 1 if n is even, and (n — 1)/(n + 1) if n is odd.
d) For 1 < a < b, bind(K(a,b)) = a/b.

2 Cartesian Products

This section is devoted to evaluating bind(G x K,) for n sufficiently large.
Consider P = G x K, with n > 3, and G a connected graph of order m > 2
and minimum degree §(G).

Our strategy will be as follows. For an § € F(P), we will define pa-
rameters f, d and u, and observe some constraints on these. We will find.
a lower bound e(f,d,u) for Exc(S), and an upper bound s(f,d, ) for |S|.

Then, subject to the constraints, we evaluate

. e(f,d,u)
min S(fd ) )

This is a lower bound for bind(P) - 1.
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Let S € F(P). Let V(G) = {v1,v2,...,vm}, and denote by B; the
vertex set of the copy of K, corresponding to v; (i = 1,2,...,m). Further
let $;=SNB;and N; = N(S)ﬂ B;.

We now define the following (weak) partition of V(G):

F = {v€eV(G):|S|=n} |Fl = f,
D = {%€eV(G):1<|Si|<n} |D|=d,
U = {v€eV(Q):|Si|=1} Ul =u, and
Z = {v%eV(G):|S|=0} |Z] = 2.

The constraints on f, d and u that we use are:
f+d+u<m, f+d<m-1, and f<m-§G)-1 (2)

The first is trivially true, and the second is clearly a consequence of N(S) #
V(P). But so is the third: for if v; € F then N; = B; for all v; € Ng(v),
and thus Ng[F] # V(G). We will say that f, d and u are legal if they satisfy
(2).

Lemma 1 The following table gives lower bound e(f,d,u) on Exc(S):

case | D | F|U | Exc(S)2>
@ [e[s]] n-2u
(b) |¢||¢ n
(c)[d|e|e|(n=-2)u+1
d|o|?|¢| n+td-1
e |e|?7|e|(rn-2)ut+d

where ¢ indicates that the set is empty, o that the set is non-empty and ?
that it is immaterial whether the set is empty or not.

Proof
We note first that for all 4, |N;| > |S;|. Indeed, for all v; € D, |N;| -S| > 1
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and for all v; € U, |Ni - |Si] > n — 2. Then cases (a) and (e) follow

immediately. The remainder of the proof is as follows.

(b) By the given conditions, there exist v; € F and v; € Z which are adjacent

so that |Nj| — |S;| = n.

(c) That 3, cp(INi| = |Sil) 2 (n — 2)u follows from the above discussion.

Also there exist v; € F and v; € U U Z which are adjacent; if v; € Z then

|N;| - |S;] = n, while if v; € U then |N;| - |Si] = (n - 2) + 1.

(d) By the given conditions, there exist v; € FU D and v; € Z which are

adjacent; if v; € F then |Nj| — |S;| = n, while if v; € D then |N;| + |N;| -

[Sil = |Sj] 2 |Sil + » = |Si| = 0 = n. The remainder of Exc(S) follows from

(the rest of) D. o
Observe that |S| < s(f,d,u) = nf +(n—1)d + u. So what remains is to

evaluate quantity (1).

Lemma 2 In evaluating (1) subject to (2), we may assume that u,d # ¢.

Proof

In the notation of the previous lemma, we show that case (e) is at least as
good as each of the other cases. For case (a) the ratio e(f,d,u)/s(f,d,u)
equals n — 2; this is beaten by f = 0 and d = u = 1, for example.

For the remainder of the proof, we show that given legal f, d and » in
cases (b) through (d), there is always a legal value of d’ and u’ from case (e)
such that e(f,d,u) > e(f,d',v') and s(f,d,u) < s(f,d’,u’):

case (b): &' =/ =1;
case (c): d'=1; if u=1then ' =1else v’ = u—1;

case (d): v’ =1 and d' = d.

It is easily checked that these values satisfy the requirements. o

Lemma 3 In evaluating (1) subject to (2), we may assume that f = m —
6(G)-1andu=1.
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Proof

Suppose f < m — 6 — 1. Then f can be incremented, and, if necessary, one

of u or d incremented, so that the resultant f’, v’ and d’ are legal and «’,

d' > 0. But then e(f,d,u) > e(f',d’,v') and s(f,d,u) < s(f',d',’).
Further, the ratio e(f, d, u)/s(f,d,u) is increasing in u; hence we should

choose u = 1. o
Thus we have reduced evaluating (1) to evaluating:

min ntd-2
1d<sa(m—6 - 1)+ (n-1)d+ 1’

where § = §(G).
Now, it can be verified that if n > m + 2 — §, then this expression is

minimised at d = §. In this case

. n+6—2
bind(P) 2> 1+n(m_5_1)+(n—1)6+1
nm—1
= nm—(n—l'l"&)

_ _pPp)-1
p(P) - §(P)’

Using Proposition 1, this may be summarised in the following theorem.

Theorem 1 Let G be a connected graph on m vertices.
Ifn > m+2— §(G) then

. .\ mn-1
bind(G x K,) = — T TS
Proof
This follows from the above discussion except in the case where G is trivial
in which case m = 1 and §(G) = 0 and the formula follows. a

For example, the binding number of K X Ky, follows immediately pro-
vided 7 or m is at least 3. Also, in [7] it is shown that n > 3 is sufficient if

G is the cartesian product of paths or of cycles.
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3 Lexicographic Product

We consider the lexicographic product G[H] where bind(H) > 1.

The vertex sets of G and H are given by {vy,vs,...,v,} and {wy, ws, ..., w,}
respectively. Let S be a subset of V(G[H]). Denote for i = 1,2,...,m,
Si:={wj € V(H):(vi,w;) € S}, and let Y := {v; € V(G): S; # ¢}

Certainly,

N(S)y=Ng(Y)xV(H)U |J {w}xNu(S).
%€Y —Ng(Y)

Now, let § be a binding set of G[H] (so that Y # ¢). As N(S) is
independent of the choice of S; for v; € Y N Ng(Y'), and S is obviously a
maximum set with the given neighbourhood, it holds that S; = V(H) for
all v; € Y N Ng(Y). Thus

S=(YnNe(Y)xV(H)U | {w}xS.
v;€Y-Ng(Y)

Observe that |[Ny(S;)| > |Si| for all possible S; as bind(H) > 1. Thus
for any fixed Y, the ratio |N(S)|/|S| js minimised at S; = V(H) for all
v; € Y — Ng(Y). The only question is whether such an § is valid: for
N(S) is the whole graph iff Ng[Y] = V(G) and Ng(S;) = V(H;) for all
v; €Y — Ng(Y).

Hence we are guaranteed a binding set such that one of the following
holds:

1. Ng[Y]#V(G)and S; = V(H) forall v; € Y; or

2. Ng[Y] = V(G), and there exists v; € Y — Ng(Y) such that S; € F(H)
while §; = V(H) for all v; € Y — {v;}.

In the latter case

IN(S)] _ (m = 1)n + |Nu(S:)
ST = (WI-Dn+lsi -
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For any fixed S; € F(H), this attains a minimum value if Y is of maximum
cardinality such that Ng[Y] = V(G) and Ng(Y) # V(G),i.e. ifY = V(G)-
Ng(v) where v is a vertex of G of minimum degree.

This yields the following theorem:

Theorem 2 For any graphs G and H such that bind(H) > 1, bind(G[H]) =
min{Ey, E2} where
|Ne[Y]|

Y#6 Y| ’
NGIY1#V(G)

_ . (m-1n+|Ng(T)
B = O m— 1= 6C))n +1T]"

We note in passing that the parameter £, may be thought of as a “closed

E1=

binding number.”

3.1 Simplifications

Most of the previous results on G[H|] have assumed that both G and H are
complete graphs, paths, cycles or complete bipartite graphs. The following

lemmas recover several of these results, inter alia.

Lemma 4 If bind(H) = (n—1)/(n — 6(H)) then

_ nm—1 _ p-1
" n(m-6(G))-é(H) ~ p-6(G[H])

where p is the order of G[H].

E,

This follows as one obviously takes T to be a binding set of H. This
lemma is applicable if, for instance, H is a non-trivial complete graph, path

of even order or odd cycle. Another result is that:

Lemma 5 For all G,

m-—1
> -
El‘m—n(G)—l’

with equality iff K(G) = §(G) or kK(G) = 0.
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Proof
If G is complete then E; = co. So assume that G is noncomplete. Let Y #£¢
such that Ng[Y] # V(G). Then G — (Ng[Y] - Y) is disconnected so that

INlY]l _ |, INo¥] -] X(G)
VT T TR 2 e

which, as k(G) < é(G), proves the bound. For equality, take Y = V(F)
where F is a component of G if 5(G) = 0,and Y = V(G) - N [v] where v is
a vertex of minimum degree if kK(G) = 6(G). o

This lemma applies to all four classes mentioned above.
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