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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). Letp =
|[V(G)| and g = |E(G)|. In 1985, Lo [5] defined the edge-graceful labeling of G
where £: E(G) — {1,2,...,q} is one-to-one and £ induces a label on the vertices
defined by £*:

£(v)= Y £(uv)(modulop).
uweE(G)

The labeling is edge-graceful if all vertex labels are distinct modulo p in which
case G is called an edge-graceful graph.

In his 1985 paper, Lo showed that if graph G is edge-graceful then p divides
(P +q+p(p—1)/2).

In this paper for positive integers n and ¢, K,, denotes the complete graph on
n vertices, C, denotes the cycle graph with |V (C,)| = n = |E(GC,)|, and C¥
denotes the kth power of C,. Thatis, V(CF) = V(C,) and uv € (C¥) if and
only if d(u,v) < k where d(u,v) denotes the distance from vertex v to vertex v
in C,.

2. Regular Graphs
In [4], Lee, Seah and Wang conjectured that the kth power of C, is edge-graceful
for odd n. Atthe 1989 Southeastern Conference on Combinatorics, Graph Theory
and Computing, Sin-Min Lee and Eric Seah presented a “proof™” of this conjecture.
A flaw was discovered in the proof given in the paper available after the confer-
ence. Specifically, their “proof™ relied upon the obviously false statement that if
gcd(n, k) # 1,then ged(n, k+ 1) = 1. We prove the conjecture by showing that
C¥ is edge-graceful for nodd and 1 < k < 2. From this, the known results that
Ca, C? and K, are edge-graceful for odd n are easy corollaries. The proofs make
use of the simple observation that if ¢ = kp, k > 1, then an edge-graceful labeling
with edges labeled 1 to g is equivalent to using each edge label 1,2, ..., p exactly
k times so that the induced vertex labeling yields distinct labels modulo p. For
example, for C? = K5 we get the labeling shown in Figure 1.

We have recently received a preprint [1] of a paper by Ho, Lee, and Seah in
which they give a very nice theorem which generalizes Theorems 1 and 4 given
below.
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Figure 1.

Theorem 1. Let nbe oddand 1 < k < &, then C¥ is edge-graceful.

Proof: Let r be the positive integersuch that 27! < k < 27.Lett=2"—k >0
andlets=k—-t=2k—2">0.Thens+t=kands+2t=2".
Label the edges of G as follows forall{,1 < i < =

Lv1,vi41) = L(vi,vis2) = - = L(vi,Vist) = 2
2(v;, Vister1) = (Ui, Vists2) = - - = L(Vj, Vinges) = 4.

This is a legitimate edge labeling since each label 1, 1 < 1 < =, is used ex-
actly k times. That is because the label 1 is used s times on edges incident to
v;, and the label 21 is used ¢ times on edges incident to v;. Since gcd(n,2) = 1,
{2-1,2-2,...,2 .. .n} areall distinct in Z,,. Thus each1 is used exactlyt+s = k
times.

This edge labeling induces distinct labels on the vertices. Figure 2 shows the
labeling of edges incident to v;.

Note that :

Lv) =t(29) + 8(d) +t(29) + (1) —2(1+ 2+ --- + 1)
—(@+D)+(X+2)+---+(t+3))
=4(4t+28) —2(1+2+---+t) —ts—(1+---+3)

Similarly, £(vis1) = (4+ 1) (4t+28) —2(1+ 2+ .- -+t) —ts—(1+.--+3).
The difference between successive vertex labels is £(v;,1) — &(v;) = 4t + 2s =
2(2t+s) =2-27 =21, Since gcd(n,2™!) = 1,27 generates Z, and the n
vertex labels are distinct.

Thus, C¥ is edge-graceful for n odd. ]

This theorem yields previously known results as simple corollaries:

Corollary 2. [3] K, is edge-graceful for n odd.

Proof: Set k = {%>1) in the theorem so that Cf = K. (]
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Figure 2

Corollary 3 [5] C,, edge-graceful for n odd.

Proof: Set k = 1 in the theorem. |
Let C,,; denote the graph G such that V(G) = V(C,) and E(G) = E(C,) U

{Cvi,vj) | d(v;,v;) = k in C,,}. For example, C2 = Cy .

Theorem 4. C,; is edge-graceful for odd n and k positive.

Proof: For all 4,1 << n, label the edges as follows:
2(v;,vi41) = Z(v;,v.'_k) =1.

Thus for all 1 there are exactly two edges labeled 1 so we have a legitimate labeling
of the edges.

This edge labeling induces distinct vertex labels because £(v;) = i+i+(i—1)+
(i—k) =4i—(k+1) and2(vs41) = 4(1+ 1) — (k+ 1). The difference between
successive vertices is £(v;+1) — £(v;) = 4. Since gcd(n,4) = 1, 4 generates Z,
and G is edge-graceful. [ |

3. Trees

In the remainder of the paper we consider the problem of determining which trees
are edge-graceful. Lo’s condition is useful as it implies that any edge-graceful tree
must have odd order. In [2] Lee conjectured that all trees of odd order are edge-
graceful. Although this conjecture is far from settled, in the remainder of this
paper we prove that two large classes of odd order trees are edge-graceful.
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A spider is a tree with a unique core vertex c of degree greater than 2 and all
other vertices of degree at most 2. A spider is called regular if the distance from
the core vertex to all end vertices is the same.

In [6] Small showed that all regular spiders of odd order are edge-graceful. His
proof that regular spiders of odd order with an even number of legs are edge-
graceful is quite transparent. However, his proof that regular spiders of odd order
with an odd number of legs are edge-graceful is considerably more complicated.
We give an easier proof that Small’s algorithm for regular spiders of odd order
with an odd number of legs yields an edge-graceful labeling.

Theorem 5 [6]. Any regular spider T of odd order is edge-graceful.

Proof: As Small’s proof is easy to follow when T has an even number of legs we
consider only T with an odd number of legs.

Let T be a spider with 2k + 1 legs of length2n. Thenp = (2k+ 1)27n+ 1
and g = (2k + 1)27n. We divide the set of legs into one special leg and k pairs
of legs. Furthermore, we divide the edge labels into inverse pairs modulo p. For
each of the k leg pairs, we will describe the edge labeling of one leg and the other
leg will be labeled by the corresponding inverses. Thus, if the tth edge from the
core is labeled with a, in the corresponding leg the tth edge will be labeled with
—a (modulo p).

We first 1abel consecutively the edges of the special leg starting with the edge in-
cident with the core vertex: n-n,—1-n,%(n—1),—2n,n9(n—2),—-3n,...,n-1,
—n-n Itis clear that the edges of the special leg are labeled with n, 27, ...,
and their inverses while its vertices are labeled 7,2, ...,n* and their inverses
and zero.

We use a matrix to describe the label of one leg from each leg pair. Each column
read from the top describes the labeling of the consecutive edges of a leg starting
with an edge incident with the core vertex. The matrix below describes the labeling
when k is odd.

1 2 3 4 k
Py’
2+n 57 5% +n 9 ... Rk-Dn+n
272 +n 472 67 +n 82 2kn® +n
2 +2n 5% —n 5% +2n 9% —n ... 2k—-1)n?+2n
2% +2n 472 —n 6 +2n 8w —mn ... 2kn® +2n
+(n®—n) 4 +2n 6 —n 8r2+2n ... 2kn? —n
2724+ (2 —n) 37 +2n Td—n T +2n ... QRk+1)n®—n
w+n?=2n 42 +n 672 82 +n ... 2kn2
2@+ =3 3%+n Tn? T +n ... (2k+1)n?

"
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If k is even, the last column is reversed.

We will next show that all edges have different labels modulo p. First consider
the labels 1n,2n,...,n? on the special leg and the labels given in the matrix.
Recall that the inverse of each of the labels in the matrix is also used to label other
edges. Each of the labels under consideration is a multiple of n, and the largest
coefficient used is (2k + 1)n= }q < p. Since ged(p,m) = 1, it follows that
all labels under consideration are distinct and thus their inverses are all distinct.
We must also show that none of the labels is the inverse of another. In order to
do this, we assume the opposite that tn = —snwhere 1 < t,s < £. But then
(t+ s)n=0 while t + s < g < p, which is impossible. Thus, all edge labels are
distinct modulo p.

‘We must next show that each vertex label is distinct modulo p. First note that
the core vertex is labeled n* and the middle vertex of the special leg is labeled 0.
The matrix below gives the vertex labels induced by the edge labels given in the
above matrix. Each column starts with the vertex adjacent to the core. Again, the
matrix is given for k odd.

1 2 3 4 k
~
3 +2n 97 117 +2n 177 ve.. (4k—1n2+2n
32 +3n 9% —n 112 +3n 17TR2—n ... 4k—=1n2+3n

3 +4n 9% —2n 1wt +4n 1772 —2n ... (4k—Dr? +4n
32 + 5n . . . .

5% —2n T2 +4n 1302 —2n 1572 +4n ... (4k+1)n? —2n

5% —n Tnt+3n 132 —n 1572 +3n ... (4k+ 12 -n
5n2 T +2n 1302 1572 +2n ... (4k+ )2
3n? 3 +n 7 T +n ... 2k + 1)n?
\—)‘ \-j

If k is even, the last element in the last column is (2 k — 1)n? + nand the other
elements in the last column are reversed.

The labels in the matrix and the labels 1n,27,..., 7% on the vertices of the
special leg are all multiples of » and their largest coefficient is (4 k + 1)n < p.
Again, since gcd(n,p) = 1, it follows that these vertex labels are all distinct.
Furthermore, each label is of the form tn* + rn where 0 < r < nand t is of
the form 4 z or 4 z — 1. Also note that if a and b are the labels on the two edges
incident with some vertex w, then £(w) = a+ b (modulo p) and the corresponding
edges are labeled —a and —b as stated earlier. Thus the vertex corresponding
to w is labeled (—a) + (—b) = —(a + b) (modulo p) so that the labels on the
corresponding vertices of the corresponding leg pairs are inverses of each other.
Hence the only way for two vertices to have the same label is if one label, L, is
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Ly. Thentyn? + ryn= Ly = =Ly = —(tan® + ryn) where 0 < ry,m < nand

both ¢; and ¢, are of the form 4z or 4z — 1. Thus, (¢ +t2)2 + (1 + 2)n=10
(modulo p) so that ((¢1 +t2)%? + (r1 + r2)nisamultiple of p = (4k+ 2)n+ 1.
Dividing by p, it follows that (¢; + t2) = (11 + 12)(4k + 2). But (¢; + t2) <
(4k+1)+(4k+1) = 2(4k+2)—2. Thus (r;+72) = 0 or 1,and since (v +12)
is not 0, it must be 1. Without loss of generality, let r; = 0. Then L; = ¢, and
Ly = tyn? + n. But then L, and L, are either both on the special leg or both in
the last row of the vertex label matrix. Thus,4k+ 2 =¢; +12 < 2(2k+ 1),
which is impossible. Hence all vertex labels are distinct modulo p and the graph
T is edge-graceful. [ ]

Theorem 6. Let T' be an odd tree with a root of even degree. If T has no adjacent
degree 2 vertices, no two degree 2 vertices with the same parent, and an even
number of non-root degree 2 vertices then T is edge-graceful.

Before proving Theorem 6, we give several corollaries to it. The first which we
discuss, Corollary 7, was stated by Lee in [2]. His “proof™ given there, however,
is not correct. The “proof™ relies on choosing certain positive integer solutions to
particular diophantine equations. However, it is easy to find trees whose corre-
sponding equations have no appropriate solutions.

Corollary 7. If T is an odd tree with at most one vertex of degree 2, then T is
edge-graceful.

Proof: Since T has odd order it has an odd number of even degree vertices. If one
of them is of degree 2, let it be the root; otherwise, let any even vertex be the root.
Now the tree satisfies the conditions of Theorem 6 and hence is edge-graceful. |

We define arooted tree to be a full n-ary tree, n > 2, if every vertex has either n
or no outgoing edges. The following then follows immediately from Corollary 7.

Corollary 8. For n > 2, any odd full n-ary tree is edge-graceful.

Corollary 9. If T is an odd tree with a root of even degree at least 4 such that no
two degree 2 vertices are adjacent and no two degree 2 vertices have a common
parent, then T is edge-gracefil.

Proof: If T has an even number of degree 2 vertices, then it satisfies the conditions
of Theorem 6 and is edge-graceful. If T has an odd number of degree 2 vertices,
choose one such vertex v at minimum distance from the root. Let v be the new
root of T'. Now each degree 2 vertex except v still has its original parent. Thus,
T is edge-graceful because the conditions of Theorem 6 hold. I

Proof (Theorem 6): We first describe our general labeling procedure and then
show that the procedure can be accomplished. The edge labels 1,2,3,...,p—1
are partitioned into inverse pairs modulo p, {1,p— 1}, {2,p— 2}, ...,{|p/2].
[p/2]}, which will be used in our labeling. If a vertex u is the parent of vertex
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v, then we will say that edge e = uv is outgoing from u and incoming to v. The
root » and the odd vertices of degree larger than 1 will have an even number of
outgoing edges. These edges will be labeled with distinct inverse pairs. Non-root
even vertices of degree at least 4 will have three outgoing edges labeled respec-
tively a1, 62, —a3 where a; + a2 —a3 = 0 (modulo p). The other outgoing edges
from such vertices will be labeled with inverse pairs. Finally, non-root degree 2
vertices will be paired and the outgoing edges from each pair will be labeled with
inverse pairs.

This labeling on the edges will induce a label of 0 on the root, and each degree
1 vertex will be labeled with the label of its incoming edge. In fact, each non-root
vertex of degree different from 2 will be labeled with the label of its incoming edge.
Finally, if v; and v, are paired degree 2 vertices, then the label on v; (respectively
v2) will be the label on the incoming edge to v (respectively v; ). Thus, if distinct
labels 1,2,...,p — 1 are used on the edges in the prescribed manner, then the
induced labeling on the vertices willuse 0,1,...,p — 1.

We now consider five different types of subtrees of T which partition the edges
of T.

Figure 3

b

Figure 4.

Type 1. (Figure 3) A non-root vertex with an even number of outgoing edges
and no degree 2 children.
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Figure 5.

Figure 6.

Type 2. (Figure 4) A non-root vertex with an odd number at least 3 of outgoing
edges and no degree 2 children.

Type 3. (Figure 5) A vertex v (root or non-root) with an even number of outgoing
edges and exactly one degree 2 child u and the outgoing edge from u. Note that
if v is the root it must have at least 4 outgoing edges.

Type 4. (Figure 6) A non-root vertex with an odd number at least 3 of outgoing
edges and exactly one degree 2 child u and the outgoing edge from u.
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Figure 7.

Type 5. (Figure 7) The root 7, if it has no degree 2 children.

We let the edges of T' be partitioned into ¢; subtrees of type 1,1 <1 < 5. It
follows thatp—1 =g > 2¢;+ 312 +3t3+4t—4+2, Ifts = 1, then the constant 2
comes from the root’s outgoing edges which are not counted by t3. If ts = 0, then
the constant 2 comes from one of the type 3 trees having at least 2 extra outgoing
edges. Now we partition the set of type 3 subtrees into pairs (as much as possible)
and also partition the set of type 4 subtrees into pairs (as much as possible) in order
to label the pairs in the following manner where a; + a2 — a3 = 0 (mod p):

Figure 8.

Figure 8 shows the labeling on pairs of type 3.

Figure 9 shows the labeling on pairs of type 4.

Thus, in addition to using inverse pairs in our labeling, we make frequent use
of triples {a1,62,a3} where a; + a2 — a3 = 0 (modulo p), and their inverses
{—a1,—a2,—a3}. We now consider two cases in order to show that we can par-
tition the edge labels 1,2,...,p — 1 in such a way as to accomplish the labeling
described above. Specifically, we will form disjoint triples from {1,2, ..., &2}.
Of course, the inverse of such a triple will form another triple from { &1 ... p—

1).
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4

Figure 9.

The edges of a type 1 subtree will be labeled with inverse pairs. Three edges
of a type 2 subtree will be labeled with a triple and the remaining edges of that
subtree will be labeled with inverse pairs.

Case 1. t3 and t4 are both even.

Since T has odd order it must have an odd number of even vertices. Since r is an
even vertex and t4 is even, it follows thatt, is even. Thus lett; = 2k;,i=2,3,4.
Then the set of subtrees of each type 1, 1 = 2,3,4, can be partitioned into pairs
of subtrees. For each pair we will use a triple {a;,82,0)3 (a; +a2 —a3 =0
(modulo p)) and its inverse. It remains to show that we can form the appropriate
triples. We need to form k; + k3 + kg4 triples from the set {1,2,3,..., {51}
wherep—1 > 281+ 3t +3t3+4t4+2=28;+ 6k +6 ks + 8k4 + 2. Thus we
form our triples from {1,2,3,...,%1 + 3k2 + 3k3 + 4k4 + 1} and we consider
two subcases:

Subcase 1. ky + k3 + kg = 2.
In this subcase we form the following triples:

3s+1 3s 1
3s+2 3s-1 3

43—1 2s3+2 2s5-3
43 2s+1 2s-1

5s+2 5s 2
53+3 5s-1 4

6s 4s3+2 23-2
6s+1 4s+1 2s

All numbers from 11065 + 1 are used except Ss + 1. Also &2 > 65+ 1+

138



t1 + ks. Thus 63+ 2,63+ 3,...,63+ 1+ t; + k4 are also unused numbers
between and 512,

For each of the k4 triples {a1,a2,a3} to be used with type 4 subtrees we must
also find a corresponding 2 a; which is not part of any selected triple or its inverse
triple. We use the integers 6 s+2,6s+4,...,6 s+2 k4 as shown in the following:

3s+1 3s 1 6s+2
3s+2 3s—-1 . 3 6s+4

43—-1 23+2 2s—-3 8s-2
43 2s+1 2s-1 8s

6s+1 4s+1 2s 8s+2
6s 43+2 23—2 8s+4

. . . 63+ 2k4

5s+3 5s-1 4

Ss+2 5s 2
The numbers 6s+ 2,68+ 4,63+6,...,6s+ 2 ks which are less than or equal
to 52;—11 are clearly not part of any selected triple or its inverse triple. However,
suppose 63+2ks > 51 > 6.5+ 141y +ks. Then —(6 s+2ks) = p—65—2ks >
(1234 3+ 2t +2ks) —(63+2ky) =63+ 3+ 2¢; > 6s+ 1. It follows that
noneof 63+ 2,63+ 4,...,6s+ 2k4 is part of any selected triple or its inverse
triple. Thus in this subcase we can choose the labeling of edges as described and
T is edge-graceful.
Subcase 2. ky + ks + kg =2s+ 1.

Here we form the following triples (the first three columns) and the correspond-

ing fourth number.

3s+3 3s+2 1 63+ 6
3s+4 3s+1 3 63+ 8

43+2 23+3 23—1 8s+4
43+3 2s3+2 2s+1 8s+6
6s+4 4s+4 2s 8s+8
63+3 4s3+5 2s5-2 8s+ 10

. . . 6s+4+2ky
53s+6 5s+2 4
5s+5 5s+3 2
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All numbers from 110 65 + 4 are used except 5s + 4. Also, &2 > 63+
4+t +ky. Thus63+6,65+8,...,63+ 4+ t; + k4 are also unused numbers
between 1and Bz1k. Also —(6s+ 4+ 2ks) = p— (65 + 4+ 2ks) = 125+
281 +2ks +9—(63+4+2ky) =63+ 2%, +5 > 6s+4. Thatis, the inverse of
the largest number used in column 4 is larger than the largest number in a triple.
It follows that none of 6s+ 6,63+ 8,...,6s + 4 + 2 k4 is part of any selected
triple or its inverse triple. Thus in this subcase T is edge-graceful.

Case 2. t3 and t4 are both odd.

T has an odd number of even vertices. Since r is an even vertex and ¢4 is odd, it
follows that t is odd. Thus let¢; = 2k;+ 1,1 = 2,3,4. Then the set of subtrees
of each type 1,1 = 2, 3,4, can be partitioned into pairs of subtrees with exactly
one subtree of each type not paired. For each pair we will use a triple {a1, 62,03}
with a1 + a2 — a2 = 0 (modulo p) and its inverse triple as in Case 1. We will
label the three unpaired trees as in Figure 10 where b = a; + c.

Type 2 Type 3 Type 4

Figure 10.

As in Case 1, we need ky + ks + kq triples from the set {1,2, ..., &322} such
that k4 of the triples {a1, 62, a3} have a corresponding 2 a; which is not part of
any selected triple or its inverse triple. However, we also need one additional triple
{a1,a2, a3} and its inverse triple as well as two special inverse pairs, {b, —b} and
{c,—c},such thath = a; + c.

Inthiscasep—1 > 281 +3(2 k2 +1)+3(2 k,+1)+3(2k3+ 1) +4(2 kr + 1) +2 =
281+ 6ky + 6ks + 6ks + 12. Thus &5 > ¢; + 3ky + 3k + 4 kg +6.
Subcase 1. ko + k3 + kg + 1 =23.

Of our k3 + k3 + k4 + 1 triples we will also have k4 + 1 additional corresponding
numbers of the form 2a;. Then one of these triples will not be used with its
corresponding 2 a;. Instead, it will be used with special inverse pairs {b, —b}
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and {c, —c} for labeling the three non-paired subtrees of types 2,3 and 4 as in
Figure 10.
We form the following triples and their corresponding 2 a; ’s.
3s+1 3s 1 6s+2
3s+2 3s-1 3 6s+4

4s—-1 2s+2 23-3 8s-2
43 2s+1 2s5-1 8s

6s+1 4s+1 2s 8s+2
6s 4342 23-2 8s+4

63+ 2.+ 2ks

53s+3 5s-—-1 4
5s+2 5s 2

All numbers from 1t0 6 s+ 1, except Ss+ 1, are used. Since 712 >, + 635+
ks +6,thenumbers 6s+2,6s+3,...,6s+1; + k4 + 6 are also unused numbers
between 1 and 512, We take our special inverse pairs from ¢ = 53 + 1 and
b = 63 + 3 which are unused. Thus the triple {a;,a2, a3} containing a; = s + 2
is used to get b = a; + ¢ as required. It remains to show that b is not used as a 2 a;
for some triple or its inverse triple. The largest value of any 2a; is 63+ 2+ 2 k4
andp— (63+2+2ks) > (2t +6(28—1) +2ks +13) —(65+ 2+ 2ky) =
2t1+ 63+ 5 > 63+ 3. It follows that 6 s + 3 is not used as a value of 2a; and
that no value of 2 a; is part of any selected triple on its inverse triple. Thus in this
subcase we can choose the labeling on edges as described and T is edge-graceful.
Subcase2. ky + ks + ka +1=23+ 1.

Again k4 + 1 of our triples will have corresponding 2 a; ’s as in the previous
subcase, and one of these triples will not be used with its corresponding 2 a1

3s+3 3s+2 1 6s+6
35+4 3s+1 3 65+ 8

4s+2 2s+3 2s—1 8s+4
43+3 2s+2 2s+1 8s+6
6s+4 4s+4 2s 8s+8
6s+3 4s+5 2s5-2 8s+ 10

. . . 6s+6+2ks
58+6 5s+2 4
5s+5 5s+3 2
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All numbers from 110 65 + 4 are used except 5s + 4. Also, &2 > ¢, +
6s+ ks +6506s+6,65+8,...,68+ 6+ t; + ks are unused numbers from
the set {1,2,..., &1}, We take our special inverse pairs from ¢ = 5s + 4
and b = 6s + 5. Thus, the triple {a;,62,a3} with a; = s+ 1 will be used
to get b = a; + c as required. Since the largest value of 2a; is 63+ 6 + 2k4,
we must show that its inverse is greater than b. But,p — (6s+ 6 + 2k4) >
281+ 1284+ 2ks +13 —63—6 —2ks = 2¢t; + 658+ 7 > 63+ 5= b. Thus,
63+ 5 is not used as a value of 2a; and no value of 2 a; is also part of a triple or
its inverse. In this subcase also we can choose the labeling on edges as described
and T is edge-graceful.

A proof of the conjecture that all odd trees are edge-graceful appears distant.
However, it is interesting to compare Theorems 5 and 6. Theorem 5 essentially
shows that odd trees with lots of degree 2 vertices and a certain symmetry are edge-
graceful. Theorem 6 shows that odd trees with only scattered degree 2 vertices are
edge-graceful.
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