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Abstract. In this paper we study the powers of two important classes of graphs — -
strongly chordal graphs and circular arc graphs. We show that for any positive integer
k > 2, G*-! is a strongly chordal graph implies G¥ is a strongly chordal graph. In
case of circular arc graphs, we show that every integral power of a circular arc graph is
a circular arc graph.

1. Introduction and definitions.

In this paper, we shall study the properties of the powers of two important classes
of graphs, strongly chordal and circular arc graphs. Our interest in powers of
graphs is motivated by earlier works by various authors as well as by applications
in radio/television frequency assignment problem which gives rise to squares of
unit interval graphs (see Raychaudhuri and Roberts [1985] for details).

Before proceeding any further, we shall give some definitions. The length of
a chain from a vertex z to a vertex y is the number of edges on this chain. The
distance dg(z,y) from a vertex z to a vertex y in a graph G is the length of a
shortest chain between z and y. Let G be any graph. The kth power of G, G¥,
where k is a positive integer, is a graph with vertex set V(G) ,and {z,y} € E(G*)
iff dg(z,y) < k.

Chordal graphs are graphs in which every cycle of length > 4 has a chord
(an edge joining two non-consecutive vertices on the cycle). Powers of chordal
graphs have been studied earlier by various authors, including Laskar and Shier
[1980, 1983], Balakrishnan and Paulraja [1981, 1983] and Chang and Nemhauser
[1984].

An important subclass of chordal graphs is the class of strongly chordal graphs,
which are characterized by Farber [1983] and more recently by Dahlhaus and
Duchet [1987]. Strongly chordal graphs can be characterized in terms of an in-
complete trampoline or an n-sun or a sun-flower, which is a chordal graph G =
(V, E), whose vertex set V can be partitioned into Y = {y1, ¥2,... ,ys} and
Z ={z,2,...,2,} satisfying the following three conditions:

(1) Y is astable setin G;
2) {z1,22,...,24,21}isacyclein G;
3 {vi,z} € B(G)iffi=jori=j+ 1 mod n
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Figure 1: An n-sun, n= 4; a chordal graph whose square is not chordal

We show an »-sun n = 4 in Figure 1. Farber [1983] gave the following character-
ization of strongly chordal graphs: A strongly chordal graph is a chordal graph
which contains no n-sun (n > 3) as a generated subgraph.

Dahlhaus and Duchet [1987] give another characterization of strongly chordal
graphs. Let C = [v;,w1,v2,w2,...,Vp, Wy, v1] be an even cycle of length 2p >
6 in G. By a skew chord of G is meant an edge of G of type {v;, w;} where
i # 7, 7 — 1 (where arithmetic is modulo p). Then Dahlhaus and Duchet show
that a strongly chordal graph is a chordal graph in which every even cycle of
length > 6 possesses a skew chord.

Powers of strongly chordal graphs have been studied by Lubiw [1982] and
Dahlhaus and Duchet [1987]. They have independently showed that every power
G* of a strongly chordal graph G is again strongly chordal. In Section 2 of this pa-
per we prove a more general result. We show that for any positive integer k > 2,
G*-! is a strongly chordal graph implies that G¥ is a strongly chordal graph.

The other class of graphs which we discuss in this paper is the class of circular
arc graphs, which belongs to the broad class of intersection graphs. An intersec-
tion graph of a family of sets is a graph G for which we can assign to each vertex z
aset S(z) in this family in such a way that {z, y} € E(G) « S(z) NS(y) # ¢.
A circular arc graph is an intersection graph of a family of arcs of a circle. They
have been characterized by Tucker [1970] as follows: A graph G with v vertices
is a circular arc graph if there is an ordering z,, z3,... ,z, of V(G) such that
{z:,z;} € B(G) = Zi1, ... , T; are adjacent 10 x;, OF Tj,1, ... , T; are adjacent
to z; where addition is modulo v.
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In Section 3 of this paper we study the properties of powers of circular arc
graphs. Using Tucker’s conditions and other results, we have proved that every
positive integral power G* of a circular arc graph G is again a circular arc graph.
However, the more general question of whether G¥~! is a circular arc graph im-
plies G* is a circular arc graph for k > 2, remains unanswered.

2. Strongly chordal graphs.

In this section, we shall show that if G¥- is strongly chordal, then G* is strongly
chordal forall k > 2. We begin by giving a brief survey of some important related
results.

Laskar and Shier [1980, 1983] noted that the square of a chordal graph is not
necessarily chordal. The graph of Figure 1 is the smallest such example. In that
same paper [1980] the authors establish that if G is chordal, then so are G* and
G3. Tt was also conjectured that any odd power of a chordal graph is again chordal.
The conjecture has been shown true by Balakrishnan and Paulraja [1983]. Below
we quote their results as Theorem 1.

Theorem 1 (Balakrishnan and Paulraja [1983]). If G is chordal then so is
G***! for any integer k > 1.

Duchet [1982] gives a more general result.

Theorem 2 (Duchet [1982]). If G* is chordal, then so is G*** for any integer
kE>1.

The example in Figure 1 gave the motivation to look at necessary and sufficient
conditions for the square of a chordal graph to be chordal. Laskar and Shier [1983]
and Chang and Nemhauser [1984] independently found the subclass of chordal
graphs for which this is true. We quote their results as Theorem 3.

Theorem 3 (1< 2 « 3: Chang and Namhauser [1984], 2 < 3: Laskar and
Shier [1983]).
(1) G* is chordal for every positive integer k.
(2) G and G? are both chordal.
(3) G is chordal and if G has an n-sun with n > 4 as an induced subgraph,
where the m-sun is defined on {y1,y2,... ,Yn, 21,22,... ,2s}, then dg
(vi,y;) =2 forsome i and j suchthat j & {i — 1,i+ 1}.

Lubiw [1982] studied powers of strongly chordal graphs and gives the following
Theorem.

Theorem 4 (Lubiw [1982]). If G is strongly chordal, then G* is strongly
chordal for any positive integer k.

Motivated by (Duchet’s) Theorem 2, which guarantees that G¥*2 is chordal if
G* is chordal, we asked the following question: For any graph G, under what
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conditions do we have G*~! chordal, and G* not chordal, where k is any posmvc
integer > 2. We answer this question in the following Theorem.

Theorem 5. Suppose G is any graph, and k is positive integer > 2. Suppose
G*-! js chordal, and G* is not chordal. Then G*~' contains an n-sun,n > 3, as
an induced subgraph.

For the proof of Theorem 5, we shall need some lemmas.

Lemma 1 (Laskar and Shier [1983]). Suppose C, is any cycle of length n of
a chordal graph. Then for every edge {u,v} of this cycle, there is a vertex w of
this cycle that is adjacent to both u and v.

Proof: Follows easily by induction on n. |

Lemma 2. Suppose G is any graph, k is an integer > 2, G*~! is chordal,
but G* is not chordal. Then if zo,;,... ,T,—1 is a chordless cycle C in G*
of length > 4, then dg(z;, zi+1) = k (where + is addition modulo r), for all
i=0,1,...,r—1.

Proof: Suppose there are to vertices z; and zg,, for which dg(zg, Ter1) < k.
In G, let P; be the shortest chain between z; and z;., as shown in Figure 2,
i = 0,1,...,r — 1. Let 2; be the vertex following z; on P; and y; be the
vertex preceding z;,; on P; . Note that some of z’s y;’s may not be distinct
from x; or z;, respectively. Then consider the following cycle Z in G¥-!:
Te,Terl, Yeul, T2, YE+2> To43,.0. , Tp-2,Y2-2,Te-1, 20-1,T¢ (— is subtraction
modulo r). Then by Lemma 1, there is a vertex v in Z which is adjacent to both
g, and z4,1, in G¥~1. Now, v cannot be z; for any i since C is chordless in G*.
If v = zp_; then {Tgs1,Te-1, } is a chord in G* because z;_; is adjacent to z,_;
inGandto zg) in G Ifv=y; foriin {£+ 1,£+2,...,£—2},thereisa
chord {z;z;} in G* such thati # j — 1, j + 1, which is a contradiction. Thus,
dg(ze, Terr) = k. |
Proof of Theorem 5: (& stands for arithmetic modulo r)
Suppose k > 2, G*¥~! chordal, and G* has a chordless cycle C = {zo, z1, ... ,

z,_1} wherer > 4. Let P; be a shortest chain in G between z; and z;.1,1 € {0, 1,

..,7—1}. Then Lemma 2 — P; is of length k in G. Let z; be the vertex
following z; on P; in G as shown in Figure 3. Note that the 2;’s are distinct. We
shall consider two cases:
Case 1: {z;, 241} ¢ E(G*!) foralliin {0,1,...,r — 1}. Then we have the
following claim:
Claim 1: {21, 2} € E(GF!) foralliin {0,1,...,r— 1}. Consider the cycle
Z = Ty Ziy Titls Zitlyere » Timls Zi-1, Ts iN G*-1 and the edge {z;,2} on this
cycle. By Lemma 1, some vertex v of Z must be adjacent to both z; and 2; in
G*-!. Since by Lemma 2 dg(x;, ;1) = k, and C is chordless in G*, v is not
of the form z;. If v = 2;, jin {i + 2,i+ 3,... ,i — 2}, then there is a chord
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{=i,z;} in G*, when |i — j| > 2. Thus, v must be z;_; or z;,;. Butv # z;,; by
assumption. SO v = z;_;. Therefore, {2i_1,z;} € E(G*).
Hence, {20, 21,22, ... , 2,1, 20 } forms acycle in G¥-!. Also, it follows easily -
that {z;,2;} € E(G* '), wheni = 0,1,...,r—1,andj = iori — 1. By
assumption {z;, 2,41} € E(G*'). Also,if j ¢ {i +
E(G*!) since that would imply that {z;,z;} € E(GF), |i — j| > 2, which is

1,i,i— 1}, then {z;, 2} ¢



a contradiction since C is chordless in G*. So {z;, 2;} € E(G*~") only when
j=1ori— 1. Finally, {zo,z1,... ,,} is a stable set in G*~! by Lemma 2 and
the fact C is chordless in G*. So {zo,71,... , %, 20,21,... , 2} forms a r-sun
G, r>4.
Case 2: {z;,241} € E(G*!) for some i in {0,1,...,r — 1}. Then we can
make the following claim: ,
Claim 2: {z.-_l,z,-+1} € E(G"_l). Considering the cycle L5y 2541y Tie2s 242

.+ ) Ti-1, zi-1, z; and the edge {z;, z;+1} € G*~!, it is easy to show by Lemma
1that {21, 41} € E(GF1).

Consider the following vertices: Let 2| = z;, 2| = z;_;. Having chosen T; =

Ty, and z} = Zm-1, let

/ _
Zji'-l = T+l } if {zm, zm+l} ¢ E(Gk—l)

and

/ -
I,‘+l = Tm+2 } if {zmy zm+l} c E(Gk-l)-

z;'.n = Zm+1

We stop when z;_; is the last chosen vertex, that is when zg = x;_1, or when
z;- = z;_5,and {z;_, 2} € B(GF ).

Let {z,...,7)} and {2},... , 2} be the vertices so generated. Note that ei-
ther z; = z;_1, Ofr T = 7;_,and {z;_2, 21} € E(G*'). We shall show that
{=},..., 7} 2{,... , 2y} form a £-sun, in G*¥~!. By Lemma 2, and the fact that
C is chordless in G* , {z}, ..., z,} forms a stable set in G¥-1. Next, we show
that {2],... , z;} forms a cycle in G*~!. To see this, note that if {Zy,, zms+1} &
E(G*-1), then {z},z}”} = {2m-1,2m} € E(G*). If {Tm, 2m+1} € E(G*Y),
then by Claim 2 {2}, 2},;} = {2m-1,2ms1} € E(G*™"). If 2 = z;_;, then
zp=zi3,and {z}, 21} = {22, 2,1} € E(G*!) by Claim 1. If 2, = z;_,, then
{zi-2,2i-1} € B(G*') and 2} = 2;_3. Soby Claim 2, {2}, 2} = {zi_3, 2.1} €
E(G*). Also it s easy to verify that {z}, 2/} € E(G*!) (foralli= 1,... ,£)
iffi=jori=j;—1.S0{z),1),...,7),2,2,... 25} forms aZ-sun,£ > 3,50
longas r > 5. Therefore, let us assume that r = 4, that is, {zo, z1, T2, 23, %0 } is
a chordless cycle in G*. If {z;, zis1} ¢ E(G*!) foranyiin {0,1,2,3}, then
obviously {zo, 1, z2,%3, 20,21, 22, 23 } forms a 4-sun in G*~!. Thus, suppose
that for some 1, {z;, z;.1} € E(G*™!) as shown in Figure 4(a). It can be shown
that k > 2 in this case. Let y;_; be the vertex preceding z;, in the chain of shortest
length in G between z;_; and z;. We claim that {242, Vi1, 2ziv1, 242} forms a
cycle in G¥-1, To see this, consider the Cycle 242, Ti—1, Yic1s Ti» Zir1» Tis2 s Zis2
in G*~! and apply Lemma 1 to edges {2i:2, i—1}, {Zi, yi—1} and {z;2, 2142} of
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G*-1. Finally, it can be shown that {z;12, Ti_1, Zi, z+2, Yi—1, z+1 } forms a3-sun
in G*-! as shown in Figure 4(b). (Note that y;_, is different from z;,; or z_;,
since k > 2).

So we have proved Theorem 5, showing that G*~! chordal but G* not chordal

implies that G*~! contains an n-sun (n > 3) as an induced subgraph. ]
i+2 Zin2 i1
- - - - -? &——@ edgeinG

@ ----9 edgeinG

Figure 4(a):

@——@ cdge in Gk-1

@—@ no edge in !
Z:
i+1 zZ

¥i1

Figure 4(b): An n-sun (n= 3) in G¥-!
Corollary 5.1. For all positive integers k > 2, if G*~! is strongly chordal, then
G* is chordal.

Proof: The above corollary is the contrapositive of Theorem 5. 1
In Figure 5 we give an example of G, which illustrates Theorem 5. G2 is

chordal, but G® is not; {v, vz, v3,v4} forms a chordless cycle in G*. Note that

{vl,uz,va,m,wl,wz,ws,um} forms a 4 -sun in G2.
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Theorem 6. Let k be any positive integer > 2. Suppose G*~! is strongly
chordal, Then G* cannot contain a n-sun, n > 3.

In order to prove this Theorem, we shall use a lemma proved by Dahlhaus and
Duchet [1987], which we quote below.

Lemma3 (Dahlhaus and Duchet [1987]). Suppose G is strongly chordal. Let
v, a, b be three vertices mutually adjacent in G*, where k is any positive integer
> 2. Then either v or a neighbor of v (in G) is adjacent to a and b in G*~.

Proof of Theorem 6: We shall prove this theorem in two parts — first for k = 2,
then for any k > 3. .
Suppose that by contradiction {vi,v2, ... ,vn, w1, w2, ... , Wy} forms a n-sun,
n> 3 in G, where {v1,v2,... ,v,} forms the stable set and {wy,w2,... ,wa}
forms a cycle in G*. Also, {v;,w;} € E(G¥) iff j = i ori — 1 modulo n.
Case 1: k = 2. By Lemma 3, since v;, wi_1, w; are pairwise adjacent in G,
either v; or a neighbor of v; in G is adjacent to w;_; and w; in G*~!. Therefore,
ki, w1, kz,w2,... , kn, wn, k1, (Where k; is either v; or a neighbor of v; in G)
forms an even cycle in G¥~! without a skew chord. It is easy to see that these k;’s
are distinct, since the v;’s form a stable set in G*, and skew chords are absent since
{vi,w;} € E(G*) iff j = i or i — 1 modulo n. So G*-! is not strongly chordal,
which is a contradiction.
Case 2: k > 3. We shall consider two subcases:
Case 2a: dg(v;, w;) > 1 foralliandj=iori— 1 mod n. In the shortest chain
from v; to w; in G, let 2; be the vertex following v; and in the shortest chain from
w;_1 toy; in G, let y; be the vertex preceding v;. Then 2;’s and y;’s are distinct from
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v;’s and w;’s. Assuming that they are also distinct from each other, (we shall con-
sider the other possibility later), vy, 21, w1,¥2,v2,22,w2,... , Vg, 2y, Wy, Y1, V1
form an even cycle C in G*~!. Let us rename these vertices as v}, w}, v}, w}, ... ,
v, W), as circled in Figure 6a. In this cycle C of G¥~! all skew chords are of the
form {v}, w}},j # i,i— 1. Itcan be shown that some of these skew chords are not
present while some may or may not be present. For instance, if 1 is odd then no
skew chord of the form {v], w}} could be present in G¥~! since {v1,v2,...,va}
forms a stable set in G*. If i is even, then the only skew chords which may be in
G*! are {v},w}},j =i+ 1,0ri— 2 modulo 2n. Any other skew chord of the
form {v},w}}, where i is even cannot be present because of the absence of any
skew chord in the even cycle vy, w,, ... , Vs, Wy, v; of G¥. Suppose in the even
cycle C of G¥-1, there is no skew chord. Then Theorem 6 follows easily. There-
fore, let us assume that some skew chord {v{, w}}, (where i isevenandj =i+ 1
or i — 2 mod 2n) is present in G*¥~1. If j = i+ 1 mod 2 n, we remove the ver-

tices w; and v},; from C. If j = i — 2 mod 2n, we remove the vertices w)_,

and v,_, (mod 2n). Thus, we get a new cycle C’, each time including a skew
chord {v}, w},;} or {w}_,,v}} and omitting two vertices of C. However, once
some vertices of C are omitted we do not include the skew chords with one end
on these omitted vertices even if they are present in G*~!. Thereby we form a new
cycle C' in G¥-! which is of length 2p > 6 since every time we either omit two
vertices or none. Note C' has no skew chords in G*~! since every skew chord of
C' is a skew chord of C which is absent in G*~'. We describe this case in Figure
6a.

Next, let us suppose that 2;’s and y;’s are distinct from v;’s and w;’s but suppose
that z; = y;, j = 1 for some i. Then we identify z; with y; on C for all such pairs,
thus, omitting v; from C and obtaining a new even cycle C' of length > 6 without
any skew chords in G*~! as shown in Figure 6b.

v
wl-l Wi
A— — Y—Iz— — —a @————@ EdgeinG
-~ i i ~ .
~
Z - Yi+1
i-1 k-1
o— — —©0 EdgeinG
........................... v
i+l
Vi_1 i+
Figure 6(b):

Case 2b: Suppose dg(v;,w;) = 1 forsomeiand j = sori — 1. Let 2, y;
and C be as described in Case 2a. Note that C may not be an even cycle. If
dg(v;, w;) = 1 foreither j = i ori — 1 but not both, then 2; and y; are not distinct
from w; and w;_, respectively. Suppose dg(v;, w;) = 1, then dg(y;, w;) = 2.
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@———@ EdgeinG
k-1
@ — -@ EdgeinG

v,
2 @ Ge— skew chord possibly

present in G k-1

Figure 6(a):

So {yi, w;} € E(G*-!) since k > 3. So omit v; and include edge {y;, w;} on C
and if dg(wi-1,v;) = 1, then dg(wi—1,2) = 2 and so {w;_1, 2z} € E(GF).
So in that case we omit v; and include edge {w;_1, z;} on C. So the new cycle C’
of G*-! that we will generate in this way is even and is of length > 6 and there
is no skew chord in C' , if we include the skew chords present and omit some
vertices as described in Case 2a. If dg(v;, w;) = 1 for j = 1 and{ — 1, then
z; = w; and y; = w;_; and including any skew chord present and omitting some
vertices as described in Case 2a, we generate an even cycle C' (from C) in G*~!
without a skew chord. So in all cases we have proved that if G* contains a n-sun
n> 3, then G*~! contains an even cycle without a skew chord. ]

Theorem 7. Let k be any positive integer > 2. Suppose G*~! is strongly
chordal. Then G* is strongly chordal.

Proof: The contrapositive of Theorem 5 says that G* is chordal and Theorem 6
says that G¥ cannot contain a n-sun, n > 3. So G* must be strongly chordal. 1§

3. Circular arc graphs.
The main result of this subsection is the fact that every positive integral power
G* of a circular arc graph G is a circular arc graph.
In order to prove this result we shall need a few Theorems.

Theorem 8. If G is a circular arc graph, then so is G* . Inaddition, if 71,13, ... ,
Ty, is an ordering of V(G) which satisfies Tucker’s [1970] condition, then the
same ordering of V(G?) also satisfies Tucker’s condition.

Proof: Suppose G is a circular arc graph on v vertices, and let 7y, z3,... ,z, bea
circular ordering of V(@) which satisfies Tucker’s condition. Suppose {z;, z;} €
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E(G?). Then there is a vertex z, which is adjacent to both z; and x; in G. There
are essentially three cases to consider:
Casel:s=iors=j.
Case 2: 1, s, and j are 3 distinct vertices, and i < s < j in the clockwise order.
Case 3: 1, s, and ; are 3 distinct vertices and 1 < j < s in the clockwise order.
Case 1: s=diors = j. Inthiscase {z;,z;} € E(G). So by Tucker’s condi-
tion either z;,1,... , z; are adjacent to z; in G and so in G2, or zj1,... ,z; are
adjacent to z; in G and so in G2.
For Case 2 and Case 3, since {z;,z,} € E(G), by Tucker’s condition either

@ z1,...,x, are adjacent to z; in G; or

®) ze1,...,x;are adjacent to z, in G.
Similarly, since {z,, z;} € E(G)

(©) zs1,...,z; are adjacent to z, in G; or

@) zj41,...,7, are adjacent to z; in G.
We shall now consider Case 2 and Case 3 separately.
Case2: i < s < j. Itiseasy tosee thatif case (b) or (d) holds, then z, 25, ... , z,
satisfy Tucker’s condition in G2. So it will suffice to assume that cases (a) and (c)
hold. Case (a) implies that z;,1, ... , T, are adjacent to z; in G and so in G2, and

case (c) implies that x,41,... ,z; are adjacent to x, in G, and since {z,,z;} €
E(G), it follows that z,.1, ... ,; are adjacent to z; in G2.
Case 3: i < j < s. Proof is similar to Case 2. [ |

Let us digress at this point and recall that circular arc graphs belong to the larger
class of intersection graphs of families of sets. In this context we next give a
result which is related to odd powers of some intersection graphs. (This proof is
a generalization of a similar proof valid for chordal graphs, given by Chang and
Nembhauser.)

Theorem 9. Suppose G is the intersection graph of sets belonging to a family

D. Let S(z) be the set associated with vertex z. Suppose m is any positive
integer > 1. Let S'(z) = {US(y): de(z,y) < m}. Ifforall z, S'(z) € D,
then G*™*! s an intersection graph of sets belonging to D.

Proof: We shall show that S'(z) is an intersection representation for G2™*!,

Suppose S'(z)NS'(y) # ¢. Then there are vertices u and v such that dg(z, u) <
m, de(y,v) < mand S(u) N S(v) # ¢. It follows that {u,v} € E(G). Thus,
dg(z,y) < de(z,u) + de(u,v) + de(v,y) < m+ 1+ m = 2m + 1. Thus,
{z,y} € E(G*™).

Next, suppose that {z, y} € E(G*™*'). Then in the shortest chain from z t0 y
in G, there are two vertices  and v, which are adjacent in G, such that dg( z, u) <
m, dg(y,v) < m. Now S(u) N S(v) # ¢,508'(z) NS'(y) # ¢. |

Corollary 9.1. For all positive integers m > 1, G is a circular arc graph =>
G*™! js a circular arc graph.
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Proof: Let S(x) be acircular arc representation of G. Then {US(y): dg(z,y) <
m} is a union of some arcs of a circle, in which the first arc is S(z) and every
consecutive pair of arcs intersect. Thus, this union is itself an arc of the circle
(may be the complete circle). [

Lemmad4. Let G be any graph and m and n be positive integers. Then (G™)" =
Gm™,
Proof:

(a) Let {z,y} be an edge of (G™)™. Then, dgn(z,y) < n Soin G™ there
is a chain P, , between z and y of length < n. Consequently, between
any two vertices joined by an edge in P, in G™, there is a chain of length
< m in G. So in G there is a chain of length < mn between z and y. So
dg(z,y) < mn So {z,y} is an edge of G™".

(b) Let {z,y} be an edge of G™". Now it is easy to see that dg(z,y) < k
(where k is a positive integer) => den(z,y) < | £]+ (k — | £]- m), where
m is apositive integer < k. Soif k = mn, iteasily follows that dgm(z, y) <
n. So {z, y} is an edge of (G™)".

Theorem 10. Suppose G is a circular arc graph and k is any positive integer.
Then G* is a circular arc graph.

Proof: We first note that any positive even integer is of the form z-2™ where
m = 0,1,2,... and z is a positive odd integer. We repeatedly divide the even
integer by 2 until the quotient z is an odd integer.

Suppose G is a circular arc graph. If k is any odd positive integer then by
Corollary 9.1 G* is a circular arc graph. If k is an even positive integer, then
k = z.2™. Thus, GF = G*2" = (G?")* (by Lemma 4). Now by repeated
application of Theorem 8, and by Lemma 4, (G*") is a circular arc graph. So
again by Corollary 9.1 (G2")? is a circular arc graph. (]

Apart from applications in communication problems, there are certain important
graph theoretic parameters which are closely related to powers of graphs. We shall
introduce one of them here.

A k-stable set is a vertex set S C V such that dg(z, y) > k for every distinct
pair of vertices z and y in S. The k-stability problem is to find the k-stability num-
ber, ax(G), which is the maximum cardinality of a k-stable set. The k-stability
problem is NP-complete for general graphs. However, Theorem 9 enables us to
solve the k-stability problem for a circular arc graph in polynomial time.

Theorem 11. The k-stability problem on a circular arc graph G can be solved
in O(v*) steps.

Proof: By the discussions of this section, the k-stability problem for a circular arc
graph G is equivalent to the problem of finding a maximum cardinality stable set
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in another circular arc graph G*.

Given G, construction of G* takes 0(v*) steps. If k is 2™, then by Theorem
8, the ordering z,... ,x, of V(G) which arises in Tucker’s charcterization of
circular arc graphs is also the required ordering of V(G¥) which guarantees that
G* is a circular arc graph. Then using Tucker’s [1970] construction, we can get
a circular arc representation of G* in O(v) steps. If k(= 2m + 1) is odd, then
from Theorem 9 we can build a circular arc representation of G* from that of G
in O(v*) steps (used in the construction of G™).

Given a circular arc representation of a circular arc graph, Gupta et al [1982]
gives an 0(v?) algorithm to calculate its maximum size stable set. Thus, the k-
stability problem for a circular arc graph can be solved in 0( v*) steps. ]
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