A New Sufficient Condition for Panconnected Graphs ①

Song Zeng Min

(Department of Mathematics, Southeast University, Nanjing, 210018, P.R. China)

Qin Yu Sheng

(Department of Mathematics, Nanjing University, Nanjing, 210008, P.R. China)

ABSTRACT: Let G be a simple graph of order n with independence number α . We prove in this paper that if, for any pair of nonadjacent vertices u and v, $d(u)+d(v) \ge n+1$ or $|N(u) \cap N(v)| \ge \alpha$, then G is (4,n-1)-connected unless G is some special graphs. As corollary we investigate edge—pancyclity of graphs.

We only consider undirected, simple graphs in this paper. let Gbe a simple graph of order n. G being (r,m)—connected means that for any two vertices u,v of G, there exists a u-v path of each length from r-1 to m-1 in G, where $2 \le r \le m \le n$. G is edge—pancyclic if edge of G lies on a cycle of each length from 3 to n. Let α denote the independence number of G, that is, the size of a maximal independent set in G. Let $K \subset N = \{3,4,\cdots,n\}$. G is edge K—pancyclic if every edge of G lies on a cycle of each length $r, r \in N \setminus K$. Particularly, if $K = \{k\}$, we say G is edge k—pancyclic. Similarly we can define an edge is K—pancyclic.

We use the notation G(r,t) to denote the following special class of graphs. For any $G \in G(r,t)$, $V(G) = V_1 \cup V_2$ where $|V_1| = r$ and $G[V_1]$ is any simple graph, $V_2 = V_{21} \cup V_{22} \cup \cdots \cup V_{2t}$ and $G[V_{2j}]$ is complete for any j, $1 \le j \le t$. Moreover, every vertex in V_1 is adjacent with every vertex in V_2 . Obviously, $K_{r,t}$ is a special element of G(r,t). Terms not found here see [1].

Theorem 1 Let G be a simple graph of order $n(\ge 5)$ with independence number α . If for any pair of nonadjacent vertices u and v, $|N(u) \cap N(v)| \ge \alpha$ or $d(u)+d(v) \ge n+1$, then G is (5,n)-connected, unless G is belong to $G(\alpha,\alpha)$.

Proof: If $\alpha = 1$, i.e. G is complete, the theorem holds. So, suppose $\alpha \ge 2$.

① The project supported by NSFC

Let x, y be any two vertices of G.

Firstly, we prove that if there is no x-y path of length 3 in G, then there must exists an x-y path of length 4.

In fact, if G contains no x-y path of length 3, then when x,y are nonadjacent, for any $u,v \in N(x) \cap N(y)$, $uv \notin E$ and $N(w) \cap N(z) = \phi$, where $w \in \{u,v\}$, $z \in \{x,y\}$. If $d(u)+d(v) \geqslant n+1$, or $\alpha \geqslant 3$, then $|N(u) \cap N(v)| \geqslant 3$. We can easily get an x-y path of length 4. So we assume $\alpha = 2$. This implies $N(x) \cap N(y) = \{u,v\}$ and there exists a vertex w in $G = \{x,y\}$, such that $wu \in E$ or $wv \in E$. Without loss of generality, say $wu \in E$. Clearly $xw \notin E$. But now $|N(x) \cap N(w)| \geqslant 2$ implies the existence of an x-y path of length 4. When $xy \in E$, for any $u \in N(x)$, $u \neq y$, we have $uy \in E$ (Otherwise, since $|N(u) \cap N(y)| \geqslant 2$, let $w \in N(u) \cap N(y)$, the path xuwy is an x-y path of length 3). Hence $N(x) = \{y\} = N(y) = \{x\}$ and $N(x) = \{y\}$ is independent. As above, we can get an x-y path of length 4.

Suppose now G contains an x-y path of length $r(3 \le r \le n-2)$, but no x-y path of length r+1. We prove that G belongs to $G(\alpha, \alpha)$.

Let $P = v_0 v_1 \cdots v_r$ be an x-y path of length r, where $v_0 = x$, $v_r = y$. By the connectivity, there exists $u \in V(G) \setminus V(P)$ with $d_p(u) > 0$. Obviously the following two Claims hold:

Claim 1 If $uv \in E$, $0 \le j \le r$, when j < r, $uv_{j+1} \notin E$; when j > 0, $uv_{j+1} \notin E$.

Claim 2 For any $v_i, v_i \in N_p(u)$, $v_i \neq v_i, v_{i+1}, v_{i+1}, v_{i+1}, v_{i-1} \notin E$.

Let $N_p(u) = \{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, $0 < i_1 < i_2 < \dots < i_m < r$ and $A_j = \{v_{i_1+1}, \dots, v_{i_{2}+1}, \dots, v_{i_{j-1}+1}\}$, $B_m = \{v_{i_{j+1}-1}, v_{i_{j+2}-1}, \dots, v_{i_m-1}\}$, $C_j = \{v_{i_j+1}, v_{i_j+2}, \dots, v_{i_{m-1}}\}$. By Claims 1 and 2, $A_m \cup \{u\}$ and $B_1 \cup \{u\}$ are independent. Therefore, by the definition of α , the following Claim holds.

Claim 3 $m \le \alpha$ and if $m = \alpha$, then $i_j = 0$, $i_m = r$.

Claim 4 Let $v \in C_j$. If $N(u) \cap N(v) \subseteq V(P)$ and $d(u)+d(v) \geqslant n+1$, then there exist integers s, t such that $vv_{i_1}, vv_{i_1+1}, vv_{i_1}, vv_{i_1-1}$ appear in G where $s \neq j$, $t \neq j+1$ and $1 \leqslant s \leqslant m-1$, $2 \leqslant t \leqslant m$.

Proof: By symmetry, we only prove the existence of s. In fact, if there exisits no such an integer, then for any $g \neq j$, $1 \leq g \leq m-1$, there holds $\left| [\{v\}, \{v_{i_{\ell}}, v_{i_{\ell}+1}\}] \right| \leq 1$. Since $N(u) \cap N(v) \subseteq V(P)$, $d(u) + d(v) \leq n$. This is a contradiction.

The following is divided into two cases.

Case 1 There exists k $(1 \le k \le m)$ such that $i_{k-1} \le i_k - 2$.

Now we have:

Claim 5
$$N(u) \cap N(v_{i_{-2}}) \subseteq V(P)$$
.

Subcase 1.1
$$d(u)+d(v_{i_{k}-2}) \ge n+1$$

By Claims 4, 5, there exists $j \neq k-1$, $1 \leq j \leq m-1$ such that $v_{i_k-2}v_{i_j} \in E(G)$, $v_{i_k-2}v_{i_j+1} \in E(G)$ and $i_{k-1} < i_k - 3$. Without loss of generality, suppose $j \geq k$.

If there exists $w \in N(v_{i_j+1}) \cap N(u) \setminus V(P)$, then the path $v_0 v_1 \cdots v_{i_k-2} v_{i_j} v_{i_j-1} \cdots v_{i_k} uw v_{i_j+1} v_{i_j+2} \cdots v_{i_j}$ is an x-y path of length r+1. This is a contradiction. Hence $N(v_{i_j+1}) \cap N(u) \subseteq V(P)$. By Claims 2 and 4, $d(u) + d(v_{i_j+1}) < n$. This implies $|N(v_{i_j+1}) \cap N(u)| \ge \alpha$. Therefore there holds the following Claim.

Claim 6
$$m = \alpha$$
 and $N(v_{i_1+1}) \cap N(u) = N_p(u)$.

Claim 6 implies $v_{i_l+1}v_{i_k} \in E$. Replacing the segment on P from v_{i_k-2} to v_{i_l+1} by $v_{i_k-2}v_{i_l}v_{i_l-1}\cdots v_{i_k}v_{i_l+1}$. One gets a path P' of length r-1. Considering the path P', one can see that $N(u) \cap N(v) \subseteq V(P)$ for any $v \in A_m \cup B_1 \setminus \{v_{i_k-1}\}$. Hence, by Claims 2 and 4, we get

Claim 7 For any
$$v \in A_m \bigcup B_1 \setminus \{v_{i_k-1}\}, N(u) \cap N(v) = N_P(u)$$
.

Claim 8 $A_m \cup \{v_{i_1-1}, u\}$ is independent.

For otherwise, there exists $v_{i_r+1} \in A_m$ with $v_{i_r+1} v_{i_k-1} \in E$. If t = k-1, an x-y path $v_0 v_1 \cdots v_{i_{k-1}} u v_{i_1} v_{i_1-1} \cdots v_{i_{k-1}} v_{i_{k-1}+1} v_{i_{k-1}+2} \cdots v_{i_k-2} v_{i_1+1} v_{i_1+2} \cdots v_{i_k-2} v_{i_1+1} v_{i_1+2} \cdots v_{i_k-2} v_{i_1+1} v_{i_1+2} \cdots v_{i_k-2} v_{i_k+1} v_{i_k+1} v_{i_k+2} \cdots v_{i_k+2} v_{i_k+2} \cdots$

 $v_{i_k} v_{i_k+1} \cdots v_r$ is of length r+1.A contradictions.

Claim 8 implies the existence of an independent set of cardinality $\alpha+1$. A contradiction.

Subcase 1.2
$$|N(v_{i,-2}) \cap N(u)| \ge \alpha$$
.

By the proof of case 1.1, we can suppose that for any j $(2 \le j \le m)$, if $i_k > i_{k-1}+2$, then $|N(v_{i_k-2}) \cap N(u)| \ge \alpha$. By Claims 3 and 5 and the symmetry, we get

Claim 9
$$m = \alpha$$
 and for any j , $2 \le j \le m$, if $i_j > i_{j-1} + 2$, then $N(u) \cap N(v_{i_{j-1}+2}) = N_P(u)$, $N(v_{i_{j-1}+2}) \cap N(u) = N_P(u)$.

By Claim 9, it is easy to prove that for any $v \in A_m \cup B_1$, $N(u) \cap N(v) \subseteq V(P)$. Subsequently, by Claims 2, 4 and the intersection condition, we get

Claim 10 For any
$$v \in A_m \cup B_1$$
, $N(u) \cap N(v) = N_P(u)$.

Consider C_{k-1} . If $v_{i_{k-1}+1}v_{i_k-1}\notin E$, with a similar proof of Claim 8, Claim 10 implies that $A_m\bigcup\{v_{i_{k-1}},u\}$ is independent. A contradiction. Hence, $v_{i_{k-1}+1}v_{i_k-1}\in E$. By Claim 9, we can replace the segment on P from $v_{i_{k-1}}$ to v_{i_k} by $v_{i_{k-1}}v_{i_{k-1}+2}v_{i_{k-1}+3}\cdots v_{i_{k-1}}v_{i_{k-1}+1}v_{i_k}$ and hence, we can suppose that for any $v\in C_{k-1}$, $N(u)\cap N(v)=N_P(u)$ and $G[C_{k-1}]$ is complete. And further, we have

Claim 11 For any j $(1 \le j \le m-1)$, $G[C_j]$ is complete, and for any $v \in C_j$, $N(u) \cap N(v) = N_P(u)$.

By the assumption and Claim 11 we have

Claim 12 For any j, s,
$$1 \le j < s \le m-1$$
, $[C_i, C_s] = \phi$.

Set $V_1 = V(G) \setminus (V(P) \cup \{u\} \cup N(u))$. If $V_1 \neq \phi$, let $w \in V_1$, then $wu \notin E$. Therefore w is adjacent with some vertex, say v_{i_j+1} , of A_m . Suppose $N(w) \cap N(u) \subseteq N_P(u)$ (Otherwise we can easily get an x-y path of length r+1). By claim 11, there exists an x-y path of length r+1. A contradiction. Hence $V_1 = \phi$. By Claim 11 and the definition of independence number, $G[N(u) \setminus V(P)]$ is complete. That is, $G \in G(\alpha, \alpha)$.

Case 2 All cases but not case 1.

Let $V(P) = V_1 \cup V_2$, where $V_1 = \{v_i \in V(P) | i \text{ is odd} \}$, $V_2 = \{v_i \in V(P) | i \text{ is even} \}$. For any $u \in V(G) \setminus V(P)$, if u is adjacent with some vertex of V_i , then u is adjacent with all vertices of V_i (i = 1 or 2). Set $V_3 = \{u \in V(G) \setminus V(P) | d_{v_1}(u) > 0\}$, $V_4 = \{u \in V(G) \setminus V(P) | d_{v_2}(u) > 0\}$. Obviously, $V_3 \cap V_4 = \emptyset$,

and V_3 and V_4 are independent. Let $V_5 = V(G) \setminus (\bigcup_{i=1}^4 V_i)$. If $V_5 \neq \phi$, let $w \in V_5$. Without loss of generality, suppose $d_{V_4}(w) > 0$. If also $d_{V_3}(w) > 0$, we can easily get an x-y path of length r+1. Hence $d_{V_3}(w) = 0$. Let $u \in V_1$. Then $wu \notin E$, d(u) + d(w) < n and $N(w) \cap N(u) = \phi$. This is a contradiction. Hence $V_5 = \phi$.

If $V_4 = \phi$ or $V_3 = \phi$, without loss of generality, suppose $V_4 = \phi$, then $V_3 \neq \phi$. For any $u \in V_3$, $v \in V_2$, $uv \notin E$. Hence $N(u) \cap N(v) \subseteq V(P)$. Since $V_2 \setminus \{v_1\}$ is independent, by Claim 4, $|V_1| \geqslant \alpha$. But $v_0 u \notin E$, which contradicts Claim 3. If $V_3 = \phi$, but $V_4 \neq \phi$, let $u \in V_4$. Clearly, V_1 is independent. Since $N(u) \cap N(v_1) \subseteq V(P)$, by Claim 4, $|V_2| \geqslant \alpha$. Hence $|V_2| = \alpha$ and $i_1 = 0$, $i_m = 1$. This implies $|V_1| = \alpha - 1$. So $|V_0| = 1$. That is, $G \in G(\alpha, \alpha)$.

If both V_3 and V_4 are nonempty, then, when r is odd or, r is even but $v_0v_1 \notin E$, both V_1 and V_2 are independent. And further, $V_1 \cup V_4$, $V_2 \cup V_3$ are independent. So G is isomorphic to $K_{\alpha, \alpha}$. When r is even and $v_0v_1 \in E$, V_1 is independent, $V_2 - \{v_0\}$ or $V_2 - \{v_1\}$ is independent too. It is easy to see that G is belong to $G(\alpha, \alpha)$.

Theorem 1 is proved.

Corollary 2^[2,3] Let G be a simple graph of order $(n \ge 3)$. If for any pair of nonadjacent vertices $u, v, d(u)+d(v) \ge n+1$, then G is (5,n)- connected.

Corollary $3^{[4]}$ Let G be a simple graph of order $(n \ge 3)$ with independence number α . If for any pair of nonadjacent vertices $u,v, |N(u) \cap N(v)| \ge \alpha$, then G is (5,n)-connected, unless G is belong to $G(\alpha,\alpha)$.

Corollary 4 Let G be a simple graph of order $n(\ge 4)$ with independence number α . If for any pair of nonadjacent vertices u,v, $d(u)+d(v)\ge n+1$ or $|N(u)\bigcap N(v)|\ge \alpha$, then each edge of G is either 3⁻-pancyclic or 4⁻-pancyclic, unless G is isomorphic to $K_{\alpha,\alpha}$.

References

- [1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications. Macmillan, London. 1976.
- [2] R.J.Faudree and R.H.Schelp, Path connected graphs. Acta Math. Acad. Sci. Hungar., 25(1974) 313-319.
- [3] Cai Xiao-tao, A short proof for the Faudree-Schelp Theorem on path connected graphs. J. Graph Theory, 8(1984) 109-110.
- [4] Song Zeng Min and Qin Yu Sheng, Neighborhood intersections and panconnectivity. To appear.